Что такое обратный процесс

ОБРАТНЫЙ ПРОЦЕСС

Смотреть что такое «ОБРАТНЫЙ ПРОЦЕСС» в других словарях:

обратный процесс — atvirkštinis vyksmas statusas T sritis Standartizacija ir metrologija apibrėžtis Vyksmas, kurio tarpsniai yra tokie pat kaip ir tiesioginio, bet vyksta atvirkščia kryptimi. atitikmenys: angl. inverse process vok. Umkehrprozess, m rus. обратный… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

обратный процесс — atvirkštinis procesas statusas T sritis chemija apibrėžtis Procesas, kurio stadijos yra tokios kaip tiesioginio, bet vyksta atvirkščia tvarka. atitikmenys: angl. inverse process rus. обратный процесс … Chemijos terminų aiškinamasis žodynas

обратный процесс — atvirkštinis vyksmas statusas T sritis fizika atitikmenys: angl. inverse process vok. Umkehrprozeß, m rus. обратный процесс, m pranc. processus inverse, m … Fizikos terminų žodynas

Обратный процесс — 1. механизм взаимодействия, при котором функционирование одного аспекта системы одновременно тормозит функционирование другого, и наоборот. Синоним: Реципокный; 2. в психопатологии – гипотетический процесс, обеспечивающий преобладание одних… … Энциклопедический словарь по психологии и педагогике

обратный — прил., употр. очень часто 1. Направление, путь и т. п. называют обратными, если они ведут в сторону, противоположную движению, которое выполнялось до этого. Ехать в обратном направлении. | Обратный отсчёт времени. | Они засобирались в обратный… … Толковый словарь Дмитриева

процесс — выиграть процесс • победа завершился процесс • действие, субъект, окончание идёт процесс • действие, субъект, продолжение контролировать процесс • зависимость, контроль начался процесс • действие, субъект, начало начался судебный процесс •… … Глагольной сочетаемости непредметных имён

обратный — происходит обратный процесс • действие, субъект … Глагольной сочетаемости непредметных имён

Обратный вывод — в продукционных системах вывод от поставленной цели (гипотезы). Если цель согласуется с заключением правила, то его условие принимается за подцель, и этот процесс повторяется до тех пор, пока не будет получено совпадение подцели с известными… … Финансовый словарь

ОБРАТНЫЙ ОСМОС — ОБРАТНЫЙ ОСМОС, движение жидкости (РАСТВОРИТЕЛЯ) через ПОЛУПРОНИЦАЕМУЮ МЕМБРАНУ от концентрированного РАСТВОРА к менее концентрированному. Это движение является осмосом в обратном направлении и может быть достигнуто при создании дополнительного… … Научно-технический энциклопедический словарь

Источник

Обратимый процесс

Из Википедии — свободной энциклопедии

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы имеют максимальный КПД. Бо́льший КПД от системы получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

В термодинамике примером тепловой машины, работающей только по обратимым процессам, является машина Карно, состоящая из двух адиабат и двух изотерм. В адиабатических процессах никакого обмена энергией с окружающей средой не происходит. В изотермических процессах теплообмен между окружающей средой (нагревателем, при расширении, и холодильником, при сжатии) и рабочим телом проходит между телами, имеющими одну и ту же температуру. Это важный момент, так как если теплообмен происходит между телами с разной температурой, он является необратимым (второе начало термодинамики).

Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости. Химическая обратимость характеризует направление процесса, а термодинамическая — способ его проведения.

Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам. В состоянии химического равновесия скорость прямой реакции равна скорости обратной реакции!

Между тем опыт показывает, что существуют определенные ограничения, связанные с направлением протекания процессов в природе. Так, энергия путем теплообмена самопроизвольно переходит от горячего тела к более холодному, а обратный процесс сам по себе не происходит, т.е. он необратим.

Источник

Обратимый процесс

Что такое обратный процесс. Смотреть фото Что такое обратный процесс. Смотреть картинку Что такое обратный процесс. Картинка про Что такое обратный процесс. Фото Что такое обратный процесс

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу. Бо́льшую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости. Химическая обратимость характеризует направление процесса, а термодинамическая — способ его проведения.

Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам.

Примеры

Выпечка пирога — необратимый процесс. Гидролиз солей — обратимый процесс.

См. также

Ссылки

Что такое обратный процесс. Смотреть фото Что такое обратный процесс. Смотреть картинку Что такое обратный процесс. Картинка про Что такое обратный процесс. Фото Что такое обратный процесс

Полезное

Смотреть что такое «Обратимый процесс» в других словарях:

ОБРАТИМЫЙ ПРОЦЕСС — в термодинамике, процесс перехода термодинамич. системы из одного состояния в другое, допускающий возможность возвращения её в первонач. состояние через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимых в… … Физическая энциклопедия

ОБРАТИМЫЙ ПРОЦЕСС — в термодинамике процесс, который возможно осуществить в обратном направлении, последовательно повторяя в обратном порядке все промежуточные состояния прямого процесса. Обратимым процессом может быть только равновесный процесс. Реальные процессы,… … Большой Энциклопедический словарь

ОБРАТИМЫЙ ПРОЦЕСС — ОБРАТИМЫЙ ПРОЦЕСС, всякий процесс, который может при определенных условиях протекать в обратном направлении, т.е. так, что параметры, определяющие систему, изменяются в обратном порядке относительно их первоначальных значений. Если при прямом… … Научно-технический энциклопедический словарь

обратимый процесс — Термодинамический процесс, после которого система и взаимодействующие с ней системы (окружающая среда) могут возвратиться в начальное состояние без того, чтобы в системе и окружающей среде возникали какие либо остаточные изменения. [Сборник… … Справочник технического переводчика

обратимый процесс — – процесс, протекающий в данных условиях равновесно в прямом и обратном направлении. Общая химия : учебник / А. В. Жолнин [1] … Химические термины

обратимый процесс — в термодинамике, процесс, который возможно осуществить в обратном направлении, последовательно повторяя в обратном порядке все промежуточные состояния прямого процесса. Обратимый процесс может быть только равновесный процесс. Реальные процессы,… … Энциклопедический словарь

обратимый процесс — [reversible process] процесс перехода термодинамической системы из одного состояния в другое, допускающее возможность возвращения ее в первоначальное состояние через ту же последовательность промежуточных состояний, но в обратном порядке.… … Энциклопедический словарь по металлургии

обратимый процесс — Термодинамический процесс, после которого система и взаимодействующие с ней системы (окружающая среда) могут возвратиться в начальное состояние без того, чтобы в системе и окружающей среде возникали какие либо остаточные изменения. обратимый… … Политехнический терминологический толковый словарь

обратимый процесс — grįžtamasis vyksmas statusas T sritis Standartizacija ir metrologija apibrėžtis Sistemos būsenos kitimas, kuris gali vykti įprastine ir atvirkštine tvarka, nekeisdamas aplinkos. atitikmenys: angl. reversible process vok. reversibler Prozess, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

обратимый процесс — grįžtamasis procesas statusas T sritis chemija apibrėžtis Sistemos būsenos kitimas, kuris gali vykti įprastine ir atvirkštine tvarka, nekeisdamas aplinkos. atitikmenys: angl. reversible process rus. обратимый процесс … Chemijos terminų aiškinamasis žodynas

Источник

Обратный процесс

Смотреть что такое «Обратный процесс» в других словарях:

обратный процесс — atvirkštinis vyksmas statusas T sritis Standartizacija ir metrologija apibrėžtis Vyksmas, kurio tarpsniai yra tokie pat kaip ir tiesioginio, bet vyksta atvirkščia kryptimi. atitikmenys: angl. inverse process vok. Umkehrprozess, m rus. обратный… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

обратный процесс — atvirkštinis procesas statusas T sritis chemija apibrėžtis Procesas, kurio stadijos yra tokios kaip tiesioginio, bet vyksta atvirkščia tvarka. atitikmenys: angl. inverse process rus. обратный процесс … Chemijos terminų aiškinamasis žodynas

обратный процесс — atvirkštinis vyksmas statusas T sritis fizika atitikmenys: angl. inverse process vok. Umkehrprozeß, m rus. обратный процесс, m pranc. processus inverse, m … Fizikos terminų žodynas

ОБРАТНЫЙ ПРОЦЕСС — Обычно, сложный механизм взаимодействия, при котором функционирование одного аспекта системы одновременно тормозит функционирование другого, и наоборот. Система обратного процесса действует (приблизительно) как балансир: подъем одного конца… … Толковый словарь по психологии

обратный — прил., употр. очень часто 1. Направление, путь и т. п. называют обратными, если они ведут в сторону, противоположную движению, которое выполнялось до этого. Ехать в обратном направлении. | Обратный отсчёт времени. | Они засобирались в обратный… … Толковый словарь Дмитриева

процесс — выиграть процесс • победа завершился процесс • действие, субъект, окончание идёт процесс • действие, субъект, продолжение контролировать процесс • зависимость, контроль начался процесс • действие, субъект, начало начался судебный процесс •… … Глагольной сочетаемости непредметных имён

обратный — происходит обратный процесс • действие, субъект … Глагольной сочетаемости непредметных имён

Обратный вывод — в продукционных системах вывод от поставленной цели (гипотезы). Если цель согласуется с заключением правила, то его условие принимается за подцель, и этот процесс повторяется до тех пор, пока не будет получено совпадение подцели с известными… … Финансовый словарь

ОБРАТНЫЙ ОСМОС — ОБРАТНЫЙ ОСМОС, движение жидкости (РАСТВОРИТЕЛЯ) через ПОЛУПРОНИЦАЕМУЮ МЕМБРАНУ от концентрированного РАСТВОРА к менее концентрированному. Это движение является осмосом в обратном направлении и может быть достигнуто при создании дополнительного… … Научно-технический энциклопедический словарь

Источник

Обратимые и необратимые процессы в термодинамике

Вы будете перенаправлены на Автор24

Обратимый процесс считается в физике процессом, который возможен для проведения в обратном направлении таким образом, что система будет подвержена прохождению тех же состояний, но в обратных направлениях.

Рисунок 1. Обратимые и необратимые процессы. Автор24 — интернет-биржа студенческих работ

Необратимый процесс считается процессом, самопроизвольно протекающим исключительно в одном направлении.

Термодинамический процесс

Рисунок 2. Термодинамические процессы. Автор24 — интернет-биржа студенческих работ

Термодинамический процесс представляет непрерывное изменение состояний системы, которое происходит в итоге ее взаимодействий с окружающей средой. Внешним признаком процесса будет считаться в таком случае изменение хотя бы одного параметра состояния.

Реальные процессы изменения состояния проистекают при условии присутствия значительных скоростей и разностей потенциалов (давлений и температур), существующих между системой и средой. В подобных условиях появится сложное неравномерное распределение параметров и функций состояния, исходя из объема системы, пребывающей в неравновесном состоянии. Термодинамические процессы, предусматривающие прохождение системы через ряд неравновесных состояний, будут называться неравновесными.

Готовые работы на аналогичную тему

Изучение неравновесных процессов считается сложнейшей для ученых задачей, поскольку разработанные в рамках термодинамики методы приспособлены в основном для исследования равновесных состояний. К примеру, неравновесный процесс весьма сложно рассчитывается посредством уравнений состояния газа, применимых для равновесных условий, в то время, как в отношении всего объема системы давление и температура обладают равными значениями.

Возможно было бы выполнять приближенный расчет неравновесного процесса путем подстановки в уравнение средних значений параметров состояния, но в большинстве случаев осреднение параметров по объему системы становится невозможным.

В технической термодинамике в рамках исследования реальных процессов условно принимают распределение параметров состояния равномерным образом. Это, в свою очередь, позволяет воспользоваться уравнениями состояния и иными расчетными формулами, полученными с целью равномерного распределения в системе параметров.

В некоторых конкретных случаях погрешности, обусловленные подобным упрощением, незначительны и при расчете реальных процессов их возможно не учитывать. Если в результате неравномерности процесс ощутимо отличается от идеальной равновесной модели, то в расчет внесут соответствующие поправки.

Условия равномерно распределенных параметров в системе при изменении ее состояния, по существу подразумевают взятие идеализированного процесса в качестве объекта исследования. Подобный процесс при этом состоит из бесконечно большого количества равновесных состояний.

Такой процесс возможно представить в формате протекающего настолько медленно, что в каждый конкретный момент времени в системе установится практически равновесное состояние. Степень приближения такого процесса к равновесному окажется тем большей, чем меньшей будет при этом скорость изменения системы.

В пределе мы приходим к бесконечно медленному процессу, предоставившему непрерывную смену для состояний равновесия. Подобный процесс равновесного изменения состояния будет называться квазистатическим (или как бы статическим). Такому виду процесса будет соответствовать бесконечно малая разность потенциалов между системой и окружающей средой.

При обратном направлении квазистатического процесса система будет проходить через состояния, аналогичные тем, что происходят в прямом процессе. Такое свойство квазистатических процессов называют обратимостью, а сами процессы при этом являются обратимыми.

Обратимый процесс в термодинамике

Рисунок 3. Обратимый процесс в термодинамике. Автор24 — интернет-биржа студенческих работ

Обратимый процесс (равновесный) – представляет термодинамический процесс, способный к прохождению и в прямом, и в обратном направлении (за счет прохождения через одинаковые промежуточные состояния), система при этом возвращается в исходное состояние без энергетических затрат, а в окружающей среде не остается никаких макроскопических изменений.

Обратимый процесс возможно в абсолютно любой момент времени заставить протекать в обратном направлении, за счет изменения какой-либо независимой переменной на бесконечно малую величину. Обратимые процессы могут давать наибольшую работу. Большую работу от системы получить невозможно ни при каких условиях. Это придает теоретическую важность обратимым процессам, реализовать которые на практике также нереально.

Такие процессы протекают бесконечно медленно, и становится возможным лишь приблизиться к ним. Важно отметить существенное отличие термодинамической обратимости процесса от химической. Химическая обратимость будет характеризовать направление процесса, а термодинамическая – способ, при котором он будет проводиться.

Понятия обратимого процесса и равновесного состояния играют очень значимую роль в термодинамике. Так, каждый количественный вывод термодинамики будет применим исключительно в отношении равновесных состояний и обратимых процессов.

Необратимые процессы термодинамики

Необратимый процесс невозможен к проведению в противоположном направлении посредством все тех же самых промежуточных состояний. Все реальные процессы считаются в физике необратимыми. В качестве примеров таких процессов выступают следующие явления:

Переход кинетической энергии (для макроскопического движения) в теплоту через трение (во внутреннюю энергию системы) будет представлять собой необратимый процесс.

Все осуществляемые в природе физические процессы подразделяются на обратимые и необратимые. Пусть изолированная система вследствие некоего процесса осуществит переход из состояния А в состояние В и затем возвратится в свое изначальное состояние.

Процесс, в таком случае, станет обратимым в условиях вероятного осуществления обратного перехода из состояния В в А через аналогичные промежуточные состояния таким путем, чтобы при этом не оставалось совершенно никаких изменений в окружающих телах.

Если осуществление подобного перехода невозможно и при условии сохранения по окончании процесса в окружающих телах или внутри самой системы каких-либо изменений, то процесс окажется необратимым.

Любой процесс, сопровождающийся явлением трения, станет необратимым, поскольку, в условиях трения, часть работы всегда превратится в тепло, оно рассеется, в окружающих телах сохранится след процесса – (нагревание), что превратит процесс (с участием трения) в необратимый.

Идеальный механический процесс, выполняемый в консервативной системе (без сил трения), стал бы обратимым. Примером подобного процесса можно считать колебания на длинном подвесе тяжеловесного маятника. По причине незначительной степени сопротивления среды, амплитуда маятниковых колебаний становится практически неизменной на протяжении продолжительного времени, кинетическая энергия колеблющегося маятника при этом оказывается полностью переходящей в его потенциальную энергию и обратно.

В качестве важнейшей принципиальной особенности всех тепловых явлений (где участвует громаднейшее количество молекул), будет выступать их необратимый характер. Примером процесса такого характера можно считать расширение газа (в частности, идеального) в пустоту.

Итак, в природе наблюдается существование двух видов принципиально различных процессов:

Согласно заявлению М. Планка, сделанного однажды, различия между такими процессами, как необратимые и обратимые, будут лежать значительно глубже, чем, к примеру, между электрическими и механическими разновидностями процессов. По этой причине, его с большим основанием (сравнительно с любым другим признаком) имеет смысл выбирать как первейший принцип в рамках рассмотрения физических явлений.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *