нагрузка в чем измеряется в строительстве

Понятие нормативных и расчетных нагрузок. Коэффициенты надежности.

В методе предельных состояний применяется система коэффициентов надежности и коэффициентов условий работы, учитывающая изменчивость нагрузок, свойств материалов и условий работы конструкции. В связи с этим в расчетах по методу предельных состояний используются нормативные и расчетные значения нагрузок.

Нормативные нагрузки – это нагрузки, установленные нормами по заданной заранее вероятности превышения средних значений или по номинальным значениям.

Расчетные нагрузки – это нагрузки, используемые в расчетах конструкций на прочность и устойчивость и получаемые путем умножения нормативных значений нагрузок на коэффициенты надежности по нагрузке и по назначению здания:

где γf – коэффициент надежности по нагрузке, принимаемый по актуализированной версии СНиП 2.01.07-85* «Нагрузки и воздействия» (СП 20.1330.2016),

γn – коэффициент надежности по назначению сооружения, зависящий от уровня ответственности сооружения.

Установлено три класса ответственности зданий и сооружений:

II – нормальный уровень ответственности: здания и сооружения массового строительства (жилые, общественные, проиводственные и сельскохозяйтсвенные здания и сооружения). Для них γn = 1.0.

III – пониженный уровень ответственности: сооружения сезонного или вспомогательного назначения (парники, теплицы, летние павильоны, небольшие склады и др.). Для них γn = 0.8.

Величина коэффициента надежности по нагрузке (0.9 ≤ γf ≤ 1.4) зависит от вида нагрузки и группы предельных состояний. Нагрузки, действующие на здание, делятся на постоянные, временные и особые.

Постоянные – нагрузки, действующие в течение всего периода эксплуатации. Это вес несущих и ограждающих конструкций, вес и давление грунтов для заглубленных сооружений, усилие предварительного обжатия.

Временными называются нагрузки, изменяющие в процессе эксплуатации по величине или положению. Временные нагрузки делятся на длительные и кратковременные.

К длительным нагрузкам относятся: вес стационарного оборудования, нагрузка от массы продуктов, заполняющих оборудование в процессе эксплуатации, пониженное значение снеговых и крановых нагрузок, давление жидкостей, газов и сыпучих материал в емкостях, трубопроводах и др.

К кратковременным нагрузкам относятся: вес людей, полное значение снеговых и крановых нагрузок, ветровые нагрузки, а также нагрузки, возникающие при монтаже и ремонте конструкций.

Расчет конструкций выполняется на действие нагрузок в различных сочетаниях. Одновременное действие постоянных, длительных и кратковременных нагрузок называется основным сочетанием. Вероятность одновременного воздействия наибольших нагрузок учитывается коэффициентами сочетаний.

При одновременном действии двух и более временных нагрузок эти коэффициенты для всех временных нагрузок, кроме тех, что оказывают наибольшее влияние, принимаются меньше единицы. Для длительных нагрузок они равны 0.95, а для кратковременных – 0.9 или 0.7 в зависимости от степени влияния нагрузки. Наиболее значимая временная нагрузка прикладывается без снижения.

Особые сочетания складываются из нагрузок из основного сочетания и одной из особых нагрузок. В особых сочетаниях кратковременные нагрузки умножаются на коэффициент 0.8 (кроме случая сейсмических воздействий). Особая нагрузка прикладывается без снижения.

Источник

Сбор нагрузок на фундамент. Как рассчитать, примеры

Статья рассказывает, как выполнить сбор нагрузок на фундамент, а также содержит примеры, как рассчитать нагрузки от каркасно-щитового дома с мансардой с размерами в плане 6х9 м.

Содержание статьи:

1. Классификация воздействий на фундамент

Нагрузки на основание бывают постоянные Pd и временные (длительные Pl, кратковременные Pt, особые Ps).

вес частей сооружений, в том числе несущих и ограждающих строительных конструкций.

вес временных перегородок, подливок и подбетонок под оборудование, вес стационарного оборудования, заполняющих его жидкостей, твердых тел и др.

воздействия от людей (животных, оборудования) на перекрытия, от подвижного подъемно-транспортного оборудования, от транспортных средств и климатические (снеговая, ветровая и т.д.).

Чтобы правильно рассчитать воздействие на фундамент, необходимо выполнить сбор всех нагрузок. В примерах, приведенных в этой статье, учтены те виды воздействия, которые принципиальны при расчете фундамента из винтовых свай для объектов ИЖС.

2. Постоянные нагрузки. Как рассчитать вес частей сооружения?

Чтобы посчитать вес строения, нужно знать только удельный вес материалов и их объемы. Такие данные с легкостью могут предоставить поставщики строительных материалов.

При выполнении расчетов можно также использовать усредненные значения удельного веса конструкций. Для удобства они приведены в таблице 2.

Удельный вес 1 м 2 стены

Каркасные стены толщиной 200 мм с утеплителем

Стены из бревен и бруса

Кирпичные стены толщиной 150 мм

Железобетон толщиной 150 мм

Удельный вес 1 м 2 перекрытий

Чердачное по деревянным балкам с утеплителем, плотностью до 200 кг/м 3

Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м 3

Цокольное по деревянным балкам с утеплителем, плотностью до 200 кг/м 3

Цокольное по деревянным балкам с утеплителем, плотностью до 500 кг/м 3

Удельный вес 1 м 2 кровли

Кровля из листовой стали

Кровля из гончарное черепицы

Согласно п. 4.2. СП 20.13330.2011 расчетное значение нагрузки определяется как произведение ее нормативного значения на коэффициент надежности по нагрузке (γf) для веса строительных конструкций, соответствующий рассматриваемому предельному состоянию:

Конструкции сооружений и вид грунтов

Коэффициент надежности, γf

Бетонные (со средней плотностью свыше 1600 кг/м), железобетонные, каменные, армокаменные, деревянные

Бетонные (со средней плотностью 1600 кг/м, изоляционные, выравнивающие и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые:

в заводских условиях

на строительной площадке

В природном залегании

На строительной площадке

Выполним расчеты на примере каркасно-щитового дома с мансардой с размерами в плане 6х9 м:

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительстве

Чтобы посчитать вес от стен дома необходимо вычислить их периметр. Периметр наружных стен + внутренние стены: Р=47 м, среднюю высоту стен примем h=4,5 м. Тогда вес от конструкции стен будет равен: Р х h х удельный вес материала стен.

47 м х 4,5 м х 70 кг/м 2 = 14 805 кг = 14,8 т.

Далее посчитаем вес крыши. Принимаем, что вес крыши (деревянная стропильная система с покрытием из металлочерепицы) равен 40 кг/м 2 (суммарный вес металлочерепицы, обрешетки, стропилы). Тогда вес крыши будет равен:S крыши х удельный вес 1 м 2 .

Также необходимо посчитать вес от перекрытий. Принимаем, что вес деревянного пола вместе с утеплителем будет равен 100 кг/м 2 . Тогда вес от перекрытий будет равен:S перекрытия*удельный вес*количество.

После того как выполнены все необходимые расчеты, полученный вес сооружения умножаем на коэффициент надежности, о котором мы говорили ранее (в расчете для каркасно-щитового дома коэффициент принимаем равным 1,1 – для деревянных конструкций):

Нагрузка от самого здания составит 32,2 т. Этот вес принят условно, без вычета дверных и оконных проемов.

Источник

Для чего и как рассчитывается нагрузка на перекрытие жилого дома кг/м2?

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительствеПлиты перекрытий – это несущие конструкции зданий, воспринимающие постоянные и временные нагрузки в пределах одного этажа.

Плиты укладываются в пролёте между вертикальными опорами – стенами, пилонами или колоннами.

Преимущественно работают на изгиб и выполняют роль жёсткого диска, объединяющего отдельные элементы каркаса сооружения в единую геометрически неизменяемую систему.

При расчёте плит перекрытий определяются такие важные параметры, как их толщина, армирование, прогиб и необходимость устройства дополнительных подпирающих элементов (балок или капителей).

Как провести расчет нагрузок на перекрытие, расскажем далее.

Что это такое?

Нагрузки, прикладываемые к перекрытию, представляют собой сочетание внешних сил, действующих на конструктивный элемент, вызывая в нём внутренние усилия. Несущая способность элемента определяется из условия равновесия, достигаемого при приложении нагрузок.

Виды нагрузок на плиты перекрытий по СНиП и СП

Нагрузки на пролётные конструкции определяются, исходя из требований нормативных документов – СНиП 2.01.07-85 и его обновлённой версии – СП 20.13330.2011 «Нагрузки и воздействия».

В соответствии с пунктами этих нормативов, нагрузки классифицируются на следующие виды:

Например, в жилых квартирах или частных домах – это нагрузки от мебели, бытовых приборов и самих жильцов.

В зависимости от функционального назначения помещений, величины полезных нагрузок различаются.

Расчёт пролетных конструкций

Расчёт пролётных конструкций ведётся по двум группам предельных состояний:

На несущую способность плит перекрытий влияет величины постоянных и полезных нагрузок, толщина элемента, длина пролёта и условия эксплуатации помещения.

