Что такое компиляция кода

Компиляция (программирование)

Компилировать — проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык. [3]

Содержание

Виды компиляторов [2]

Виды компиляции [2]

Основы

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен центральным процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.

Для каждой целевой машины (Apple и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС получать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут быть оптимизированы под разные типы процессоров из одного семейства (путём использования специфичных для этих процессоров инструкций). Например, код, скомпилированный под процессоры семейства MMX, SSE2.

Также существуют компиляторы, переводящие программу с языка высокого уровня на язык ассемблера.

Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а программы — декомпиляторами. Но поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Flash. Сходным процессом является дизассемблирование машинного кода в код на языке ассемблера, который всегда выполняется успешно. Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически однозначное соответствие.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

В конкретных реализациях компиляторов эти этапы могут быть раздельны или совмещены в том или ином виде.

Трансляция и компоновка

Важной исторической особенностью компилятора, отражённой в его названии (англ. compile — собирать вместе, составлять), являлось то, что он мог производить и компоновку (то есть содержал две части — транслятор и компоновщик). Это связано с тем, что раздельная компиляция и компоновка как отдельная стадия сборки выделились значительно позже появления компиляторов, и многие популярные компиляторы (например, GCC) до сих пор физически объединены со своими компоновщиками. В связи с этим, вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

Интересные факты

Примечания

См. также

Литература

Полезное

Смотреть что такое «Компиляция (программирование)» в других словарях:

Компиляция — Компиляция: В Викисловаре есть статья «компиляция» Компиляция (литература) (лат. … Википедия

Условная компиляция — В информатике, препроцессор это компьютерная программа, принимающая данные на входе, и выдающая данные, предназначенные для входа другой программы, например, такой как компилятор. О данных на выходе препроцессора говорят, что они находятся в… … Википедия

Объектно-ориентированное программирование — Эта статья во многом или полностью опирается на неавторитетные источники. Информация из таких источников не соответствует требованию проверяемости представленной информации, и такие ссылки не показывают значимость темы статьи. Статью можно… … Википедия

JIT-компиляция — Just in time compilation (JIT, компиляция «на лету»), dynamic translation (динамическая компиляция) технология увеличения производительности программных систем, использующих байт код, путём компиляции байт кода в машинный код… … Википедия

Сравнение языков программирования — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Условные обозначения … Википедия

Пайтон — Python Класс языка: функциональный, объектно ориентированный, императивный, аспектно ориентированный Тип исполнения: интерпретация байт кода, компиляция в MSIL, компиляция в байт код Java Появился в: 1990 г … Википедия

ГОСТ 19781-90: Обеспечение систем обработки информации программное. Термины и определения — Терминология ГОСТ 19781 90: Обеспечение систем обработки информации программное. Термины и определения оригинал документа: 9. Абсолютная программа Non relocatable program Программа на машинном языке, выполнение которой зависит от ее… … Словарь-справочник терминов нормативно-технической документации

Паскаль (язык) — Pascal Семантика: процедурный Тип исполнения: компилятор Появился в: 1970 г. Автор(ы): Никлаус Вирт Паскаль (англ. Pascal) высокоуровневый язык программирования общего назначения. Один из наиболее известных языков программирования, широко… … Википедия

Паскаль (язык программирования) — Эта статья или раздел нуждается в переработке. В Паскале нет модулей, ООП и прочих новомодных веяний. Описание расширений должно присутствовать только в статьях о соответ … Википедия

D (язык программирования) — У этого термина существуют и другие значения, см. D. D Семантика: мультипарадигменный: императивное, объектно ориентированное, обобщённое программирование Тип исполнения: компилятор Появился в: 1999 Автор(ы) … Википедия

Источник

Что такое компилятор?

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

В этом гайде вы узнаете о том, что такое компилятор и как он работает. Мы разберем этапы компиляции и от чего зависит выбор подходящего компилятора. Этот материал поможет лучше понять, как компьютер выполняет программный код и почему иногда код не компилируется.

Зачем нужен компилятор?

Процессор — самая важная часть компьютера. Он обрабатывает информацию, выполняет команды пользователя и следит за работой всех подключенных устройств. Но процессор может разобрать только машинный код — набор 0 и 1, которые записаны в определённом порядке.

Почему именно 0 и 1? В процессор поступают электрические сигналы. Сильный сигнал обозначается цифрой 1, а слабый — 0. Набор таких цифр обозначает какую-то команду. Процессор ее распознает и выполняет.

Программы для первых компьютеров выглядели как огромные наборы 0 и 1. Чтобы записать такую программу, инженеры пользовались гибкими картонными карточками — перфокартами. Цифры на перфокарте записывались поочередно, в несколько строк. Чтобы записать 1, программист делал отверстие в карте. Места без отверстия обозначали 0.

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Компьютер считывал перфокарту специальным устройством и выполнял записанную команду. Для одной программы составляли сотни перфокарт.

Писать их было долго и сложно, поэтому инженеры стали создавать языки программирования, обозначая команды словами и знаками. Для того, чтобы процессор понимал, какие команды записаны в программе, программисты создали компилятор — программу, которая преобразует программный код в машинный.

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Как работает компилятор?

Преобразование программного кода в машинный называется компиляцией. Компиляция только преобразует код. Она не запускает его на исполнение. В этот момент он “статически” (то есть без запуска) транслируется в машинный код. Это сложный процесс, в котором сначала текст программы разбирается на части и анализируется, а затем генерируется код, понятный процессору.

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Разберём этапы компиляции на примере вычисления периметра прямоугольника:

После запуска программы компилятору нужно определить, какие команды в ней записаны. Сначала компилятор разделяет программу на слова и знаки — токены, и записывает их в список. Такой процесс называется лексическим анализом. Его главная задача — получить токены.

Компилятор должен понять, какие токены в списке связаны с токен-оператором. Чтобы сделать это правильно, для каждого оператора строится специальная структура — логическое дерево или дерево разбора.

Так операция P = 2*(a + b) будет преобразована в логическое дерево:

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Теперь каждое дерево нужно разобрать на команды, и каждую команду преобразовать в машинный код. Компилятор начинает читать дерево снизу вверх и составляет список команд:

Компилятор еще раз проверяет команды, находит ошибки и старается улучшить код. При успешном завершении этого этапа, компилятор переводит каждую команду в набор 0 и 1. Наборы записываются в файл, который сможет прочитать и выполнить процессор.

На чем написан компилятор?

В 1950-е годы группа разработчиков IBM под руководством Джона Бэкуса разработала первый высокоуровневый язык программирования Fortran, который позволил писать программы на понятном человеку языке. Помимо языка, инженеры работали и над компилятором. Он представлял собой программу с набором исполняемых команд, которая могла компилировать другие программы на Fortran, в том числе и улучшенную версию себя.

В дальнейшем язык Fortran и его компилятор использовали, чтобы написать компиляторы для новых языков программирования. Такой подход используют программисты и в настоящее время. Писать машинный код долго и неудобно. К тому же, для современных процессоров он может отличаться. Придется писать несколько версий одного и того же компилятора для разных компьютеров. Быстрее и проще написать компилятор на существующем языке программирования. Для этого разработчики выбирают удобный язык и пишут на нем первую версию своего компилятора. Он будет более универсальным для компьютеров и легко скомпилирует улучшенную версию себя. Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Какие бывают компиляторы?

Ни один компилируемый язык программирования не обходится без компилятора. Некоторые компиляторы работают с несколькими языками программирования. Но программист должен учитывать еще и параметры компьютера, на котором программа будет запускаться.

Дело в том, что современные процессоры отличаются друг от друга устройством, поэтому машинный код для одного процессора будет понятен, а для другого нет. Это касается и операционных систем: одна и та же программа будет работать на Windows, но не запустится на Linux или MacOS. Поэтому нужно пользоваться тем компилятором, который работает с нужным процессором и операционной системой.

Если программа будет работать на нескольких операционных системах, то нужен кросс-компилятор — компилятор, который преобразует универсальный машинный код. Например, GNU Compiler Collection(сокращенно GCC) поддерживает C++, Objective-C, Java, Фортран, Ada, Go и поддерживает разную архитектуру процессоров.

Начинающие программисты даже не знают о наличии компилятора на компьютере. Они пишут программы в интегрированной среде разработки, в которую встроен компилятор, а иногда и не один. В этом случае, выбор компилятора делает среда, а не программист. Например, MS Visual Studio поддерживает компиляторы для операционных систем Windows, Linux, Android. Выбирая тип проекта, Visual Studio определяет процессор и операционную систему компьютера, и после этого выбирает подходящий компилятор.

Какие ошибки может определить компилятор?

Когда компилятор анализирует текст программы, он проверяет, соответствует ли запись оператора стандартам языка. Если найдено несоответствие, то компилятор выводит об этом информацию пользователю в виде ошибки. Когда вся программа разобрана, пользователь видит список ошибок, которые есть в коде, и может их исправить. Пока программист не исправит ошибки, компилятор не перейдет к следующему этапу — генерации машинного кода для процессора. Чаще всего компилятор показывает пользователю:

Иногда компилятор определяет код, который при выполнении дает неправильный результат. Но преобразовать такую программу в машинный код все-таки можно. В этом случае компилятор показывает пользователю предупреждение. Такая реакция компилятора больше похожа на рекомендации, но на них стоит обратить внимание. Программист сам решает оставить код с предупреждением или изменить программу. Анализируя текст программы, компилятор не только ищет ошибки, но еще и упрощает ее код. Такой процесс называется оптимизацией. Во время оптимизации компилятор изменяет программный код, но функции, которые выполняла программа, остаются прежними.

Выводы и рекомендации

Компилятор — переводчик между программистом и процессором. Он преобразует текст программы в машинный код, определяет ряд ошибок в программе и оптимизирует ее работу. Выбирая, где компилировать программу, важно помнить о том, что машинный код для процессоров и операционных систем будет разным, и подобрать правильный компилятор. Чем точнее компилятор определит команды, тем корректнее и быстрее будет работать программа. Для этого следуйте простым рекомендациям:

Частые вопросы

Чем компилятор отличается от интерпретатора?

Компилятор это программа, которая выполняет преобразование текста программы в другое представление, обычно машинный код, без его запуска, статически. Затем эта программа уже может быть запущена на выполнение. Интерпретатор сразу запускает код и выполняет его в процессе чтения. Промежуточного этапа как в компиляции нет.

Источник

Процесс компиляции программ на C++

Цель данной статьи:

В данной статье я хочу рассказать о том, как происходит компиляция программ, написанных на языке C++, и описать каждый этап компиляции. Я не преследую цель рассказать обо всем подробно в деталях, а только дать общее видение. Также данная статья — это необходимое введение перед следующей статьей про статические и динамические библиотеки, так как процесс компиляции крайне важен для понимания перед дальнейшим повествованием о библиотеках.

Все действия будут производиться на Ubuntu версии 16.04.
Используя компилятор g++ версии:

Состав компилятора g++

Мы не будем вызывать данные компоненты напрямую, так как для того, чтобы работать с C++ кодом, требуются дополнительные библиотеки, позволив все необходимые подгрузки делать основному компоненту компилятора — g++.

Зачем нужно компилировать исходные файлы?

Исходный C++ файл — это всего лишь код, но его невозможно запустить как программу или использовать как библиотеку. Поэтому каждый исходный файл требуется скомпилировать в исполняемый файл, динамическую или статическую библиотеки (данные библиотеки будут рассмотрены в следующей статье).

Этапы компиляции:

driver.cpp:

1) Препроцессинг

Самая первая стадия компиляции программы.

Препроцессор — это макро процессор, который преобразовывает вашу программу для дальнейшего компилирования. На данной стадии происходит происходит работа с препроцессорными директивами. Например, препроцессор добавляет хэдеры в код (#include), убирает комментирования, заменяет макросы (#define) их значениями, выбирает нужные куски кода в соответствии с условиями #if, #ifdef и #ifndef.

Хэдеры, включенные в программу с помощью директивы #include, рекурсивно проходят стадию препроцессинга и включаются в выпускаемый файл. Однако, каждый хэдер может быть открыт во время препроцессинга несколько раз, поэтому, обычно, используются специальные препроцессорные директивы, предохраняющие от циклической зависимости.

Получим препроцессированный код в выходной файл driver.ii (прошедшие через стадию препроцессинга C++ файлы имеют расширение .ii), используя флаг -E, который сообщает компилятору, что компилировать (об этом далее) файл не нужно, а только провести его препроцессинг:

Взглянув на тело функции main в новом сгенерированном файле, можно заметить, что макрос RETURN был заменен:

В новом сгенерированном файле также можно увидеть огромное количество новых строк, это различные библиотеки и хэдер iostream.

2) Компиляция

На данном шаге g++ выполняет свою главную задачу — компилирует, то есть преобразует полученный на прошлом шаге код без директив в ассемблерный код. Это промежуточный шаг между высокоуровневым языком и машинным (бинарным) кодом.

Ассемблерный код — это доступное для понимания человеком представление машинного кода.

Используя флаг -S, который сообщает компилятору остановиться после стадии компиляции, получим ассемблерный код в выходном файле driver.s:

Мы можем все также посмотреть и прочесть полученный результат. Но для того, чтобы машина поняла наш код, требуется преобразовать его в машинный код, который мы и получим на следующем шаге.

3) Ассемблирование

Так как x86 процессоры исполняют команды на бинарном коде, необходимо перевести ассемблерный код в машинный с помощью ассемблера.

Ассемблер преобразовывает ассемблерный код в машинный код, сохраняя его в объектном файле.

Объектный файл — это созданный ассемблером промежуточный файл, хранящий кусок машинного кода. Этот кусок машинного кода, который еще не был связан вместе с другими кусками машинного кода в конечную выполняемую программу, называется объектным кодом.

Далее возможно сохранение данного объектного кода в статические библиотеки для того, чтобы не компилировать данный код снова.

Получим машинный код с помощью ассемблера (as) в выходной объектный файл driver.o:

Но на данном шаге еще ничего не закончено, ведь объектных файлов может быть много и нужно их всех соединить в единый исполняемый файл с помощью компоновщика (линкера). Поэтому мы переходим к следующей стадии.

4) Компоновка

Компоновщик (линкер) связывает все объектные файлы и статические библиотеки в единый исполняемый файл, который мы и сможем запустить в дальнейшем. Для того, чтобы понять как происходит связка, следует рассказать о таблице символов.

Таблица символов — это структура данных, создаваемая самим компилятором и хранящаяся в самих объектных файлах. Таблица символов хранит имена переменных, функций, классов, объектов и т.д., где каждому идентификатору (символу) соотносится его тип, область видимости. Также таблица символов хранит адреса ссылок на данные и процедуры в других объектных файлах.
Именно с помощью таблицы символов и хранящихся в них ссылок линкер будет способен в дальнейшем построить связи между данными среди множества других объектных файлов и создать единый исполняемый файл из них.

Получим исполняемый файл driver:

5) Загрузка

Последний этап, который предстоит пройти нашей программе — вызвать загрузчик для загрузки нашей программы в память. На данной стадии также возможна подгрузка динамических библиотек.

Запустим нашу программу:

Заключение

В данной статье были рассмотрены основы процесса компиляции, понимание которых будет довольно полезно каждому начинающему программисту. В скором времени будет опубликована вторая статья про статические и динамические библиотеки.

Источник

Что такое компилятор

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Если вы программист, то наверняка слышали слово “компилятор”. Но знаете ли вы, что это такое на самом деле? Вы когда-нибудь задумывались, что происходит под капотом, когда вы запускаете команду javac (если у вас код на Java)? Вы когда-нибудь хотели создать свой собственный язык программирования? — и просто заводили бесполезный репозиторий GitHub, где все равно есть только один readme.md, потому что вы даже не знаете, с чего начать. Я думаю, что начинать стоит с этого: узнать больше о компиляторе.

Итак, в этой статье мы разберёмся, что представляет собой компилятор. Если вы опытный программист, который знает про компилятор каждую мелочь, то извините, эта статья не для вас. Но если вы — тот самый парень из абзаца выше, то вперёд за мной, в кроличью нору. На протяжении статьи я буду обсуждать следующие подтемы:

Вступление

Компилятор — это не что иное, как переводчик исходного кода.

Задача компилятора — перевести исходный код с одного языка на другой. Это означает, что если вы скормите компилятору исходный код Java, то сможете получить исходный код Python (не самый лучший пример, просто для понимания сути. На самом деле вы получите байт-код Java, который можно запустить на JVM). Для выполнения этого процесса у компилятора есть несколько взаимосвязанных компонентов.

Типы компиляторов

Мы можем классифицировать компиляторы по-разному. В этой статье я расскажу о двух способах классификации компиляторов, однако особенно углубляться в это не буду.

Классификация компиляторов в соответствии с этапами компиляции

Здесь мы рассмотрим количество этапов, которые проходит компилятор. Некоторые компиляторы непосредственно преобразуют высокоуровневый исходный код в машинный код, а некоторые — сначала преобразуют высокоуровневый исходный код в промежуточное представление перед преобразованием в машинный код.

Таким образом, в соответствии с этой классификацией можно выделить три типа компиляторов:

Если вы хотите узнать больше об этой классификации компиляторов, посмотрите сюда.

Классификация компиляторов в соответствии с исходным кодом и целевым кодом

Для преобразования исходного кода в целевой применяются разные подходы. Некоторые компиляторы преобразуют код на высокоуровневом языке в машинный. Некоторые компиляторы преобразуют с одного языка высокого уровня на другой язык высокого уровня. Таким образом, здесь выделяются следующие типы:

Архитектура компилятора

Когда компилятор компилирует (переводит) исходный код, он проходит несколько этапов:

Мы можем разделить все эти этапы на две фазы, примерно как фронтенд и бэкенд. Эти фазы включают в себя следующие этапы:

Фронтенд

Бэкенд

В следующем разделе я кратко опишу, что происходит на каждой фазе. Если вы не программируете компиляторы, то нормально иметь о них лишь поверхностное представление, но если вы хотите разработать компилятор сами, то вам стоит подробно изучить их работу.

Лексический анализ

Теперь вы знаете, что компилятор — это программа, которая преобразует исходный код в другой исходный код. Компилятор получает исходный код в виде файла. Этот файл содержит код в текстовом формате, но компилятор не может работать с этим текстом. Необходимо преобразовать этот текст в некоторый другой формат, понятный компилятору. Для этого компилятор разбивает текст по маркерам. Помните, что эти маркеры заранее определены в грамматике языка. Маркеры пригодятся на следующих этапах процесса компиляции:

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

KEYWORD, BRACKET, IDENTIFIER, OPERATOR, NUMBER на приведенной выше диаграмме — это и есть маркеры. Компилятор использует лексический анализ для идентификации маркеров, и если он получает маркер, который не определен заранее в грамматике языка, то это будет считаться ошибкой.

Синтаксический анализ (парсинг)

На этом этапе компилятор проверяет, расположены ли идентифицированные ранее маркеры в правильном порядке. Для этого в каждом языке есть набор правил, называемый грамматикой. Во-первых, компилятор пытается построить структуру данных — дерево синтаксического анализа. Если компилятор смог успешно построить дерево синтаксического анализа в соответствии с заранее определенными правилами грамматики, то в исходном коде нет синтаксических ошибок. В противном случае возникают ошибки и компилятор их покажет.

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Здесь мы сначала определили грамматику. Затем компилятор пытается построить дерево синтаксического анализа для исходного кода 2 + 3 * 3. В этом случае компилятору удается построить дерево синтаксического анализа (с правой стороны) в соответствии с грамматикой, следовательно в этой программе нет синтаксических ошибок.

Семантический анализ

Просто потому, что программа не содержит синтаксических ошибок, код еще не может считаться правильным. Рассмотрим предложение ниже.

I love compilers

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Компилятор при анализе синтаксиса может решить, что в этом предложении нет синтаксических ошибок, потому что маркеры (слова) расположены в правильном порядке.

Теперь рассмотрим предложение ниже.

I eat compilers

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Предположим, что eat — правильный маркер в соответствии с грамматикой. Таким образом, предложение признается правильным на этапе лексического и синтаксического анализа, поскольку слова расположены в правильном порядке. Но в этом предложении нет никакого смысла — никто не может есть компиляторы.

Итак, согласно этапу семантического анализа, эта программа содержит ошибку. Мы называем эту разновидность ошибок семантическими ошибками. Взгляните на этот простой Java-код:

Здесь нет синтаксических ошибок. Все маркеры упорядочены правильно. Но на пятой строке int total = c + d — не имеет никакого значения, так как идентификаторы c и d не определены. Это и есть семантическая ошибка.

Генерация промежуточного кода

Любой компилятор может непосредственно генерировать машинный код из исходного. Так зачем же тогда нужна фаза генерации промежуточного кода?

Существуют различные типы машин. Таким образом, машинный код зависит от системы, а высокоуровневый исходный код — нет. Если компилятор непосредственно генерирует машинный код из исходного кода, то каждая машина нуждается в полной компиляции от фронта к бэку. Но когда компилятор генерирует промежуточный код (промежуточное представление), он уже может генерировать машинный код для каждой машины с его помощью, без повторения лексического анализа и парсинга для каждой машины.

Что такое компиляция кода. Смотреть фото Что такое компиляция кода. Смотреть картинку Что такое компиляция кода. Картинка про Что такое компиляция кода. Фото Что такое компиляция кода

Существует два основных типа промежуточных представлений:

Существует также несколько способов представления промежуточного представления.

Оптимизация кода

Этап оптимизации кода выполняет две основные задачи: минимизация времени или минимизация ресурсов. Что все это значит? Когда пользователь пишет код, нет ничего, кроме инструкций. Когда процессор выполняет эти инструкции, требуют время и ресурсы памяти. Таким образом, целью этапа оптимизации кода становится сокращение времени выполнения и ресурсов, потребляемых программой. Оптимизатор кода всегда следует трем правилам:

Существует два способа оптимизации кода:

Машинно-независимая оптимизация принимает промежуточное представление относительно входных данных и не заботится ни о каких регистрах процессора и ячейках памяти. Она происходит после генерации промежуточного кода.

При машинно-зависимой оптимизации кода компилятор заботится о регистрах процессора, расположениях памяти и архитектуре машины. Она происходит после генерации машинного кода.

Генерация кода

Генерация кода — это последний этап процесса компиляции. Да, после может следовать машинно-зависимая оптимизация кода. Но мы можем рассматривать и то, и другое вместе как генерацию кода. На этом этапе компилятор генерирует машинно-зависимый код. Генератор кода должен иметь представление о среде выполнения целевой машины и ее наборе команд.

На этом этапе компилятор выполняет несколько основных задач:

Итоговый машинный код, сгенерированный генератором кода, может быть выполнен на целевой машине. Именно так высокоуровневый исходный код, который мы пишем в нашем любимом редакторе кода, преобразуется в формат, который можно запустить на любой целевой машине.

В этой статье я предоставляю только краткое описание. Если вам хочется углубиться в эти концепции, к вашим услугам миллионы ресурсов в интернете.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *