на чем основываются законы физики

Энциклопедия измерений

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.

Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.

Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.

Основные законы физики

Один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

Источник

Энциклопедия измерений

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.

Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.

Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.

Основные законы физики

Один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

Источник

Профессор Знаев

ОСНОВНОЕ МЕНЮ

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

АНГЛИЙСКИЙ ЯЗЫК

НЕМЕЦКИЙ ЯЗЫК

ИСТОРИЯ

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

ИНФОРМАТИКА

Основные законы физики

Второй закон термодинамики

Согласно этому закону процесс, единственным результатом которого является передача энергии в форме теплоты от более холодного тела к более нагретому, невозможен без изменений в самой системе и окружающей среде. Второй закон термодинамики выражает стремление системы, состоящей из большого количества хаотически движущихся частиц, к самопроизвольному переходу из состояний менее вероятных в состояния более вероятные. Запрещает создание вечного двигателя второго рода.

Закон Авогардо
В равных объемах идеальных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Закон открыт в 1811 году итальянским физиком А. Авогадро (1776–1856).

Закон Ампера
Закон взаимодействия двух токов, текущих в проводниках, расположенных на небольшом расстоянии друг от друга гласит: параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления отталкиваются. Закон открыт в 1820 году А. М. Ампером.

Закон гидро– и аэростатики: на тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх, равная весу жидкости или газа, вытесненного телом, и приложенная в центре тяжести погруженной части тела. FA = gV, где g – плотность жидкости или газа, V – объем погруженной части тела. Иначе закон можно сформулировать следующим образом: тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ). Тогда P = mg – FA. Закон открыт древнегреческим ученым Архимедом в 212 году до н. э. Он является основой теории плавания тел.

Закон всемирного тяготения

Закон всемирного тяготения, или закон тяготения Ньютона: все тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Закон Бойля – Мариотта

Один из законов идеального газа: при постоянной температуре произведение давления газа на его объем есть величина постоянная. Формула: pV = const. Описывает изотермический процесс.

Закон Гука
Согласно этому закону упругие деформации твердого тела прямо пропорциональны вызывающим их внешним воздействиям.

Закон Дальтона
Один из основных газовых законов: давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов. Открыт в 1801 году Дж. Дальтоном.

Закон Джоуля – Ленца

Описывает тепловое действие электрического тока: количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения. Открыт Джоулем и Ленцем независимо друг от друга в XIX веке.

Основной закон электростатики, выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой, прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. Величина численно равна силе, действующей между двумя расположенными в вакууме на расстоянии 1 м друг от друга точечными неподвижными зарядами по 1 Кл каждый. Закон Кулона является одним из экспериментальных обоснований электродинамики. Открыт в 1785 году.

Закон Ленца
Согласно этому закону индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшие этот ток. Закон Ленца – следствие закона сохранения энергии. Установлен в 1833 году Э. Х. Ленцем.

Один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи. Открыт в 1826 году Г. С. Омом.

Закон отражения волн

Луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем угол падения равен углу преломления. Закон справедлив для зеркального отражения.

Закон Паскаля
Основной закон гидростатики: давление, производимое внешними силами на поверхность жидкости или газа, передается одинаково по всем направлениям.

Закон преломления света

Луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой.

Закон прямолинейного распространения света

Закон геометрической оптики, заключающийся в том, что в однородной среде свет распространяется прямолинейно. Объясняет, например, образование тени и полутени.

Закон сохранения заряда
Один из фундаментальных законов природы: алгебраическая сумма электрических зарядов любой электрически изолированной системы остается неизменной. В электрически изолированной системе закон сохранения заряда допускает появление новых заряженных частиц, но суммарный электрический заряд появившихся частиц всегда должен быть равен нулю.

Закон сохранения импульса
Один из основных законов механики: импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия.

Закон Шарля
Один из основных газовых законов: давление данной массы идеального газа при постоянном объеме прямо пропорционально температуре.

Закон электромагнитной индукции

Описывает явление возникновения электрического поля при изменении магнитного (явление электромагнитной индукции): электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока. Коэффициент пропорциональности определяется системой единиц, знак – правилом Ленца. Закон открыт М. Фарадеем.

Закон сохранения и превращения энергии
Общий закон природы: энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется). Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение (уменьшение) ее энергии равно убыли (возрастанию) энергии взаимодействующих с ней тел и физических полей.

Законы Ньютона
В основе классической механики лежат 3 закона Ньютона. Первый закон Ньютона (закон инерции): материальная точка находится в состоянии прямолинейного и равномерного движения или покоя, если на нее не действуют другие тела или действие этих тел скомпенсировано. Второй закон Ньютона (основной закон динамики): ускорение, полученное телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела. Третий закон Ньютона: действия двух тел всегда равны по величине и направлены в противоположные стороны.

Законы Фарадея
Первый закон Фарадея: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна количеству электричества (заряду), прошедшему через электролит (m = kq = kIt). Второй закон Фарадея: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит, равно отношению химических эквивалентов. Законы установлены в 1833–1834 годах М. Фарадеем.

Первый закон термодинамики
Первый закон термодинамики является законом сохранения энергии для термодинамической системы: количество теплоты Q, сообщенное системе, расходуется на изменение внутренней энергии системы U и совершение системой работы A против внешних сил. Формула Q = U + A лежит в основе работы тепловых машин.

Первый постулат Бора: атомная система устойчива только в стационарных состояниях, которые соответствуют дискретной последовательности значений энергии атома. Каждое изменение этой энергии связано с полным переходом атома из одного стационарного состояния в другое. Второй постулат Бора: поглощение и излучение энергии атомом происходит по закону, согласно которому связанное с переходом излучение является монохроматическим и обладает частотой: h = Ei – Ek, где h – постоянная Планка, а Ei и Ek – энергии атома в стационарных состояниях.

Правило левой руки
Определяет направление силы, которая действует на находящийся в магнитном поле проводник с током (или движущуюся заряженную частицу). Правило гласит: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока (скорости частицы), а силовые линии магнитного поля (линии магнитной индукции) входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник (положительную частицу; в случае отрицательной частицы направление силы противоположно).

Правило правой руки
Определяет направление индукционного тока в проводнике, движущемся в магнитном поле: если ладонь правой руки расположить так, чтобы в нее входили линии магнитной индукции, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца покажут направление индукционного тока.

Принцип Гюйгенса
Позволяет определить положение фронта волны в любой момент времени. Согласно принципу Гюйгенса, все точки, через которые проходит фронт волны в момент времени t, являются источниками вторичных сферических волн, а искомое положение фронта волны в момент времени t совпадает с поверхностью, огибающей все вторичные волны. Принцип Гюйгенса объясняет законы отражения и преломления света.

Принцип Гюйгенса – Френеля
Согласно данному принципу в любой точке, находящейся вне произвольной замкнутой поверхности, охватывающей точечный источник света, световая волна, возбуждаемая этим источником, может быть представлена как результат интерференции вторичных волн, излучаемых всеми точками указанной замкнутой поверхности. Принцип позволяет решать простейшие задачи дифракции света.

Принцип относительности
В любых инерциальных системах отсчета все физические (механические, электромагнитные и др.) явления при одних и тех же условиях протекают одинаково. Является обобщением принципа относительности Галилея.

Принцип относительности Галилея

Механический принцип относительности, или принцип классической механики: в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях.

Звук
Звуком называют упругие волны, которые распространяются в жидкостях, газах и твердых телах и воспринимаются ухом человека и животных. Человек обладает способностью слышать звуки с частотами в пределах 16–20 кГц. Звук с частотами до 16 Гц принято называть инфразвуком; с частотами 2·104–109 Гц – ультразвуком, а с частотами 109–1013 Гц – гиперзвуком. Наука, изучающая звуки, носит наименование «акустика».