Как рассчитать значения?

Расчёт нагрузок на плиту перекрытия производится методом суммирования всех приложенных к конструктивному элементу внешних сил, с учётом различных коэффициентов запаса, принимаемых по указанному выше СНиП. Если рассмотреть теоретические выкладки, то расчёт нагрузок делится на следующие категории:

Предельные

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительствеРасчёт сводится к вычислению максимально допустимого значения приложенных на конструкцию внешних сил, при которых конструкция достигает предельного равновесия.

Например, на основании представленного ниже расчёта – при приложении суммарной расчётной нагрузки 900 кг/м 2 на плиту перекрытия толщиной 200 мм, армированную прутками d10 A500s с шагом 200 мм, достигается фактический изгибающий момент М = 2812,5 кН*см при пролёте 5 м.

А сечение с такими параметрами остаётся в равновесии при достижении момента Мпред = 2988.5 кН*см, что всего на 5,8% выше предельного значения.

Точечные

Как правило, такие силы не прикладываются к перекрытию отдельно – всегда существуют постоянные нагрузки, и единичное точечное загружение суммируется с ними.

Приложенная точечная нагрузка влияет на значение опорных реакций и величину изгибающего момента в расчётном сечении. Усилия от точечного загружения определяется как произведение силы на плечо (расстояние от ближайшей точки опоры).

Например, если в комнате с пролётом 5 метров стоит декоративная колонна массой 500 кг на расстоянии от стены 2 м, то расчётная нагрузка с учётом коэффициента запаса (gn для постоянных сил = 1,05) составит 525 кг. Момент в данной точке составит 525 кг х 2 м = 1050 кг * м, или 1050 кН * см.

Соответственно, при добавлении равномерно распределённого загружения, описанного выше, стандартное сечение плиты с армированием d10 A500s с шагом 200 мм не будет удовлетворять расчёту прочности, и данное место следует усилить дополнительными стержнями, например, d10 A500s ш. 200 + d12 A500s ш. 200.

Пересчёт на м 2

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительствеУчитывая, что жб плита перекрытия работает по упруго-пластической схеме, все внутренние усилия в ней перераспределяются по площади и объёму.

СНиП допускает не производить расчёт временных нагрузок на плиту от конкретных предметов, а учитывать приведённую равномерно-распределённую по площади поверхности силу.

Например, вдоль стены комнаты, на протяжении 3 м стоит гарнитур общей массой 400 кг, напротив – диван массой 200 кг и другие предметы мебели с разными весами. По данному помещению каждый день передвигаются 4 человека с массами тела от 50 до 120 кг.

Пример

Ниже представлен пример сбора нагрузок на перекрытие в частном жилом доме. По условию задачи, габариты комнаты составляют 7 х 4 м, плита перекрытия 200 мм, поверх которой уложена ц/п стяжка толщиной 50 мм по подложке из экструдированного пенополистирола 30 мм, а в качестве чистового пола применяется керамогранитная плитка толщиной 12 мм с клеевым составом 3 мм.

Требуется собрать расчётные нагрузки на данную конструкцию для последующего расчёта. Задача решается с выполнением следующих этапов:

Собственный вес плиты – M1 = S x h x rбет, где:

Масса полов – M2 = mподл + mстяж + mплит, где:

M2 = 24 кг + 1800 кг + 720 кг = 2544 кг. В жилом помещении рекомендуемая по СНиП временная нагрузка составляет q = 150 кгс/м2.

Таким образом, суммарная полезная нагрузка на плиту составляет F = q x S = 150 х 20 = 3000 кг:

Таким образом, Fобщ расч = (M1 + M2) x gnс пост + F x gn врем = (10000 кг + 2544 кг) х 1,1 + 3000 кг х 1,4 = 13798,4 кг + 4200 кг = 17998.4 кг

18000 кг, или 1800 кН.

При наличии точечной или штамповой нагрузки от веса какого-либо оборудования, она участвует в расчёте отдельно, формируя линейную, а не квадратичную зависимость изгибающего момента.

В отдельных случаях допускается разложить точечную нагрузку на равномерно распределённую по площади, с учётом повышающего коэффициента, так как железобетон не является упругим материалом, и все усилия в нём перераспределяются в большей части его объёма.

Изгибающий момент

Безбалочная плита перекрытия должна удовлетворять расчёту по прочности, или первой группе предельных состояний. Чтобы определить несущую способность перекрытия, необходимо выполнить следующий алгоритм:

Если данные показатель меньше 2, то плита считается опёртой по контуру, и расчёт ведётся относительно того пролёта, в котором возникает наибольший изгибающий момент.

В рассматриваемом примере балка имеет сечение b x h = 1 м х 0,2 м, и к ней приложена нагрузка qрасч = 900 кг/м, или 90 кН/м.

Величина изгибаемого момента для подобной конструкции составляет M = qрасч х l 2 / 8, где l – величина пролёта, или 5 м. M = 90 кН/м х 5 х 5 / 8 = 281.25 кН*м, или 2812,5 кН*см.

Величина изгибающего момента может быть отображена на эпюре данного вида усилия, возникающего в конструкции.

Как посчитать несущую способность?

При известной величине изгибающего момента и габаритов (жёсткости сечения) можно определить несущую способность данного пролётного элемента по следующим формулам:

Высота сечения плиты складывается из двух величин h = h0 + a, где h0 – рабочая высота от нижней арматуры, находящейся в зоне растяжения до верхней грани бетона. а – величина защитного слоя бетона. Как правило, этот показатель в тонких плитах варьируется в пределах от 15 до 25 мм. h0 = h – a = 200 мм – 20 мм = 180 мм.

В строительной механике, согласно по СП 63.13330.2018 «Бетонные и железобетонные конструкции», существуют два условия, при которых конструкция достигает предельного равновесия под действием внешних сил.

В условии равновесия х – абсолютная величина сжатой зона бетона, которая равняется х = Rs Аs / gb1 Rbb (по СП 63.13330.2018 «Бетонные и железобетонные конструкции»):

Требуемая площадь рабочей арматуры зависит от расчётных параметров сечения и величины внутренних усилий (в плите перекрытия – изгибающего момента).

Для предотвращения образования трещин от усадки бетона, в плитах перекрытий шаг рабочей арматуры, чаще всего, назначается 200 мм. Таким образом, в расчётной полосе шириной 1 м располагается 5 рабочих стержней.

На завершающем этапе из основного условия равновесия определяется предельно допустимый момент, который может возникнуть в сечении плиты перекрытия. M = gb1 Rbbx(h0 – x/2) = 0,9 х 1,7 х 100 х 1,12 х (18 – 1,12/2) = 2988.5 кН*см.

Далее остаётся сравнить предельно допустимый момент 2988.5 кН*см с фактическим усилием, возникающим после приложения нагрузок – 2812,5 кН*см, который оказался меньше, значит, условие прочности выполняется.

В случае, если условие предельного равновесия не достигается, толщина плиты, а также расчётное количество рабочей арматуры должны быть пересмотрены.

Прочность ЖБ элемента

В строительной механике понятия прочности и несущей способности практически не имеют различий. Однако, на практике это не совсем так. Прочность – это способность конструктивного элемента не разрушаться под действием внешних сил. Несущая способность – это способность конструктивного элемента удовлетворять предъявленным к нему эксплуатационным требованиям под действием сочетания нагрузок.

Таким образом, расчёт по предельным состояниям 1 группы, приведённый выше, показывает, что плита перекрытия остаётся в статическом положении не разрушается, (то есть, обеспечивается её прочность) и может эксплуатироваться в нормальных условиях (так как в расчёте были учтены все коэффициенты условий работы). Проведения дополнительных прочностных расчётов не требуется.

Возможные сложности и ошибки

При расчёте сечения плиты перекрытия на прочность, следует учитывать важные нюансы, чтобы не допустить серьёзных ошибок:

Последствия неверных расчётов могут привести к обрушению строительных конструкций, недопустимым прогибам и другим непоправимым проблемам во время эксплуатации сооружения.

Заключение

Перед назначением толщины и армирования плиты перекрытия необходимо провести расчёт прочности изгибаемого элемента. Вычисления выполняются после сбора постоянных и временных нагрузок и определения внутренних усилий в конструкции.

Если результаты расчёта не удовлетворяют условиям предельного равновесия, необходимо задать другую толщину плиты и провести вычисления заново.

Источник

Расчет нагрузки на фундамент

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительстве

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительстве

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительстве

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительстве

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительстве

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительстве

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м 2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

нагрузка в чем измеряется в строительстве. Смотреть фото нагрузка в чем измеряется в строительстве. Смотреть картинку нагрузка в чем измеряется в строительстве. Картинка про нагрузка в чем измеряется в строительстве. Фото нагрузка в чем измеряется в строительстве

Расчет общей нагрузки на 1 м 2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R0 определяют по таблицам СНиП 2.02.01—83 «Основания зданий и сооружений».

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *