Π ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ ΠΎΠ΄Π½ΠΈΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠΌ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ
Π ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ ΠΎΠ΄Π½ΠΈΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠΌ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ
ΠΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΡΡ ΠΌΠΎΠ³ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ.
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² (ΡΠΈΡ. 1.9.1) ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π²ΠΎ Π²ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°:
. |
ΠΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ°, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠ°Π²Π½Ρ
. |
ΠΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ 1 ΠΈ 2:
, |
Π³Π΄Π΅ β ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ. ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ:
|
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ (ΡΠΈΡ. 1.9.2) Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ 1 ΠΈ 2 Π½Π° ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ:
. |
Π‘ΡΠΌΠΌΠ° ΡΠΎΠΊΠΎΠ² 1 + 2, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΎΠ±ΠΎΠΈΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°ΠΌ, ΡΠ°Π²Π½Π° ΡΠΎΠΊΡ Π² Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ:
= 1 + 2. |
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π² ΡΠΎΡΠΊΠ°Ρ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΠΎΠ² (ΡΠ·Π»Ρ ΠΈ ) Π² ΡΠ΅ΠΏΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π½Π΅ ΠΌΠΎΠ³ΡΡ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡΡΡ Π·Π°ΡΡΠ΄Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊ ΡΠ·Π»Ρ Π·Π° Π²ΡΠ΅ΠΌΡ Ξ ΠΏΠΎΠ΄ΡΠ΅ΠΊΠ°Π΅Ρ Π·Π°ΡΡΠ΄ Ξ, Π° ΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡ ΡΠ·Π»Π° Π·Π° ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π·Π°ΡΡΠ΄ 1Ξ + 2Ξ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, = 1 + 2.
ΠΠ°ΠΏΠΈΡΡΠ²Π°Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ°
Π³Π΄Π΅ β ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ, ΠΏΠΎΠ»ΡΡΠΈΠΌ
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ, ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½, ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠΎΡΡΠΎΡΡΠ΅ΠΉ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ². ΠΠ° ΡΠΈΡ. 1.9.3 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ°ΠΊΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΈ ΡΠΊΠ°Π·Π°Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
Π‘Π»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π΄Π°Π»Π΅ΠΊΠΎ Π½Π΅ Π²ΡΠ΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠ΅ΠΏΠΈ, ΡΠΎΡΡΠΎΡΡΠΈΠ΅ ΠΈΠ· ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ, ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ» Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ. ΠΠ° ΡΠΈΡ. 1.9.4 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΠΊΠΎΡΠΎΡΡΡ Π½Π΅Π»ΡΠ·Ρ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌ Π²ΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ.
Π¦Π΅ΠΏΠΈ, ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° ΡΠΈΡ. 1.9.4, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅ΠΏΠΈ Ρ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ², ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ°Π²ΠΈΠ» ΠΠΈΡΡ Π³ΠΎΡΠ°.
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
1. ΠΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ: ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π»Π°ΠΌΠΏΠΎΡΠΊΠΈ, ΡΠ΅Π·ΠΈΡΡΠΎΡΡ ΠΈ ΠΏΡ. β ΠΌΠΎΠ³ΡΡ ΠΏΠΎ-ΡΠ°Π·Π½ΠΎΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ Π΄ΡΡΠ³ Ρ Π΄ΡΡΠ³ΠΎΠΌ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ. Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΄Π²Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠΈΠΏΠ° ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²: ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅. ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΊΠΎΠ½Π΅Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅ΡΡΡ Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°, Π° Π΅Π³ΠΎ ΠΊΠΎΠ½Π΅Ρ β Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΈ Ρ.Π΄. (ΡΠΈΡ. 85).
ΠΡΠΈΠΌΠ΅ΡΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ ΡΠ»ΡΠΆΠΈΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π»Π°ΠΌΠΏΠΎΡΠ΅ΠΊ Π² ΡΠ»ΠΎΡΠ½ΠΎΠΉ Π³ΠΈΡΠ»ΡΠ½Π΄Π΅.
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΎΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π²ΡΠ΅ Π»Π°ΠΌΠΏΠΎΡΠΊΠΈ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΠ΅ΡΠ΅Π· ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° Π² Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΉ Π·Π°ΡΡΠ΄, Ρ.Π΅. Π·Π°ΡΡΠ΄ Π½Π΅ ΡΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΡΡΡ Π½ΠΈ Π² ΠΊΠ°ΠΊΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°. ΠΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π² Π»ΡΠ±ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ ΡΠ΅ΠΏΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°: β \( I_1=I_2=I \) β.
ΠΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ: β \( R_1=R_2=R \) β. ΠΡΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΈΡ ΠΎΠ±ΡΠ°Ρ Π΄Π»ΠΈΠ½Π° ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ, ΠΎΠ½Π° Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ Π΄Π»ΠΈΠ½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ° Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅ ΡΠ°Π²Π½ΠΎ: β \( U_1=IR_1 \) β, β \( U_2=IR_2 \) β, Π° ΠΎΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ β \( U=I(R_1+R_2) \) β. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π²ΠΎ Π²ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°, Π° ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², ΡΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅: β \( U=U_1+U_2 \) β.
ΠΠ· ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΡ ΡΠ°Π²Π΅Π½ΡΡΠ² ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π² ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, ΠΌΠ΅Π½ΡΡΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΡΠ΅ΠΏΠΈ.
2. ΠΡΠΈΠΌΠ΅ΡΠΎΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠ»ΡΠΆΠΈΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² ΠΊΠ²Π°ΡΡΠΈΡΠ΅. Π’Π°ΠΊ, ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π»Π°ΠΌΠΏΠΎΡΠΊΠΈ, ΡΠ°ΠΉΠ½ΠΈΠΊ, ΡΡΡΠ³ ΠΈ ΠΏΡ. Π²ΠΊΠ»ΡΡΠ°ΡΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π²ΡΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ ΠΎΠ΄Π½ΠΈΠΌ ΡΠ²ΠΎΠΈΠΌ ΠΊΠΎΠ½ΡΠΎΠΌ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΊ ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ΅ΠΏΠΈ (Π), Π° Π²ΡΠΎΡΡΠΌ ΠΊΠΎΠ½ΡΠΎΠΌ ΠΊ Π΄ΡΡΠ³ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ΅ΠΏΠΈ (Π) (ΡΠΈΡ. 86).
ΠΠΎΡΡΠΎΠΌΡ Π²ΠΎΠ»ΡΡΠΌΠ΅ΡΡ, ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΊ ΡΡΠΈΠΌ ΡΠΎΡΠΊΠ°ΠΌ, ΠΏΠΎΠΊΠ°ΠΆΠ΅Ρ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅ 1, ΡΠ°ΠΊ ΠΈ Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅ 2. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ Π²ΡΠ΅Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅: β \( U_1=U_2=U \) β.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ ΡΠ°Π·Π²Π΅ΡΠ²Π»ΡΠ΅ΡΡΡ, Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π² ΡΠΎΡΠΊΠ΅ Π. ΠΠΎΡΡΠΎΠΌΡ ΡΠ°ΡΡΡ ΠΎΠ±ΡΠ΅Π³ΠΎ Π·Π°ΡΡΠ΄Π° ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ΄ΠΈΠ½ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ, Π° ΡΠ°ΡΡΡ β ΡΠ΅ΡΠ΅Π· Π΄ΡΡΠ³ΠΎΠΉ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π² Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»ΡΠ½Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ : β \( I=I_1+I_2 \) β.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΈΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°. ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ, Π΅ΡΠ»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ Π΄Π²Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ β \( r \) β, ΡΠΎ ΠΈΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ: β \( R=r/2 \) β. ΠΡΠΎ ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΊΠ°ΠΊ Π±Ρ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΈΡ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅.
ΠΠ· ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΡ ΡΠΎΡΠΌΡΠ» ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΠΏΠΎΡΠ΅ΠΌΡ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π²ΠΊΠ»ΡΡΠ°ΡΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ: ΠΎΠ½ΠΈ Π²ΡΠ΅ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ Π½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π² ΠΊΠ²Π°ΡΡΠΈΡΠ°Ρ ΡΠ°Π²Π½ΠΎ 220 Π. ΠΠ½Π°Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»Ρ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· Π½ΠΈΡ ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠΉ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠΉ ΡΠΈΠ»Π΅ ΡΠΎΠΊΠ°.
ΠΠ ΠΠΠΠ Π« ΠΠΠΠΠΠΠ
Π§Π°ΡΡΡ 1
1. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½Π° ΡΡ Π΅ΠΌΠ° ΡΡΠ°ΡΡΠΊΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΠ. Π ΡΡΡ ΡΠ΅ΠΏΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ Π΄Π²Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ β \( R_1 \) β ΠΈ β \( R_2 \) β. ΠΠ°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ β \( U_1 \) β ΠΈ β \( U_2 \) β.
ΠΠΎ ΠΊΠ°ΠΊΠΎΠΉ ΠΈΠ· ΡΠΎΡΠΌΡΠ» ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ ΠΠ?
2. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½Π° ΡΡ Π΅ΠΌΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ°Ρ Π΄Π²Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΡΠ½Π½ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ β \( R_1 \) β ΠΈ β \( R_2 \) β. ΠΠ°ΠΊΠΎΠ΅ ΠΈΠ· ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΡ Π½ΠΈΠΆΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ Π΄Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ²?
1) β \( I=I_1=I_2 \) β
2) \( I=I_1+I_2 \)
3) \( U=U_1+U_2 \)
4) \( R=R_1+R_2 \)
3. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΡ Π΅ΠΌΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ. Π ΡΡΡ ΡΠ΅ΠΏΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ Π΄Π²Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ R> ΠΈ R2. ΠΠ°ΠΊΠΎΠ΅ ΠΈΠ· ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΡ Π½ΠΈΠΆΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ Π΄Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ²?
4. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΡ Π΅ΠΌΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ. Π ΡΡΡ ΡΠ΅ΠΏΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ Π΄Π²Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ β \( R_1 \) β ΠΈ β \( R_2 \) β. ΠΠ°ΠΊΠΎΠ΅ ΠΈΠ· ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΡ Π½ΠΈΠΆΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ Π΄Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ²?
5. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΡ Π΅ΠΌΠ° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ. Π ΡΡΡ ΡΠ΅ΠΏΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ β \( R_1 \) β. ΠΠΎ ΠΊΠ°ΠΊΠΎΠΉ ΠΈΠ· ΡΠΎΡΠΌΡΠ» ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ β \( R \) β?
6. ΠΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ, ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, ΡΠ°Π²Π½ΠΎ 9 ΠΠΌ. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² β \( R_1 \) β ΠΈ β \( R_2 \) β ΡΠ°Π²Π½Ρ. Π§Π΅ΠΌΡ ΡΠ°Π²Π½ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°?
1) 81 ΠΠΌ
2) 18 ΠΠΌ
3) 9 ΠΠΌ
4) 4,5 ΠΠΌ
7. Π§Π΅ΠΌΡ ΡΠ°Π²Π½ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π³ΠΎ ΡΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ 9 ΠΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ?
1) 1/3 ΠΠΌ
2) 3 ΠΠΌ
3) 9 ΠΠΌ
4) 27 ΠΠΌ
8. Π§Π΅ΠΌΡ ΡΠ°Π²Π½ΠΎ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ, ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, Π΅ΡΠ»ΠΈ β \( R_1 \) β = 1 ΠΠΌ, β \( R_2 \) β = 10 ΠΠΌ, β \( R_3 \) β = 10 ΠΠΌ, β \( R_4 \) β = 5 ΠΠΌ?
1) 9 ΠΠΌ
2) 11 ΠΠΌ
3) 16 ΠΠΌ
4) 26 ΠΠΌ
9. Π§Π΅ΠΌΡ ΡΠ°Π²Π½ΠΎ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ, ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΡΠ½Π½ΠΎΠ³ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, Π΅ΡΠ»ΠΈ \( R_1 \) = 1 ΠΠΌ, \( R_2 \) = 3 ΠΠΌ, \( R_3 \) = 10 ΠΠΌ, \( R_4 \) = 10 ΠΠΌ?
1) 9 ΠΠΌ
2) 10 ΠΠΌ
3) 14 ΠΠΌ
4) 24 ΠΠΌ
10. ΠΡΠ»ΠΈ ΠΏΠΎΠ»Π·ΡΠ½ΠΎΠΊ ΡΠ΅ΠΎΡΡΠ°ΡΠ° (ΡΠΌ. ΡΡ Π΅ΠΌΡ) ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΡ Π²Π»Π΅Π²ΠΎ, ΡΠΎ ΡΠΈΠ»Π° ΡΠΎΠΊΠ°
1) Π² ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ β \( R_1 \) β ΡΠΌΠ΅Π½ΡΡΠΈΡΡΡ, Π° Π² ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ β \( R_2 \) β ΡΠ²Π΅Π»ΠΈΡΠΈΡΡΡ
2) ΡΠ²Π΅Π»ΠΈΡΠΈΡΡΡ Π² ΠΎΠ±ΠΎΠΈΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°Ρ
3) Π² ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ β \( R_1 \) β ΡΠ²Π΅Π»ΠΈΡΠΈΡΡΡ, Π° Π² ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ β \( R_2 \) β ΡΠΌΠ΅Π½ΡΡΠΈΡΡΡ
4) ΡΠΌΠ΅Π½ΡΡΠΈΡΡΡ Π² ΠΎΠ±ΠΎΠΈΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°Ρ
11. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΠΏΡ, ΡΠΎΡΡΠΎΡΡΠ°Ρ ΠΈΠ· ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΎΠΊΠ°, ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΠΈ ΡΠ΅ΠΎΡΡΠ°ΡΠ°. ΠΠ°ΠΊ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠ»Π·ΡΠ½ΠΊΠ° ΡΠ΅ΠΎΡΡΠ°ΡΠ° Π²ΠΏΡΠ°Π²ΠΎ Π΅Π³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅, ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π² ΡΠ΅ΠΏΠΈ ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ 1?
ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ. ΠΠ°ΠΏΠΈΡΠΈΡΠ΅ Π² ΡΠ°Π±Π»ΠΈΡΡ Π²ΡΠ±ΡΠ°Π½Π½ΡΠ΅ ΡΠΈΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. Π¦ΠΈΡΡΡ Π² ΠΎΡΠ²Π΅ΡΠ΅ ΠΌΠΎΠ³ΡΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ.
Π€ΠΠΠΠ§ΠΠ‘ΠΠΠ― ΠΠΠΠΠ§ΠΠΠ
A) ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΎΡΡΠ°ΡΠ° 2
Π) ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π² ΡΠ΅ΠΏΠΈ
B) Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ 1
Π₯ΠΠ ΠΠΠ’ΠΠ ΠΠΠΠΠΠΠΠΠ―
1) ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ
2) ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ
3) Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ
Π€ΠΠΠΠ§ΠΠ‘ΠΠΠ ΠΠΠΠΠ§ΠΠΠ«
A) ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π² ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ \( R_1 \) β ΠΈ \( R_2 \)
Π) Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ \( R_2 \)
B) ΠΎΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ°Ρ
\( R_1 \) β ΠΈ \( R_2 \)
Π§Π°ΡΡΡ 2
13. Π’ΡΠΈ ΡΠ΅Π·ΠΈΡΡΠΎΡΠ° ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ² β \( R_1 \) β = 10 ΠΠΌ, \( R_2 \) = 5 ΠΠΌ, \( R_3 \) = 5 ΠΠΌ. ΠΠ°ΠΊΠΎΠ²ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΠ΅Π·ΠΈΡΡΠΎΡΠ΅ 1, Π΅ΡΠ»ΠΈ Π°ΠΌΠΏΠ΅ΡΠΌΠ΅ΡΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΠΈΠ»Ρ ΡΠΎΠΊΠ° 2 Π?
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
ΠΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΡΡ ΠΌΠΎΠ³ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠΌ, ΡΠ°ΠΊ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ.
ΠΠΏΠΈΡΠ°ΡΡΡ Π½Π° Π·Π°ΠΊΠΎΠ½ ΠΠΌΠ°, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΡΠ²ΠΈΡΡ, ΡΡΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U 1 ΠΈ U 2 Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠ°Π²Π½ΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌ:
ΠΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π½Π° ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ U 1 ΠΈ U 2 :
Π³Π΄Π΅ R ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ.
ΠΠ· ΡΡΠΎΠ³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R ΡΠ°Π²Π½ΡΠ΅ΡΡΡ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ Π½Π° Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² Π΄Π°Π½Π½ΡΡ ΡΠ΅ΠΏΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²:
ΠΠ°Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
Π‘ΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ Π² ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠΎΠΊΠΎΠ² I 1 + I 2 ΡΠ°Π²Π½ΡΠ΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠΊΠ° Π² Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠΎ Π΅ΡΡΡ:
ΠΠΏΠΈΡΠ°ΡΡΡ Π½Π° Π·Π°ΠΊΠΎΠ½ ΠΠΌΠ°, Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅ΡΠ²ΠΈ:
Π³Π΄Π΅ R ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ, ΠΏΠΎΠ»ΡΡΠΈΠΌ
Π ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½ΡΠ΅ΡΡΡ ΡΡΠΌΠΌΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½, ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ Π²ΡΠ²ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΡΠ» Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
ΠΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΠΏΡΡ ΠΌΠΎΠ³ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ.
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² (ΡΠΈΡ. 1.9.1) ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π²ΠΎ Π²ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°:
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
ΠΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ°, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U1 ΠΈ U2 Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠ°Π²Π½Ρ
ΠΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π½Π° ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ U1 ΠΈ U2:
Π³Π΄Π΅ R β ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ. ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ:
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ (ΡΠΈΡ. 1.9.2) Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U1 ΠΈ U2 Π½Π° ΠΎΠ±ΠΎΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ:
Π‘ΡΠΌΠΌΠ° ΡΠΎΠΊΠΎΠ² I1 + I2, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ ΠΏΠΎ ΠΎΠ±ΠΎΠΈΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°ΠΌ, ΡΠ°Π²Π½Π° ΡΠΎΠΊΡ Π² Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ:
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π² ΡΠΎΡΠΊΠ°Ρ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΠΎΠ² (ΡΠ·Π»Ρ A ΠΈ B) Π² ΡΠ΅ΠΏΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π½Π΅ ΠΌΠΎΠ³ΡΡ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡΡΡ Π·Π°ΡΡΠ΄Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊ ΡΠ·Π»Ρ A Π·Π° Π²ΡΠ΅ΠΌΡ Ξt ΠΏΠΎΠ΄ΡΠ΅ΠΊΠ°Π΅Ρ Π·Π°ΡΡΠ΄ IΞt, Π° ΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡ ΡΠ·Π»Π° Π·Π° ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π·Π°ΡΡΠ΄ I1Ξt + I2Ξt. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, I = I1 + I2.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
ΠΠ°ΠΏΠΈΡΡΠ²Π°Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ°
Π³Π΄Π΅ R β ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ, ΠΏΠΎΠ»ΡΡΠΈΠΌ
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ, ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½, ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠΎΡΡΠΎΡΡΠ΅ΠΉ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ². ΠΠ° ΡΠΈΡ. 1.9.3 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ°ΠΊΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΈ ΡΠΊΠ°Π·Π°Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
Π Π°ΡΡΠ΅Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΊΠ°Π·Π°Π½Ρ Π² ΠΎΠΌΠ°Ρ (ΠΠΌ)
Π‘Π»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π΄Π°Π»Π΅ΠΊΠΎ Π½Π΅ Π²ΡΠ΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠ΅ΠΏΠΈ, ΡΠΎΡΡΠΎΡΡΠΈΠ΅ ΠΈΠ· ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ, ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ» Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ. ΠΠ° ΡΠΈΡ. 1.9.4 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΠΊΠΎΡΠΎΡΡΡ Π½Π΅Π»ΡΠ·Ρ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌ Π²ΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ.
ΠΡΠΈΠΌΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²
Π¦Π΅ΠΏΠΈ, ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° ΡΠΈΡ. 1.9.4, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅ΠΏΠΈ Ρ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ², ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ°Π²ΠΈΠ» ΠΠΈΡΡ Π³ΠΎΡΠ°.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ΅ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΠ»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΏΡΠ°Π²Π΅Π΄ΒΠ»ΠΈΠ²Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ:
Π°) ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΠΊ, ΠΏΠΎΡΡΡΠΏΠ°ΡΡΠΈΠΉ Π² ΡΠΎΡΠΊΡ Π ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² (ΠΎΠ½Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ·Π»ΠΎΠΌ), ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΊΠΎΠ² Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΠΏΠΈ:
Π±) Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ², ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎ ΠΆΠ΅:
Π²) ΠΏΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ ΠΈΡ
ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ:
Π³) ΡΠΈΠ»Π° ΡΠΎΠΊΠ° ΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π² ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ
ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ:
.
ΠΠ»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π² ΡΠ΅ΠΏΠΈ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ:
.
Π°) Π΄Π»Ρ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΠΊΠ° I:
Π³Π΄Π΅ I1 ΠΈ I 2 β ΡΠΎΠΊ Π² ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ 1 ΠΈ 2 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ; Ρ. Π΅. ΠΏΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΒΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΡΠ΅ΠΏΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°;
Π±) ΠΎΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ Π²ΡΠ΅Π³ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ° ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ Π΅Π³ΠΎ ΡΡΠ°ΡΡΠΊΠ°Ρ :
Π²) ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R Π²ΡΠ΅Π³ΠΎ ΡΡΠ°ΡΡΠΊΠ° ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ:
Π³) ΡΠ°ΠΊΠΆΠ΅ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅:
.