Свет
Светом в узком смысле термина называют электромагнитные волны в интервале частот, воспринимаемых глазом человека: 7,5 ‘1014–4,3 ‘1014 Гц. Длина волн варьируется от 760 нм (красный свет) до 380 нм (фиолетовый свет).

Источник

Закон (физика)

Физи́ческий зако́н — эмпирически установленная и выраженная в строгой словесной и/или математической формулировке устойчивая связь между повторяющимися явлениями, процессами и состояниями тел и других материальных объектов в окружающем мире.

Выявление физических закономерностей составляет основную задачу физической науки.

Содержание

Описание

Для того, чтобы некая связь могла быть названа физическим законом, она должна удовлетворять следующим требованиям:

Физические законы, как правило, выражаются в виде короткого словесного утверждения или компактной математической формулы:

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физикиФизический закон должен обладать математической красотой

Примеры

Одними из самых известных физических законов являются [1] :

Законы-принципы

Некоторые физические законы носят универсальный характер и по своей сути являются определениями. Такие законы часто называют принципами. К ним относятся, например, второй закон Ньютона (определение силы), закон сохранения энергии (определение энергии), принцип наименьшего действия (определение действия) и др.

Законы-следствия симметрий

Часть физических законов являются простыми следствиями некоторых симметрий, существующих в системе. Так, законы сохранения согласно теореме Нётер являются следствиями симметрии пространства и времени. А принцип Паули, например, является следствием идентичности электронов (антисимметричность их волновой функции относительно перестановки частиц).

Приблизительность законов

Все физические законы являются следствием эмпирических наблюдений и верны с той точностью, с которой верны экспериментальные наблюдения. Это ограничение не позволяет утверждать, что какой-либо из законов носит абсолютный характер. Известно, что часть законов заведомо не являются абсолютно точными, а представляют собой приближения к более точным. Так, законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Более точными являются законы квантовой механики и специальной теории относительности. Однако, и они в свою очередь являются приближениями более точных уравнений квантовой теории поля.

См. также

Примечания

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики
на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

Полезное

Смотреть что такое «Закон (физика)» в других словарях:

ФИЗИКА. — ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств … Физическая энциклопедия

ФИЗИКА — наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств … Физическая энциклопедия

Закон прямолинейного распространения света — Закон прямолинейного распространения света : в прозрачной однородной среде свет распространяется по прямым линиям. В связи с законом прямолинейного распространения света появилось понятие световой луч, которое имеет геометрический смысл как… … Википедия

ФИЗИКА — ФИЗИКА, наука, изучающая совместно с химией общие законы превращения энергии и материи. В основе обеих наук лежат два основных закона естествознания закон сохранения массы (закон Ломоносова, Лавуазье) и закон сохранения энергии (Р. Майер, Джауль… … Большая медицинская энциклопедия

Закон Бойля-Мариотта — Закон Бойля Мариотта один из основных газовых законов. Закон назван в честь ирландского физика, химика и философа Роберта Бойля (1627 1691), открывшего его в 1662, а также в честь французского физика Эдма Мариотта (1620 1684), который открыл… … Википедия

Закон Дюлонга — Пти — Статистическая физика Термодинамика Молекулярно кинетическая теория Статистики … Википедия

Закон неубывания энтропии — Закон неубывания энтропии: «В изолированной системе энтропия не уменьшается». Если в некоторый момент времени замкнутая система находится в неравновесном макроскопическом состоянии, то в последующие моменты времени наиболее вероятным следствием… … Википедия

Закон обратного отношения между содержанием и объёмом понятия — Закон обратного отношения между объёмом и содержанием понятия закон формальной логики о зависимости между изменениями объёма и содержания понятия[1]. Если первое понятие шире второго по объёму, то оно беднее его по содержанию; если же… … Википедия

Физика взрыва — (a. explosion physics; н. Physik der Explosion; ф. physique de l explosion; и. fisica de explosion, fisica de estallido, fisica de detonacion) наука, изучающая явление взрыва и механизм его действия в среде. Hарушение механич.… … Геологическая энциклопедия

Физика жидкостей — (физика жидкого состояния вещества) раздел физики, в котором изучаются механические и физические свойства жидкостей. Статистическая теория жидкостей является разделом статистической физики. Важнейшим результатом является вывод уравнений… … Википедия

Источник

Законы Ньютона, закон всемирного тяготения, закон Гука, сила трения

Теория к заданию 2 из ЕГЭ по физике

Инерциальные системы отсчета. Первый закон Ньютона. Принцип относительности Галилея

Инерциальная система отсчета — это система отсчета, в которой справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы, взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения.

Закон этот был открыт Галилеем в 1632 г. и сформулирован Ньютоном в 1687 г. как первый закон механики.

Любая система отсчета, движущаяся по отношению к инерциальной системе отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета, т. е. в ней выполняется первый закон Ньютона. Следовательно, инерциальных систем отсчета может быть сколь угодно много. Система отсчета, движущаяся с ускорением по отношению к инерциальной системе отсчета, неинерциальна и закон инерции в ней не выполняется.

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

Сказанное подтверждается опытом, изображенным на рисунке. Сначала тележка движется прямолинейно и равномерно относительно земли. На ней находятся два шарика, один из которых лежит на горизонтальной поверхности, а другой подвешен на нити. Силы, действующие на каждый шарик по вертикали, уравновешены, по горизонтали никакие силы на шарики не действуют (силой сопротивления воздуха в данном случае можно пренебречь).

Шарики будут находиться в покое относительно тележки при любой скорости ее движения ($υ_1, υ_2, υ_3$ и т. д.) относительно Земли — главное, чтобы эта скорость была постоянна.

Но когда тележка попадает на песчаную насыпь, ее скорость быстро уменьшается, в результате чего тележка останавливается. Во время торможения тележки оба шарика приходят в движение, т. е. изменяют свою скорость относительно тележки, хотя нет никаких сил, которые толкали бы их.

Здесь первой (условно неподвижной) системой отсчета является Земля. Второй системой отсчета, движущейся относительно первой, является тележка. Пока тележка двигалась прямолинейно и равномерно, шарики находились в состоянии покоя относительно тележки, т. е. закон инерции выполнялся. Как только тележка начала тормозить, т. е. начала двигаться с ускорением относительно первой инерциальной системы отсчета (Земли), закон инерции перестал выполняться.

Если относительно какой-нибудь системы отсчета тело движется с ускорением, не вызванным действием на него других тел, то такую систему называют неинерциальной.

В неинерциальных системах отсчета основное положение механики о том, что ускорение тела вызывается воздействием на него других тел, не выполняется.

Следует отметить, что невозможно найти строго инерциальную систему отсчета. Реальная система отсчета всегда связывается с каким-нибудь конкретным телом (Землей, корпусом корабля или самолета и т. и.), по отношению к которому и изучается движение различных объектов. Поскольку все реальные тела движутся с тем или иным ускорением, любая реальная система отсчета может рассматриваться как инерциальная лишь приближенно.

С очень высокой степенью точности инерциальной можно считать гелиоцентрическую систему, связанную с центром Солнца и с координатными осями, направленными на три далекие звезды. Эта система используется в задачах небесной механики и космонавтики. Для решения большинства технических задач инерциальной системой отсчета можно считать любую систему, жестко связанную с Землей (или с любым телом, которое покоится или движется равномерно и прямолинейно относительно поверхности Земли).

Первый закон Ньютона

Любое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Так был сформулирован Ньютоном в 1687 г. первый закон механики, или закон инерции.

Суть закона инерции впервые была изложена в одной из книг итальянского ученого Галилео Галилея, опубликованной в начале XVII в.

Ньютон обобщил выводы Галилея, сформулировав закон инерции, и включил его в качестве первого из трех законов в основу механики. Поэтому данный закон называют первым законом Ньютона.

Однако со временем выяснилось, что первый закон Ньютона выполняется не во всех системах отсчета, а только в инерциальных. Поэтому с точки зрения современных представлений первый закон Ньютона формулируется так:

Существуют системы отсчета, называемые инерциальными, относительно которых свободные тела движутся прямолинейно и равномерно.

Под свободным телом здесь понимают тело, на которое не оказывают воздействие другие тела.

Следует помнить, что в первом законе Ньютона речь идет о телах, которые могут рассматриваться как материальные точки.

Принцип относительности Галилея

Принцип относительности Галилея гласит:

Во всех инерциальных системах отсчета законы механики имеют одинаковый вид.

Это означает, что уравнения, выражающие законы механики, не меняются (инвариантны) при преобразованиях Галилея.

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

что совпадает с (1.47).

Из уравнения (1.47) вытекает закон сложения скоростей:

Принцип относительности Галилея означает, что никакими механическими опытами нельзя обнаружить движение одной инерциальной системы координат относительно другой. Именно поэтому, находясь в салоне сверхзвукового самолета, пассажиры могут спокойно передвигаться, не чувствуя его скорости.

Не нужно, однако, думать, что выполнение принципа относительности означает полную тождественность движения одного и того же тела относительно разных инерциальных систем координат. Тождественны лишь законы движения. Характер же движения определяется начальными условиями (начальными скоростями и координатами тела), которые различны в разных системах отсчета.

Так, камень, выпущенный из рук в движущемся вагоне поезда, будет падать вертикально лишь относительно стен вагона, а для наблюдателя, находящегося на платформе, он будет двигаться по параболе. Объясняется это тем, что начальные скорости разные: относительно стен вагона начальная скорость равна нулю, а относительно Земли она равна скорости движения вагона.

Взаимодействие. Сила. Принцип суперпозиции сил

Взаимодействие в физике — это воздействие тел или частиц друг на друга, приводящее к изменению их движения.

Близкодействие и дальнодействие (или действие на расстоянии). О том, как осуществляется взаимодействие тел, в физике издавна существовали две точки зрения. Первая из них предполагала наличие некоторого агента (например, эфира), через который одно тело передает свое влияние на другое, причем с конечной скоростью. Это теория близкодействия. Вторая предполагала, что взаимодействие между телами осуществляется через пустое пространство, не принимающее никакого участия в передаче взаимодействия, причем передача происходит мгновенно. Это теория дальнодействия. Она, казалось бы, окончательно победила после открытия Ньютоном закона всемирного тяготения. Так, например, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. Кроме самого Ньютона, позднее концепции дальнодействия придерживались Кулон и Ампер.

На сегодняшний день физике известны четыре типа фундаментальных взаимодействий, существующих в природе (в порядке возрастания интенсивности): гравитационное, слабое, электромагнитное и сильное взаимодействия.

Фундаментальными называются взаимодействия, которые нельзя свести к другим типам взаимодействий.

Фундаментальные взаимодействия отличаются интенсивностью ж радиусом действия. Под радиусом действия понимают максимальное расстояние между частицами, за пределами которого их взаимодействием можно пренебречь.

По радиусу действия фундаментальные взаимодействия делятся на дальнодействующие (гравитационное и электромагнитное) и короткодействующие (слабое и сильное).

Гравитационное взаимодействие универсально: в нем участвуют все тела в природе — от звезд, планет и галактик до микрочастиц: атомов, электронов, ядер. Его радиус действия равен бесконечности. Однако как для элементарных частиц микромира, так и для окружающих нас предметов макромира силы гравитационного взаимодействия настолько малы, что ими можно пренебречь. Оно становится заметным с увеличением массы взаимодействующих тел и потому определяющим в поведении небесных тел и образовании и эволюции звезд.

Основные характеристики фундаментальных взаимодействий

Слабое взаимодействие присуще всем элементарным частицам, кроме фотона. Оно отвечает за большинство ядерных реакций распада и многие превращения элементарных частиц.

Электромагнитное взаимодействие определяет структуру вещества, связывая электроны и ядра в атомах и молекулах, объединяя атомы и молекулы в различные вещества. Оно определяет химические и биологические процессы. Электромагнитное взаимодействие является причиной таких явлений, как упругость, трение, вязкость, магнетизм и составляет природу соответствующих сил. На движение макроскопических электронейтральных тел оно существенного влияния не оказывает.

Сильное взаимодействие осуществляется между адронами, именно оно удерживает нуклоны в ядре.

В настоящее время выдвинута теория великого объединения, согласно которой существуют лишь два типа взаимодействий: объединенное, куда входят сильное, слабое и электромагнитное взаимодействия, и гравитационное взаимодействие.

Есть также предположение, что все четыре взаимодействия являются частными случаями проявления единого взаимодействия.

В механике взаимное действие тел друг на друга характеризуется силой. Более общей характеристикой взаимодействия является потенциальная энергия.

Силы в механике делятся на гравитационные, упругости и трения. Как уже упоминалось выше, природа механических сил обусловлена гравитационным и электромагнитным взаимодействиями. Только эти взаимодействия можно рассматривать как силы в смысле механики Ньютона. Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, при которых законы механики Ньютона, а вместе с ними и понятие механической силы теряют смысл. Поэтому термин «сила» в этих случаях следует воспринимать как «взаимодействие».

Сила в механике — это величина, являющаяся мерой взаимодействия тел.

При механическом движении проявляются следующие виды сил: силы упругости, силы трения и гравитационные силы (всемирного тяготения).

Действие одного тела на другое приводит как к изменению скорости всего тела как целого, так и к изменению скорости отдельных его частей.

Мерой этого действия является сила. Часто не указывают, какое тело и как действовало на данное тело. Просто говорят, что на тело действует сила, или к нему приложена сила.

Действие одного тела на другое может производиться как при непосредственном контакте (давление, трение), так и посредством создаваемых телами полей (электромагнитное поле, гравитационное поле).

Проявлением действия силы является изменение ускорения тела.

Итак, результат действия силы на тело зависит от ее модуля, направления и точки приложения.

Иначе говоря, сила — векторная величина, характеризующаяся численным значением, направлением в пространстве и точкой приложения.

Принцип суперпозиции сил

Обычно на любое движущееся тело действует не одна, а сразу несколько сил. Так, например, на парашютиста, спускающегося на землю, действуют сила тяжести и сила сопротивления воздуха. На тело, висящее на пружине, действуют две силы: сила тяжести и сила упругости пружины.

В этом состоит принцип суперпозиции (наложения) сил.

Равнодействующая сила, действующая на частицу со стороны других тел, равна векторной сумме сил, с которыми каждое из этих тел действует на частицу.

Для нахождения равнодействующей силы пользуются правилами сложения векторов (поскольку сила — векторная величина), в частности, сложение двух сил производится по правилу параллелограмма.

Второй закон Ньютона

Второй закон Ньютона формулируется так:

Ускорение тела прямо пропорционально равнодействующей всех сил, приложенных к телу, и обратно пропорционально его массе. Направление ускорения совпадает с направлением равнодействующей всех сил.

Следует помнить, что во втором законе Ньютона, так же, как и в первом, под телом подразумевается материальная точка, движение которой рассматривается в инерциальной системе отсчета.

Математически второй закон Ньютона выражается формулой:

В скалярном виде второй закон можно записать:

Отсюда можно вывести два следствия:

Формулировка второго закона механики, данная самим Ньютоном, такова:

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

В современном виде закон этот записывается следующим образом:

Второй закон Ньютона иногда называют основным законом динамики. После его открытия стало возможным решать такие задачи о движении тел, которые до Ньютона казались неразрешимыми. Многие казавшиеся ранее непонятными явления теперь были объяснены на основе открытых законов физики.

Третий закон Ньютона

Третий закон Ньютона гласит:

Действию всегда есть равное и противоположное противодействие, иначе — взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

В своем первом законе Ньютон описал движение тела, не подверженного действию других тел. В этом случае тело либо сохраняет свое состояние покоя, либо движется равномерно и прямолинейно (относительно инерциальной системы отсчета).

Во втором законе Ньютона речь идет о прямо противоположной ситуации. Теперь на данное тело действуют внешние тела, причем их количество может быть произвольным. Под действием окружающих тел рассматриваемое тело начинает двигаться с ускорением, причем произведение массы данного тела на его ускорение оказывается равным действующей силе.

Следует помнить, что силы, о которых говорится в законе Ньютона, никогда не уравновешивают друг друга, поскольку они приложены к разным телам. Две равные по модулю и противоположно направленные силы уравновешивают друг друга в том случае, если они приложены к одному телу. Тогда их равнодействующая равна нулю, и тело при этом находится в равновесии, т. е. либо покоится, либо движется равномерно и прямолинейно.

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

Опыты подтверждают вывод Ньютона. Если, например, взять две тележки и на одной из них закрепить магнит, а на другой кусок железа, а затем соединить их с динамометрами, то мы увидим, что показания этих приборов совпадут. Это означает, что сила, с которой магнит притягивает к себе железо, равна по величине силе, с которой железо притягивает к себе магнит. Эти силы равны по абсолютной величине и противоположны по направлению: сила притяжения к магниту направлена влево, а сила притяжения к железу вправо.

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

Итак, третий закон Ньютона на более привычном для нас языке может быть сформулирован так:

Силы, с которыми взаимодействуют любые два тела, всегда равны по величине и противоположны по направлению.

Математически он записывается в следующем виде:

Знак «минус» показывает, что векторы сил направлены в противоположные стороны. Используя второй закон Ньютона, можно записать:

Отсюда следует, что

Таким образом, отношение модулей ускорений двух взаимодействующих тел определяется исключительно их массами (чем меньше масса тела, тем большее ускорение оно приобретает) и не зависит от природы сил взаимодействия.

Третий закон Ньютона обосновывает введение самого термина «взаимодействие»: если одно тело действует на другое, то второе также действует на первое. Другими словами, не может быть такого, чтобы одно тело на другое действовало, а второе на первое — нет. Как писал сам Ньютон, «если кто нажимает пальцем на камень, то и палец его также нажимается камнем. Если лошадь тащит камень, привязанный к канату, то и обратно (если можно так выразиться) она с равным усилием оттягивается к камню».

Сила упругости. Закон Гука

Упругость — свойство тел изменять форму и размеры (деформироваться) под действием нагрузок и самопроизвольно восстанавливать первоначальные форму и размеры при прекращении внешних воздействий.

Деформацией (от лат. deformatio — искажение) называют любое изменение размеров и формы тела.

Деформации бывают разных видов: растяжения, сжатия, сдвига, изгиба, кручения. Все перечисленные виды деформации возможны в твердых телах. В жидкостях и газах возможны только деформации объемного сжатия и растяжения, т. к. эти среды не обладают упругостью формы, а только объема (как известно, жидкость принимает форму сосуда, в котором находится, а газ занимает весь предоставленный ему объем).

Деформация называется упругой, если она возникает и исчезает одновременно с внешним воздействием.

Деформация, которая не исчезает после прекращения внешнего воздействия, называется пластической.

Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть настолько, что после того, как ее отпустят, она так и останется растянутой.

При деформации тел возникают силы упругости, которые используются, например, в динамометрах. Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов — ковке, штамповке.

Сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение, называется силой упругости.

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

Сила упругости возникает и при растяжении (например, если подвесить гирю на нить), и при изгибе, и при других видах деформации.

Возникновение силы упругости можно понять из следующего опыта. На рисунке, изображена ненагруженная пружина. Если на нее сверху поместить гирю, то под действием силы тяжести гиря начнет двигаться вниз, сжимая пружину, т. е. деформируя ее, но через некоторое время остановится. Так как тело (гиря) неподвижно, значит, силы, действующие на него, уравновешены, т. е. сила тяжести уравновешена силой, действующей на гирю со стороны сжатой пружины. Это и есть сила упругости.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что изменение формы опоры будет незаметным. Но деформация все равно будет иметь место, а вместе с ней будет действовать и сила упругости, препятствующая падению тел, находящихся на данной опоре. В случае, когда деформация тела незаметна и изменением размеров опоры можно пренебречь, силу упругости называют силой реакции опоры.

Силы упругости возникают всегда при попытке изменить форму или объем твердого тела, при изменении объема жидкости или газа.

В отличие от сил тяготения, которые действуют между телами всегда, силы упругости возникают в теле лишь при определенном условии: тело должно быть деформировано.

Закон Гука

Закон Гука — основной закон теории упругости. Он был открыт английским ученым Робертом Гуком в 1660 г., когда ему было 25 лет. Закон Гука гласит:

Сила упругости, возникающая при упругой деформации растяжения или сжатия тела, пропорциональна абсолютному значению изменения длины тела.

У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Следует помнить, что закон Гука справедлив только для упругой деформации. Закон Гука хорошо выполняется только при малых деформациях. При больших деформациях изменение длины перестает быть прямо пропорциональным приложенной силе, а при очень больших деформациях тело разрушается.

Сила трения

Взаимодействие, возникающее в месте соприкосновения тел и препятствующее их относительному движению, называют трением, а характеризующую это взаимодействие силу — силой трения.

Силы трения, как и силы упругости, имеют электромагнитную природу. Трение между двумя твердыми телами называют сухим трением.

Различают три вида трения: трение покоя, трение скольжения и трение качения.

1. Трение покоя — трение, возникающее при отсутствии относительного перемещения соприкасающихся тел.

Трение покоя удерживает грузы, находящиеся на движущейся ленте транспортера, от соскальзывания, препятствует развязыванию шнурков, удерживает гвозди, вбитые в доску, и т. д.

Сила трения покоя — это сила, препятствующая возникновению движения одного тела относительно другого. Направлена сила трения покоя всегда против силы, приложенной извне параллельно поверхности соприкосновения и стремящейся сдвинуть с места предмет, т. е. против предполагающегося движения. Измерить силу трения покоя можно с помощью груза, перекинутого через блок и связанного с телом через динамометр.

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

Максимальная сила трения покоя не зависит от площади соприкосновения поверхностей. Она зависит от качества обработки соприкасающихся поверхностей и от материалов тел.

2. Трение скольжения. Приложив к телу силу, превышающую максимальную силу трения покоя, мы сдвинем тело с места, и оно начнет двигаться. Трение покоя при этом сменится трением скольжения.

Сила трения скольжения всегда направлена в сторону, противоположную относительной скорости соприкасающихся тел.

Как и максимальная сила трения покоя, сила трения скольжения пропорциональна силе нормального давления и, следовательно, силе реакции опоры:

на чем основываются законы физики. Смотреть фото на чем основываются законы физики. Смотреть картинку на чем основываются законы физики. Картинка про на чем основываются законы физики. Фото на чем основываются законы физики

При небольших скоростях приближенно их можно считать равными:

Причины возникновения силы трения

Как и в предыдущих случаях, сила трения качения пропорциональна силе реакции опоры:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *