В связи с чем появилась необходимость введения экваториальных координат
Системы координат в астрономии
Занимаясь исследованиями космоса и неба, учёные установили, что всё вокруг находится в движении.
История возникновения системы координат началась ещё в древности.
Прежде всего, разработка системы координат связана с потребностью ориентирования на местности, и пониманием структуры небесной поверхности.
Небо над облаками
Для определения расположения и перемещения объектов человечество разработало целую систему методов и способов. Более того, придумали специальные числовые и символичные обозначения.
На самом деле, систем, определяющих точки положения объектов, несколько. Главным образом отличаются они выбором главной плоскости и пунктом отсчёта.
Так как, наблюдая с Земли, мы видим небо в виде сферы, то координаты в астрономии тоже сферические. Кроме того, они представляют некие дуги кругов сферы. Стоит отметить, что исчисляются они в градусах, иногда в часах.
Горизонтальная система координат
В ней математический горизонт выступает главной плоскостью. А полюса составляют зенит и надир.
Горизонтальной системой координат пользуются для наблюдений с Земли. Это возможно и невооружённым глазом, и с помощью телескопа. Наблюдают за звёздами и перемещением объектов на небе. Разумеется, что в рамках Солнечной системы.
Горизонтальная система координат
Разумеется, наблюдение и измерение происходит постоянно. Потому как движение небесных тел происходит непрерывно.
Некоторые определения системы координат
Отвесная линия представляет собой прямую, проходящую через центр неба. К тому же она совпадает с течением нити отвеса относительно точки наблюдения. Для наблюдателя данная прямая вертикально пересекает центр планеты и место наблюдения.
Зенит и надир это две противоположности. Как известно, отвесная линия пересекается с небом над головой наблюдателя-это и есть зенит. Собственно, надир оказывается полярной по диаметру точкой.
Математический горизонт является огромным кругом небесной сферической поверхности. Его область перпендикулярна отвесной линии. Что важно, он делит всю поверхность неба пополам. Более того, эти части называют видимой и невидимой для наблюдателя. Первая имеет верхнюю точку в зените, а вторая в надире.
Математический горизонт, Зенит и надир, Отвесная линия
В то же время, математический горизонт никогда не соответствует видимому горизонту. Так как, во-первых, поверхность Земли неровная. Как следствие, высшая точка наблюдения разная. А во-вторых, по причине искривления лучей в атмосфере нашей планеты.
Горизонтальные координаты в астрономии составляют высота светила и зенитное расстояние. Помимо этого, есть ещё азимут.
Высота светила это дуга его вертикала от математического горизонта до направления на само светило. Границы высоты к зениту равны от 0° до +90°.и наоборот к надиру, то есть от 0° до — 90°.
Стоит отметить, что зенитное расстояние это дуга вертикала от зенита до светила. Кстати, рассчитывают зенитный отрезок от зенита к надиру в пределах от 0° до 180°.
Азимут, то есть дуга математического горизонта от южной точки до вертикали светила.
Притом азимут отсчитывают к западу от южной точки в пределах от 0° до 360°. А именно в сторону суточного вращения небесной сферы.
Азимут
Первая экваториальная система координат
За плоскую область в этой системе берётся поверхность экватора неба, а точка отчёта — Q. Помимо того, координаты представляют склонение и часовой угол.
Что такое склонение вы можете узнать тут.
Часовым углом является дуга, которая расположена посередине небесного меридиана и кругом склонения. Граница его измерения от 0° до 360°.
Надо сказать, что применяется первая экваториальная система координат в связи с постоянным движением нашей планеты в течение суток. В связи с этим, местом отсчёта установили точку весеннего равноденствия. Так как она является постоянной относительно звёзд.
Часовой угол
Вторая экваториальная система координат
Что интересно, главная плоскость и точка отчёта аналогичны предыдущей системе. Но её координатами выступают склонение и прямое восхождение.
Подразумевается, что восхождение это дуга экватора неба, которая проходит от точки весеннего равноденствия до круга светила. Кроме того, измерение проходит в часовой мере. Однако, её отсчёт ведётся противоположно часовой стрелки.
Между тем, вторая система координат, характеризуется постоянными координатами звёзд. В противовес первой системе, движение Земли за сутки не влияет на них. Применяется она для определения перемещения небесных тел за год.
Вторая экваториальная система координат
Важно понимать, что координаты могут быть всегда разными. Поэтому существует множество задач. Их решение возможно с применением, подходящей отдельной ситуации, системой. Вообще, для решения задач и определении координат, очень часто чередуют системы.
Создание систем координат позволило учёным составить карту звёздного неба. Кроме того, обрисовалась определённая структура небесной системы. Что, в значительной мере, способствовало развитию астрономии и астрологии. Помимо того, экваториальные системы координат применяются во многих областях научной деятельности.
Звёздное небо
Очевидно, что разработка и внедрение определённых систем, составляет основу исследования космического пространства. Мы стараемся максимально приблизиться к его пониманию. Конечно, множество уже применяемых приёмов, расчётов и методов способствует расширению нашего кругозора.
Экваториальная система координат
Экваториальная система координат — одна из систем небесных координат. В этой системе основной плоскостью является плоскость небесного экватора. Одной из координат при этом является склонение δ (реже — полярное расстояние p).
Другой координатой может быть:
Содержание
Первая экваториальная система координат
Склонение измеряют в пределах от 0 ° до 90 ° в сторону северного полюса мира и от 0 ° до −90 ° в сторону южного полюса мира.
Полярные расстояния измеряют в пределах от 0 ° до 180 ° по направлению от северного полюса мира к южному.
Часовые углы отсчитывают в сторону суточного вращения небесной сферы, то есть к западу от верхней точки небесного экватора, в пределах от 0 ° до 360 ° (в градусной мере) или от 0 ч до 24 ч (в часовой мере). Иногда часовые углы измеряют в пределах от 0 ° до 180 ° (от 0 ч до 12 ч ) к западу и от 0 ° до −180 ° (от 0 ч до −12 ч ) к востоку.
Вторая экваториальная система координат
В этой системе, как и в первой экваториальной, основной плоскостью является плоскость небесного экватора, а одной из координат при этом является склонение (δ) (реже — полярное расстояние p). Но вторая координата — прямое восхождение (α) — дуга небесного экватора от точки весеннего равноденствия до круга склонения светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга склонения светила. Таким образом, начало отсчёта находится в точке, где Солнце пересекает небесный экватор весной (точка весеннего равноденствия). Этот угол измеряется к востоку от видимого положения центра Солнца, то есть в сторону, противоположную суточному вращению небесной сферы, вдоль небесного экватора и принимает значения от 0 ° до 360 ° (в градусной мере) либо от 0 ч до 24 ч (в часовой мере).
Общие характеристики
В Северном полушарии Земли для заданной широты φ:
В связи с чем появилась необходимость введения экваториальных координат
Есть иволги в лесах, и в гласных долгота
В тонических стихах единственная мера,
Но только раз в году бывает разлита
В природе длительность
Как в метрике Гомера.
Как бы цезурою зияет этот День:
Уже с утра покой
И трудные длинноты,
Волы на пастбище,
И золотая лень
Из тростника извлечь богатство
целой ноты.
О. Мандельштам
Тема: Изменение вида звездного неба в течение года.
Цель: Познакомится с экваториальной системой координат, видимым годичным движениям Солнца и видам звездного неба (изменением в течение года), научится работать по ПКЗН.
Задачи:
1. Обучающая: ввести понятия годичного(видимого) движение светил: Солнца, Луны, звезд, планет и видов звездного неба; эклиптика; зодиакальные созвездия; точки равноденствия и солнцестояния. Причина «запаздывания» кульминаций. Продолжить формирование умения работать с ПКЗН- отыскание на карте эклиптики, зодиакальных созвездий, звезд по их координатам.
2. Воспитывающая: содействовать формированию навыка выявления причинно-следственных связей; только тщательный анализ наблюдаемых явлений дает возможность проникнуть в сущность казалось бы очевидных явлений.
3. Развивающая: используя проблемные ситуации, подвести учащихся к самостоятельному выводу, что вид звездного неба не остается одинаковым в течении года; актуализируя имеющиеся у учащихся знания работы с географическими картами, сформировать умения и навыки работы с ПКЗН (нахождение координат).
Оборудование: ПКЗН, небесная сфера. Географическая и звездная карта. Модель горизонтальных и экваториальных координат, фото видов звездного неба в разное время года. CD- «Red Shift 5.1» (путь Солнца, Смена времен года). Видеофильм «Астрономия» (ч.1, фр. 1 «Звездные ориентиры»).
Межпредметная связь: Суточное и годовое движение Земли. Луна – спутник Земли (природоведение, 3-5 кл). Природно-климатические закономерности (география, 6 кл). Движение по окружности: период и частота (физика, 9 кл)
II. Новый материал (20 мин) Видеофильм «Астрономия» (ч.1, фр. 1 «Звездные ориентиры»).
а) | φ— географическая широта | 0 0 ≤φ≤±90 0 | |
λ- географическая долгота | 0 0 ≤λ≤360 0 | ||
Эти координаты ввел еще Эратосфен (276-194, Древняя Греция) в 130 г до НЭ, ссылаясь на небесные координаты, введенные Евдоксом Книдским (408-355г, Древняя Греция). |
Круг склонения— большой круг небесной сферы проходящей через полюса мира и наблюдаемое светило (точки Р, М, Р’). | |
Вращение Земли вокруг оси | Физические явления: 1) отклонение падающих тел к востоку; 2) существование сил Кориолиса. Отображения истинного вращения Земли вокруг своей оси: 1) суточное вращение небесной сферы вокруг оси мира с востока на запад; 2) восход и заход светил; 3) кульминация светил; 4) смена дня и ночи; 5) суточная аберрация светил; 6) суточный параллакс светил |
Вращение Земли вокруг Солнца | Отображения истинного вращения Земли вокруг Солнца: 1) годичное изменение вида звездного неба (кажущееся движение небесных светил с запада на восток); 2) годичное движение Солнца по эклиптике с запада на восток; 3) изменение полуденной высоты Солнца над горизонтом в течение года; а) изменение продолжительности светового времени суток в течение года; б) полярный день и полярная ночь на высоких широтах планеты; 5) смена времен года; 6) годичная аберрация светил; 7) годичный параллакс светил |
Созвездия, через которые проходит эклиптика называются зодиакальными. Число зодиакальных созвездий (12) равно числу месяцев в году, и каждый месяц обозначается знаком созвездия, в котором Солнце в этот месяц находится. 13-е созвездие Змееносца исключается, хотя через него и проходит Солнце. «Red Shift 5.1» (путь Солнца). | |||||||||
Основные | Box-орбита • Орбита захвата • Эллиптическая орбита / Высокая эллиптическая орбита • Орбита ухода • Орбита захоронения • Гиперболическая траектория • Наклонная орбита / Ненаклонная орбита • Оскулирующая орбита • Параболическая траектория • Опорная орбита (в т.ч. низкая) • Синхронная орбита • (Полусинхронная • Субсинхронная) • Стационарная орбита |
Геоцентрические | Геосинхронная орбита • Геостационарная орбита • Солнечно-синхронная орбита • Низкая околоземная орбита • Средняя околоземная орбита • Высокая околоземная орбита • Молния-орбита • Околоэкваториальная орбита • Орбита Луны • Полярная орбита • Тундра-орбита • TLE |
Вокруг других небесных тел и точек | Ареосинхронная орбита • Ареостационарная орбита • Гало-орбита • Орбита Лиссажу • Окололунная орбита • Гелиоцентрическая орбита • Солнечно-синхронная орбита |
Классические | Наклонение · Долгота восходящего узла · Эксцентриситет · Аргумент перицентра · Большая полуось · Средняя аномалия на эпоху |
Другие | Истинная аномалия · Малая полуось · Эксцентрическая аномалия · Средняя долгота · Истинная долгота · Период обращения |
Небесная механика | |
---|---|
Законы и задачи | Законы Ньютона | Закон всемирного тяготения | Законы Кеплера | Задача двух тел | Задача трёх тел | Гравитационная задача N тел | Задача Бертрана | Уравнение Кеплера |
Небесная сфера | Система небесных координат: галактическая • горизонтальная • первая экваториальная • вторая экваториальная • эклиптическая | Международная небесная система координат | Сферическая система координат | Ось мира | Небесный экватор | Прямое восхождение | Склонение | Эклиптика | Равноденствие | Солнцестояние | Фундаментальная плоскость |
Параметры орбит | Кеплеровы элементы орбиты: эксцентриситет • большая полуось • средняя аномалия • долгота восходящего узла • аргумент перицентра | Апоцентр и перицентр | Орбитальная скорость | Узел орбиты | Эпоха |
Движение небесных тел | Движение Солнца и планет по небесной сфере | Эфемериды | Конфигурации планет: противостояние • квадратура • парад планет| Кульминация | Сидерический период | Орбитальный резонанс | Период вращения | Предварение равноденствий | Синодический период | Сближение | Затмение: солнечное затмение • лунное затмение • сарос • Метонов цикл | Покрытие | Прохождение | Либрация | Элонгация | Эффект Козаи | Эффект Ярковского | Эффект Джанибекова |
Астродинамика | |
Космический полёт | Космическая скорость: первая (круговая) • вторая (параболическая) • третья • четвёртая | Формула Циолковского | Гравитационный манёвр | Гомановская траектория | Метод оскулирующих элементов | Приливное ускорение| Изменение наклонения орбиты | Стыковка | Точки Лагранжа | Эффект «Пионера» |
Орбиты КА | Геостационарная орбита | Гелиоцентрическая орбита | Геосинхронная орбита | Геоцентрическая орбита | Геопереходная орбита | Низкая опорная орбита | Полярная орбита | Тундра-орбита | Солнечно-синхронная орбита | Молния-орбита | Оскулирующая орбита |
Полезное
Смотреть что такое «Система небесных координат» в других словарях:
Системы небесных координат — используются в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере.… … Википедия
Системы небесных координат — системы координат, позволяющие задать положение небесного тела на небе. Подавляющее большинство С.н.к. являются сферическими и основываются на понятии небесной сферы. Выбор системы координат на небесной сфере фиксируется: избранной точкой… … Астрономический словарь
Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В… … Википедия
Система астронавигационная — электронная измерительно вычислительная корабельная система, предназначенная для автоматического измерения высот небесных светил, их азимутов и выдачи по этим данным обсервованных координат места корабля. Состоит из визира с измерительным оптико… … Морской словарь
Сферическая система координат — Точка имеет три декартовых и три сферических координаты Сферическую систему координат удобно определять, соотносясь с д … Википедия
Горизонтальная система координат — Горизонтальная система координат[1]:40, или горизонтная система координат[2]:30 это система небесных координат, в которой основной плоскостью является плоскость математического горизонта, а полюсами зенит и надир. Она применяется при наблюдениях… … Википедия
Галактическая система координат — Млечный Путь в представлении художника с галактической долготой относительно Солнца. Галактическая система координат это система небесных координат, имеющая точку отсчёта наше … Википедия
Международная небесная система координат — International Celestial Reference System (ICRS, Международная небесная система координат или Международная система астрономических координат) с 1998 года стандартная небесная система координат. Принята на 23 м съезде МАС в 1997 году.… … Википедия
Полярная система координат — Полярная сетка, на которой отложено несколько углов с пометками в градусах. Полярная система координат двумерная система координат, в которой каждая точка на плоскости определяется двумя числами полярным углом и полярны … Википедия