Что такое конечная нефтеотдача
Нефтеотдача, коэффициент извлечения нефти и методы повышения нефтеотдачи
Нефтеотдача, коэффициент извлечения нефти и методы повышения нефтеотдачи.
Каждый пласт-коллектор, в котором содержится определенное количество нефти, представляет собой общий объем геологических запасов, но полностью изъять их обычно бывает невозможно. Нефтеотдача – это показатель извлечения нефти из пласта-коллектора.
Нефтеотдача, коэффициент извлечения нефти:
Нефтеотдача – это показатель извлечения нефти из пласта-коллектора.
Средний показатель КИН обычно составляет приблизительно 30-40%, поэтому в отдельных месторождениях нефти при стандартной добыче остается порядка 60-70% невостребованного продукта в пласте.
Минимальный и слабо эффективный уровень КИН обычно составляет 10-20%, а уровень выше 50% считается самым высоким и весьма редко встречаемым.
Первичные, вторичные и третичные методы нефтедобычи:
По своей сути, методы разработки принято делить на первичные, вторичные и третичные:
– первичные. Включают в себя разработку пластов, во время которой нефть выходит на поверхность под естественным давлением. После того, как залежи вскрываются скважинами, происходит обычное расширение нефти и содержащейся в ней газо-водяной смеси. Весь объем нефти, который не может поместиться в разрабатываемом пласте-коллекторе, это и есть извлекаемый объем продукта. Первичные методы используют только естественную энергию пласта и достигают КИН не более 20-30 %;
Закачка воды в разрабатываемый пласт, называемая заводнением, используется сегодня гораздо чаще, чем закачивание газа. Технология разработки нефтяных месторождений с помощью заводнения, является сегодня стандартной и распространенной технологией и продумана до мельчайших деталей. Вода в пласты-коллекторы обычно закачивается соленая и берется она из глубоких пластов, насыщенных влагой, откуда добывается с помощью специальных водозаборных скважин. Закачивание воды значительно повышает обводненность нефти, поднимаемой из скважины, иногда вплоть до 95 %, что с одной стороны, способствует нефтеотдаче, а с другой, в дальнейшем требует значительных усилий для их разделения.
Что касается закачки природного газа (или попутного нефтяного газа), то она чередуется с закачкой воды, благодаря чему эти вещества смешиваются с нефтью, находящейся в пласте, что опять же способствует повышению нефтеотдачи.
Вторичные методы достигают типичных КИН не более 30–50 %;
Тепловые методы обычно применяют для разработки глубоких нефтяных залежей продукта с повышенной вязкостью, который считается трудноизвлекаемым. Суть этой технологии заключается в закачивании в пласт горячей воды или пара, за счет чего вязкость нефти существенно снижается и ее добыча становится более легкой.
Третичные методы позволяют повысить КИН ещё на 5-20 %.
Таким образом, используя все методы разработки месторождения можно поднять КИН до 30–70 %.
Классификация методов и способов увеличения нефтеотдачи:
Классификация наиболее успешных, эффективных и выгодных методов и способов повышения нефтеотдачи по типу рабочих агентов выглядит следующим образом:
– тепловые методы (паротепловое воздействие на пласт, внутрипластовое горение, вытеснение нефти горячей водой, пароциклические обработки скважин и пр.);
– газовые методы (закачка воздуха в пласт, воздействие на пласт углеводородным газом, воздействие на пласт углекислым газом, воздействие на пласт азотом, дымовыми газами и др.);
– химические способы (вытеснение нефти водными растворами поверхностно-активных веществ (включая пенные системы), вытеснение нефти растворами полимеров, вытеснение нефти щелочными растворами, вытеснение нефти кислотами, вытеснение нефти композициями химических реагентов (в том числе мицеллярными растворами и др.), микробиологическое воздействие и пр.);
– гидродинамические методы (интегрированные технологии, вовлечение в разработку недренируемых запасов, барьерное заводнение на газонефтяных залежах, нестационарное (циклическое) заводнение, форсированный отбор жидкости, ступенчато-термальное заводнение и пр.);
– физические методы (гидроразрыв пласта, устройство горизонтальных скважин, электромагнитное воздействие, волновое воздействие на пласт и пр.);
– комбинированные методы.
Использование одного или нескольких методов одновременно, подразумевает предварительное тщательное исследование пластов, содержащих нефтепродукты, и принятие решения о проведении работ с учетом взаимодействия реагентов и безопасности каждой операции для окружающей среды.
Следует иметь в виду, что увеличение нефтеотдачи – это полный комплекс специализированных работ, нацеленный на повышение физических свойств и характеристик нефтяных коллекторов. Каждый пласт-коллектор имеет как минимум 3 основных свойства: пористость, проницаемость и наличие трещин. Если на пористость повлиять механическим или искусственным методом довольно тяжело, то два других свойства поддаются воздействию эффективных методов повышения нефтеотдачи. Среди них (методов) можно отметить следующие:
– микровзрыв в призабойной зоне. Процесс включает в себя воздействие на место забоя, в результате чего по конкретному пласту начинают распространяться трещины, способствующие раскрытию закупоренных зон и соединению мельчайших пор. После проведения этого и предыдущего воздействия на пласт, скважину на определенное время закрывают, чтобы в месте забоя скопилось максимальное количество нефти;
– водонагнетание. Это процесс увеличения проницаемости, используемый чаще всего в старых скважинах, которые не дают достаточное количество нефти. В результате закачивания в грунт большого объема воды, в нем увеличивается давление, а остаток нефти, находящийся в призабойной зоне, выдавливается наружу. Нефть, выдавливаемая водой, начинает мигрировать в остальные пласты, в которых уже установлены добывающие скважины, позволяющие выкачать продукт;
– реагентно-активационное воздействие (РАВ). Это комплексная технология, которая заключается в том, что в скважину закачивают большое количество специальных флюидов, способствующих изменению активационных условий на поверхности минералов пласта, в результате чего значительного повышается чувствительность пласта к динамическому воздействию в обширной зоне вокруг возмущающей скважины, и в последующем динамическом воздействии на нефтяной пласт с помощью специального устройства, инициирующего низкочастотные продольные и поперечные ударные волны.
Независимо от того, какой метод выбирается для повышения нефтеотдачи, его всегда ориентируют на индивидуальные особенности, характеристики и свойства отдельных месторождений и пластов, содержащих в себе определенное количество «черного золота ».
Коэффициент извлечения нефти и методы повышения КИН в России
Нефтеотдача, или коэффициент извлечения нефти, (КИН) — отношение количества добываемых запасов к величине природной горючей жидкости, находящейся в пласте-коллекторе. По оценке, проведенной в 2006 году, мировой показатель находился в диапазоне от 0,3 до 0,35 (30—35%). Если планируется получение КИН более 40−50%, то считается, что это активные ресурсы. При значении 20−30% специалисты называют их трудноизвлекаемыми залежами.
Геологические и извлекаемые запасы
Помимо проектного, существует текущий коэффициент, который показывает количество уже добытых геологических ресурсов. Его значение всегда меньше проектного. Обычно когда специалисты говорят о запасах, то они подразумевают извлекаемые ресурсы, а если речь идет о КИН, то имеют ввиду плановый показатель.
Формула коэффициента извлечения нефти — КИН = Q изв. / Q геол., где:
Значение коэффициента зависит от многих факторов, а у каждого месторождения свой показатель. Величина КИН во многом зависит от технологии и методов разработки конкретных залежей. Методы бывают:
Нефтедобывающие предприятия чаще используют закачку воды, так как в этом случае конечный результат более эффективен. Добыча нефти с закачкой воды уже несколько десятилетий считается стандартной технологией на всех месторождениях.
Вода в коллектор закачивается соленая. Ее берут из глубоких влагонасыщенных пластов. Газ, закачиваемый в пласт, кроме поддержания давления, удаляет излишки попутной с нефтью углеводородной смеси.
Третичные разработки
В третичных разработках тепловой метод применяется для месторождений горючего с высокой вязкостью, которые относятся к труднодобываемым или нетрадиционным залежам. Особо больших результатов добычи от такого метода не бывает. Суть его в том, что в пласт подается горячая вода, которая разжижает природное горючее, тем самым облегчая его добычу.
Газовый способ чаще используется на месторождениях традиционного топлива, чтобы увеличить нефтеотдачу при заводнении. Его технология заключается в том, что периодически чередуется закачка воды и газа. Попутный нефтяной газ представляет собой смесь углеводородов, которые отлично растворяются в природном горючем.
Смесь углеводородов сильно увеличивает объем нефти, которая опять начинает перемещаться к рабочим скважинам. Такой метод увеличивает коэффициент нефтеотдачи на 5−10%, то есть эффективность добычи вырастает очень слабо, так как основная масса залежей остается в пластах. Это происходит потому, что вязкость у газа в несколько раз меньше, чем у нефти.
Закачиваемая в нагнетательные скважины углеводородная смесь по прямой линии сразу попадает на участок добычи, захватив только тот объем топлива, который попался по пути. Чтобы исправить ситуацию, нефтяные предприятия чередуют закачку газа и воды. Существуют еще и другие третичные методы, но все они находятся на стадии опытных разработок.
Технология заводнения
В пласте, помимо природной горючей жидкости, находится довольно большое количество воды. Закономерно, что нефть и вода не смешиваются, а между ними существует четкая граница. При этом жидкость расположена вокруг топлива, которое расположено в центре пластов и с горной породой не соприкасается.
В процессе откачки нефти сначала вода никуда не течет, так как она связана с частицами горной породы. Когда начинается подача в пласт жидкости, то ее объем увеличивается, а количество горючего уменьшается. Часть влаги начинает перемещаться в пласте вместе с нефтью, и в скважинах добычи появляется попутная вода.
Когда ее в пласте набирается очень много, то жидкость закупоривает поры и не дает нефти выйти наружу. Это природное горючее практически невозможно вытеснить методом заводнения, так как для этого необходимо создать высокое давление.
Та часть топлива, которую выдавливают водой, называется коэффициентом вытеснения. Пласт-коллектор, в котором выдавливание нефти водой закончено, называется промытым. Ежесуточный поправочный коэффициент дисбаланса между оперативной и фактической добытой нефтью, называется парковым.
Практически невозможно осуществить стопроцентное выдавливание горючего, так как не все участки месторождений промываются хорошо. Объясняется это некоторыми факторами:
Часть объема топлива, которую удается промыть, называется коэффициентом охвата, и обычно он находится в диапазоне от 50 до 60%. Произведение коэффициентов вытеснения и охвата определяет показатель проектной добычи нефти.
Методы повышения нефтеотдачи
Для того чтобы повысить коэффициент нефтеотдачи, применяется комплекс действий, направленный на повышение качества нефтяного пласта. Он обладает тремя основными свойствами: пористостью, проницаемостью, трещиноватостью. Обычно на пористость повлиять никак нельзя, а проницаемость и трещиноватость подвергается воздействию несколькими методами.
Гидравлический разрыв пласта и влагонагнетание
Процедура воздействия на участок месторождения путем резкого повышения давления за счет подачи в штрек большого объема воды называется гидравлическим разрывом пласта. Кроме того, зачастую нефтедобывающие предприятия осуществляют микровзрыв в призабойной зоне.
После этого происходит распространение трещин, которые раскрывают поры, и их соединение. В результате чего нефть начинает перемещаться по пласту и попадает в добывающую скважину. Обычно после взрыва добычу горючего останавливают на некоторое время, чтобы возле забоя скопилось больше нефти.
Водонагнетание приводит к улучшению проницаемости. В старых скважинах, которые не дают требуемого количества нефти, вместо откачки жидкости осуществляют принудительную подачу воды в пласт. В коллекторе вода немного поднимает давление и выталкивает остатки горючего от скважины.
Передвигаясь по пласту, нефть прибивается к рабочей скважине, а оттуда ее можно добыть. Метод применяется в кустовых разработках, где куст — это большое количество скважин на ограниченной площади.
Реагентно-активационный способ
Этот метод позволяет контролировать стабильность пласта к воздействиям извне. Технология заключается в подаче специальных флюидов для изменения состояния на поверхности минералов. Благодаря таким действиям, нефтедобывающие компании существенно повышают реакцию пласта на динамическое воздействие.
Достигается это с помощью оборудования, которое может вызывать в коллекторе продольные и поперечные волны низкой частоты с параллельной фильтрацией флюида через специальные отверстия под воздействием ударной волны.
Все эти действия приводят к увеличению подвижности флюида и проницаемости водонасыщенного участка. В свою очередь, увеличенная приемистость позволяет охватить заводнением заблокированные участки рабочего пласта, что позволяет более эффективно вытеснять нефть закачиваемой водой.
Увеличение дебита скважин
При гидравлическом разрыве участка добычи образуются трещины в горных породах, прилегающих к скважине. Они проходят как вертикально, так и горизонтально, а их ширина может достигать нескольких сантиметров.
Для предотвращения их смыкания в скважину подают вязкую жидкость с твердыми частицами. Обычно процесс разрыва проводится на низкопроницаемых участках, где пласты не участвуют в активной разработке, что снижает добычу нефти на всем месторождении.
Образованные трещины пересекают зоны, которые плохо дренируют, тем самым повышая их выработку. Горючее, попадая в расщелины, перемещается к рабочей скважине, и нефтеотдача увеличивается.
К повышению добычи приводит создание горизонтальных стволов за счет более обширной площади контакта пласта с добывающей скважиной. Кроме того, увеличивает дебит нефтеотдачи волновое воздействие на продуктивный пласт. Основная цель этой технологии — это повысить производительность низкопроницаемых изолированных зон месторождений.
Нефтеотдача
Это отношение количества извлеченной из пласта нефти к первоначальным запасам ее в пласте. Различают текущую и конечную нефтеотдачу.
Текущая нефтеотдача выражает отношение накопленной добычи нефти в данный период эксплуатации месторождения к его геологическим запасам
. (1.9)
Конечная нефтеотдача – это отношение извлекаемых запасов месторождения к геологическим
. (1.10)
Конечная нефтеотдача характеризует в конечном итоге качество и эффективность разработки данного месторождения.
Нефтеотдача выражается в долях единиц.
Темп разработки — отношение годовой добычи нефти к извлекаемым запасам, выражается в процентах.
(1.11)
Этот показатель изменяется во времени, отражая влияние на процесс разработки всех технологических операций, осуществляемых на месторождении, как в период его освоения, так и в процессе регулирования.
Обводненность продукции — отношение дебита воды к суммарному дебиту нефти и воды. Этот показатель изменяется во времени от нуля до единицы:
. (1.21)
Характер изменения показателя зависит от ряда факторов. Один из основных — отношение вязкости нефти к вязкости воды в пластовых условиях :
, (1.22)
где и — динамическая вязкость соответственно нефти и воды.
При разработке месторождений с высоковязкими нефтями вода может появиться в продукции некоторых скважин с начала их эксплуатации. Некоторые залежи с маловязкими нефтями разрабатываются длительное время с незначительной обводненностью. Граничное значение между вязкими и маловязкими нефтями изменяется от 3 до 4.
На характер обводнения продукции скважин и пласта влияют также послойная неоднородность пласта (с увеличением степени неоднородности сокращается безводный период эксплуатации скважин) и положение интервала перфорации скважин относительно водонефтяного контакта.
Опыт разработки нефтяных месторождений свидетельствует о том, что при небольшой вязкости нефти более высокая нефтеотдача достигается при меньшей обводненности. Следовательно, обводненность может служить косвенным показателем эффективности разработки месторождения. Если наблюдается более интенсивное по сравнению с проектным обводнение продукции, то это может служить показателем того, что залежь охвачена процессом заводнения в меньшей степени, чем предусматривалось.
Водонефтяной фактор — отношение текущих значений добычи воды к нефти на данный момент разработки месторождения, измеряется в . Этот параметр, показывающий, сколько объемов воды добыто на 1 тонну полученной нефти, является косвенным показателем эффективности разработки. Темп его увеличения зависит от темпа отбора жидкости. При разработке залежей маловязких нефтей в конечном итоге отношение объема добытой воды к добыче нефти достигает единицы, а для вязких нефтей увеличивается до 5 — 8 м 3 /т и в некоторых случаях достигает 20 м 3 /т.
Расход нагнетаемых в пласт веществ. При осуществлении различных технологий с целью воздействия на пласт используют различные агенты, улучшающие условия извлечения нефти из недр. Закачивают в пласт воду или пар, углеводородные газы или воздух, двуокись углерода и другие вещества.
Пластовое давление. В процессе разработки давление в пластах, входящих в объект разработки, изменяется по сравнению с первоначальным. Причем, на различных участках площади оно будет неодинаковым: вблизи нагнетательных скважин максимальным, а вблизи добывающих — минимальным. Для контроля за изменением пластового давления используют средневзвешенную по площади или объему пласта величину. Важные показатели интенсивности гидродинамического воздействия на пласт — давления на забоях нагнетательных и добывающих скважин. По разнице между этими величинами определяют интенсивность потока жидкости в пласте.
Давление на устье добывающих скважин устанавливают и поддерживают исходя из требований обеспечения сбора и внутрипромыслового транспорта продукции скважин.
Пластовая температура. В процессе разработки этот параметр изменяется в результате дроссельных эффектов в призабойных зонах пласта, закачки в пласт теплоносителей, создания в нем движущегося фронта горения.
Необходимо отметить, что все показатели, присущие данной технологии извлечения нефти и газа из недр при данной системе разработки месторождения взаимосвязаны. Изменение одних показателей может повлечь за собой изменение других. Если одни из показателей заданы, то другие должны быть рассчитаны.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Нефтеотдача (коэффициент извлечения нефти КИН) и методы повышения нефтеотдачи (МУН) и газоотдачи
Нефтеотдача (коэффициент извлечения нефти КИН) — отношение величины извлекаемых запасов к величине геологических запасов.
Подобно подсчету балансовых запасов определение конечных КИН и извлекаемых запасов должно быть увязано с этапами и стадиями геологоразведочных работ (ГРР) и разработки залежей, т. е, с объемом имеющейся информации, а также с особенностями геологического строения залежей.
На открытых залежах, по завершению поискового этапа, а также на стадии оценки, когда данных еще недостаточно, расчет КИН основывается на многомерных статистических моделях.
При подсчете запасов нефти после завершения разведки и при пересчете запасов после разбуривания залежи по первому проектному документу составляется технико-экономическое обоснование (ТЭО) коэффициента извлечения на основе опыта нефтедобывающих районов с учетом достигнутого уровня техники и технологии добычи. В этом документе обосновывается выбор оптимального варианта системы разработки по результатам технико-экономических расчетов нескольких вариантов систем, в том числе и варианта системы разработки на естественном режиме. Для каждого варианта рассчитываются коэффициент извлечения и другие показатели разработки. Принимается коэффициент извлечения того варианта, который наиболее рационален с учетом замыкающих затрат.
КИН на средних, крупных и уникальных залежах рассчитываются гидродинамическими методами:
Методы повышения нефтеотдачи.
Методы повышения нефтеотдачи пласта
Эффективность извлечения нефти из нефтеносных пластов современными, промышленно освоенными методами разработки во всех нефтедобывающих странах на сегодняшний день считается неудовлетворительной, притом что потребление нефтепродуктов во всем мире растет из года в год. Средняя конечная нефтеотдача пластов по различным странам и регионам составляет от 25 до 40%.
Остаточные или неизвлекаемые промышленно освоенными методами разработки запасы нефти достигают в среднем 55-75% от первоначальных геологических запасов нефти в недрах.
Поэтому актуальными являются задачи применения новых технологий нефтедобычи, позволяющих значительно увеличить нефтеотдачу уже разрабатываемых пластов, на которых традиционными методами извлечь значительные остаточные запасы нефти уже невозможно.
По типу рабочих агентов классификация известных методов увеличения нефтеотдачи пластов выглядит следующим образом:
паротепловое воздействие на пласт;
вытеснение нефти горячей водой;
пароциклические обработки скважин.
закачка воздуха в пласт;
воздействие на пласт углеводородным газом (в том числе ШФЛУ);
воздействие на пласт двуокисью углерода;
воздействие на пласт азотом, дымовыми газами и др.
3. Химические методы:
вытеснение нефти водными растворами ПАВ (включая пенные системы);
вытеснение нефти растворами полимеров;
вытеснение нефти щелочными растворами;
вытеснение нефти кислотами;
вытеснение нефти композициями химических реагентов (в том числе мицеллярные растворы и др.);
4. Гидродинамические методы:
вовлечение в разработку недренируемых запасов;
барьерное заводнение на газонефтяных залежах;
нестационарное (циклическое) заводнение;
форсированный отбор жидкости;
5. Группа комбинированных методов.
С точки зрения воздействия на пластовую систему в большинстве случаев реализуется именно комбинированный принцип воздействия, при котором сочетаются гидродинамический и тепловой методы, гидродинамический и физико-химический методы, тепловой и физико-химический методы и так далее.
6. Методы увеличения дебита скважин.
Отдельно следует сказать о так называемых физических методах увеличения дебита скважин. Объединять их с методами увеличения нефтеотдачи не совсем правильно из-за того, что использование методов увеличения нефтеотдачи характеризуется увеличенным потенциалом вытесняющего агента, а в физических методах потенциал вытесняющего нефть агента реализуется за счет использования естественной энергии пласта. Кроме того, физические методы чаще всего не повышают конечную нефтеотдачу пласта, а лишь приводят к временному увеличению добычи, то есть повышению текущей нефтеотдачи пласта.
К наиболее часто применяемым физическим методам относятся:
волновое воздействие на пласт;
другие аналогичные методы.
1) Зона пара вокруг нагнетательной скважины с температурой, изменяющейся от температуры пара до температуры начала конденсации (400-200°С), в которой происходят экстракция из нефти легких фракций (дистилляция нефти) и перенос (вытеснение) их паром по пласту, то есть совместная фильтрация пара и легких фракций нефти.
2) Зона горячего конденсата, в которой температура изменяется от температуры начала конденсации (200°С) до пластовой, а горячий конденсат (вода) в неизотермических условиях вытесняет легкие фракции и нефть.
3) Зона с начальной пластовой температурой, не охваченная тепловым воздействием, в которой происходит вытеснение нефти пластовой водой.
При нагреве пласта происходит дистилляция нефти, снижение вязкости и объемное расширение всех пластовых агентов, изменение фазовых проницаемостей, смачиваемости горной породы и подвижности нефти, воды и др.
Процесс горения нефти в пласте начинается вблизи забоя нагнетательной скважины, обычно нагревом и нагнетанием воздуха. Теплоту, которую необходимо подводить в пласт для начала горения, получают при помощи забойного электронагревателя, газовой горелки или окислительных реакций.
После создания очага горения у забоя скважин непрерывное нагнетание воздуха в пласт и отвод от очага (фронта) продуктов горения (N2, CO2, и др.) обеспечивают поддержание процесса внутрипластового горения и перемещение по пласту фронта вытеснения нефти.
В качестве топлива для горения расходуется часть нефти, оставшаяся в пласте после вытеснения ее газами горения, водяным паром, водой и испарившимися фракциями нефти впереди фронта горения. В результате сгорают наиболее тяжелые фракции нефти.
В случае обычного (сухого) внутрипластового горения, осуществленного нагнетанием в пласт только воздуха, вследствие его низкой теплоемкости по сравнению с породой пласта происходит отставание фронта нагревания породы от перемещающегося фронта горения. В результате этого основная доля генерируемой в пласте теплоты (до 80% и более) остается позади фронта горения, практически не используется и в значительной мере рассеивается в окружающие породы. Эта теплота оказывает некоторое положительное влияние на процесс последующего вытеснения нефти водой из неохваченных горением смежных частей пласта. Очевидно, однако, что использование основной массы теплоты в области впереди фронта горения, то есть приближение генерируемой в пласте теплоты к фронту вытеснения нефти, существенно повышает эффективность процесса.
Процесс влажного внутрипластового горения заключается в том, что в пласт вместе с воздухом закачивается в определенных количествах вода, которая, соприкасаясь с нагретой движущимся фронтом горения породой, испаряется. Увлекаемый потоком газа пар переносит теплоту в область впереди фронта горения, где вследствие этого развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды.
Пароциклическая обработка скважин. Циклическое нагнетание пара в пласты, или пароциклическая обработка добывающих скважин, осуществляют периодическим прямым нагнетанием пара в нефтяной пласт через добывающие скважины, некоторой выдержкой их в закрытом состоянии и последующей эксплуатацией тех же скважин для отбора из пласта нефти с пониженной вязкостью и сконденсированного пара. Цель этой технологии заключается в том, чтобы прогреть пласт и нефть в призабойных зонах добывающих скважин, снизить вязкость нефти, повысить давление, облегчить условия фильтрации и увеличить приток нефти к скважинам.
Механизм процессов, происходящих в пласте, довольно сложный и сопровождается теми же явлениями, что и вытеснение нефти паром, но дополнительно происходит противоточная капиллярная фильтрация, перераспределение в микронеоднородной среде нефти и воды (конденсата) во время выдержки без отбора жидкости из скважин. При нагнетании пара в пласт он, естественно, внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта происходит активное перераспределение насыщенности за счет капиллярных сил: горячий конденсат вытесняет, замещает маловязкую нефть из мелких пор и слабопроницаемых линз (слоев) в крупные поры и высокопроницаемые слои, то есть меняется с ней местами.
Именно такое перераспределение насыщенности пласта нефтью и конденсатом и является физической основой процесса извлечения нефти при помощи пароциклического воздействия на пласты. Без капиллярного обмена нефтью и конденсатом эффект от пароциклического воздействия был бы минимальным и исчерпывался бы за первый цикл.
Закачка воздуха в пласт. Метод основан на закачке воздуха в пласт и его трансформации в эффективные вытесняющие агенты за счет низкотемпературных внутрипластовых окислительных процессов. В результате низкотемпературного окисления непосредственно в пласте вырабатывается высокоэффективный газовый агент, содержащий азот углекислый газ и ШФЛУ (широкие фракции легких углеводородов).
К преимуществам метода можно отнести:
Быстрое инициирование активных внутрипластовых окислительных процессов является одним из важнейших следствий использования энергетики пласта для организации закачки воздуха на месторождениях легкой нефти. Интенсивность окислительных реакций довольно быстро возрастает с увеличением температуры.
Воздействие на пласт двуокисью углерода. Двуокись углерода растворяется в воде гораздо лучше углеводородных газов. Растворимость двуокиси углерода в воде увеличивается с повышением давления и уменьшается с повышением температуры.
При растворении в воде двуокиси углерода вязкость ее несколько увеличивается. Однако это увеличение незначительно. При массовом содержании в воде 3-5% двуокиси углерода вязкость ее увеличивается лишь на 20-30%. Образующаяся при растворении СО2 в воде угольная кислота Н2CO3 растворяет некоторые виды цемента и породы пласта и повышает проницаемость. В присутствии двуокиси углерода снижается набухаемость глиняных частиц. Двуокись углерода растворяется в нефти в четыре-десять раз лучше, чем в воде, поэтому она может переходить из водного раствора в нефть. Во время перехода межфазное натяжение между ними становится очень низким, и вытеснение приближается к смешивающемуся.
Воздействие на пласт азотом, дымовыми газами и др. Метод основан на горении твердых порохов в жидкости без каких-либо герметичных камер или защитных оболочек. Он сочетает тепловое воздействие с механическим и химическим, а именно:
а) образующиеся газы горения под давлением (до 100 МПа) вытесняют из ствола в пласт жидкость, которая расширяет естественные и создает новые трещины;
б) нагретые (180-250°С) пороховые газы, проникая в пласт, расплавляют парафин, смолы и асфальтены;
в) газообразные продукты горения состоят в основном из хлористого водорода и углекислого газа; хлористый водород при наличии воды образует слабоконцентрированный солянокислотный раствор. Углекислый газ, растворяясь в нефти, снижает ее вязкость, поверхностное натяжение и увеличивает продуктивность скважины.
Химические МУН применяются для дополнительного извлечения нефти из сильно истощенных, заводненных нефтеносных пластов с рассеянной, нерегулярной нефтенасыщенностью.
Объектами применения являются залежи с низкой вязкостью нефти (не более 10 мПа*с), низкой соленостью воды, продуктивные пласты представлены карбонатными коллекторами с низкой проницаемостью.
Основное и самое простое свойство полимеров заключается в загущении воды. Это приводит к такому же уменьшению соотношения вязкостей нефти и воды в пласте и сокращению условий прорыва воды, обусловленных различием вязкостей или неоднородностью пласта.
Вытеснение нефти композициями химических реагентов (в том числе мицеллярные растворы). Мицеллярные растворы представляют собой прозрачные и полупрозрачные жидкости. Они в основном однородные и устойчивые к фазовому разделению, в то время как эмульсии нефти в воде или воды в нефти не являются прозрачными, разнородны по строению глобул и обладают фазовой неустойчивостью.
Нефтяной вал вытесняет (собирает) только нефть, пропуская через себя воду. В зоне нефтяного вала скорость фильтрации нефти больше скорости фильтрации воды. Мицеллярный раствор, следующий за водяным валом, увлекает отставшую от нефтяного вала нефть и вытесняет воду с полнотой, зависящей от межфазного натяжения на контакте с водой. Такой механизм процессов фильтрации жидкости наблюдается во время вытеснения остаточной (неподвижной) нефти из заводненной однородной пористой среды.
спирты, растворители и слабые кислоты, которые приводят к уменьшению вязкости, понижению температуры текучести нефти, а также удаляют парафины и включения тяжелой нефти из пористых пород, увеличивая проницаемость последних;
биополимеры, которые, растворяясь в воде, повышают ее плотность, облегчают извлечение нефти при использовании технологии заводнения;
биологические поверхностно-активные вещества, которые делают поверхность нефти более скользкой, уменьшая трение о породы;
газы, которые увеличивают давление внутри пласта и помогают подвигать нефть к стволу скважины.
Гидродинамические методы при заводнении позволяют интенсифицировать текущую добычу нефти, увеличивать степень извлечения нефти, а также уменьшать объемы прокачиваемой через пласты воды и снижать текущую обводненность добываемой жидкости.
Форсированный отбор жидкости применяется на поздней стадии разработки, когда обводненность достигает более 75%. При этом нефтеотдача возрастает вследствие увеличения градиента давления и скорости фильтрации. При этом методе вовлекаются в разработку участки пласта, не охваченные заводнением, а также отрыв пленочной нефти с поверхности породы.
Методы увеличения дебита скважин
Гидравлический разрыв пласта. При гидравлическом разрыве пласта (ГРП) происходит создание трещин в горных породах, прилегающих к скважине, за счет давления на забое скважины в результате закачки в породы вязкой жидкости. При ГРП в скважину закачивается вязкая жидкость с таким расходом, который обеспечивает создание на забое скважины давления, достаточного для образования трещин.
Горизонтальные скважины. Технология повышения нефтеотдачи пластов методом строительства горизонтальных скважин зарекомендовала себя в связи с увеличением количества нерентабельных скважин с малодебитной или обводненной продукцией и бездействующих аварийных скважин по мере перехода к более поздним стадиям разработки месторождений, когда обводнение продукции или падение пластовых давлений на многих разрабатываемых участках (особенно в литологически неоднородных зонах нефтеносных пластов с трудноизвлекаемыми запасами) опережает выработку запасов при существующей плотности сетки скважин. Увеличение нефтеотдачи происходит за счет обеспечения большей площади контакта продуктивного пласта со стволом скважины.
Электромагнитное воздействие. Метод основан на использовании внутренних источников тепла, возникающих при воздействии на пласт высокочастотного электромагнитного поля. Зона воздействия определяется способом создания (в одной скважине или между несколькими), напряжения и частоты электромагнитного поля, а также электрическими свойствами пласта. Помимо тепловых эффектов электромагнитное воздействие приводит к деэмульсации нефти, снижению температуры начала кристаллизации парафина и появлению дополнительных градиентов давления за счет силового воздействия электромагнитного поля на пластовую жидкость.
Волновое воздействие на пласт. Известно множество способов волнового и термоволнового (вибрационного, ударного, импульсного, термоакустического) воздействия на нефтяной пласт или на его призабойную зону.
Таким образом мировой опыт свидетельствует, что востребованность современных МУН растет, их потенциал в увеличении извлекаемых запасов внушителен. Этому способствует и то обстоятельство, что себестоимость добычи нефти с применением современных МУН по мере их освоения и совершенствования непрерывно снижается и становится вполне сопоставимой с себестоимостью добычи нефти традиционными промышленно освоенными методами.
Определяется с учетом свойств коллектора и защемления залежей конденсатом.
В отличие от КИН, на КИЗ почти не влияют:
Торпедирование или отбор продукта при вакууме:
Методы, обеспечивающие рост газоотдачи на 1%, равны по значению росту нефтедобычи без лишних финансовых трат на обустройство и перевозку газа, поскольку на их применение не нужно тратить много времени и денег.
Применение указанных методов особо актуально для месторождений:
Повышение газоотдачи пластов также достигается за счет:
Повышение отдачи газового конденсата в газоконденсатных месторождениях может быть достигнуто путем: