Что такое длинный трубопровод
Классификация трубопроводов
Все многообразие трубопроводов делят условно на короткие и длинные простые и сложные.
Короткие и длинные трубопроводы
В коротком трубопроводе потери удельной механической энергии на местных сопротивлениях и по длине соизмеримы.
В длинных трубопроводах потери на местных сопротивлениях малы по сравнению с потерями по длине. При расчете длинных трубопроводов потери в местных сопротивлениях учитывают завышая потери по длине на 5-10%.
Простые и сложные трубопроводы
Простым трубопроводом называют такой, которые не содержит ответвлений и разветвлений и собран из труб одного диаметра. Во всех остальных случаях трубопровод называют сложным.
Получается, что сложным называют трубопровод, состоящий из труб разного диаметра, включающий ответвления.
Различают последовательное и параллельное соединение участков в сложных трубопроводах.
Последовательное соединение
Пример последовательного соединения показан на рисунке.
Такой трубопровод состоит из участков, включенных последовательно друг другу. При отсутствии утечек расход жидкости в каждом из на всем протяжении трубопровода будет постоянен и одинаков.
Параллельное соединение участков
Пример параллельного соединения показан на рисунке.
При параллельном соединении труд расход между ними распределяется таким образом, чтобы потери напора на каждом участке были одинаковы и равнялись концевой разности напора.
Что такое длинный трубопровод
6.1. Что такое короткий трубопровод?
а) трубопровод, в котором линейные потери напора не превышают 5…10% местных потерь напора;
б) трубопровод, в котором местные потери напора превышают 5…10% потерь напора по длине;
в) трубопровод, длина которого не превышает значения 100d;
г) трубопровод постоянного сечения, не имеющий местных сопротивлений.
6.2. Что такое длинный трубопровод?
а) трубопровод, длина которого превышает значение 100d;
б) трубопровод, в котором линейные потери напора не превышают 5…10% местных потерь напора;
в) трубопровод, в котором местные потери напора меньше 5…10% потерь напора по длине;
г) трубопровод постоянного сечения с местными сопротивлениями.
6.3. На какие виды делятся длинные трубопроводы?
а) на параллельные и последовательные;
б) на простые и сложные;
в) на прямолинейные и криволинейные;
г) на разветвленные и составные.
6.4. Какие трубопроводы называются простыми?
а) последовательно соединенные трубопроводы одного или различных сечений без ответвлений;
б) параллельно соединенные трубопроводы одного сечения;
в) трубопроводы, не содержащие местных сопротивлений;
г) последовательно соединенные трубопроводы содержащие не более одного ответвления.
6.5. Какие трубопроводы называются сложными?
а) последовательные трубопроводы, в которых основную долю потерь энергии составляют местные сопротивления;
б) параллельно соединенные трубопроводы разных сечений;
в) трубопроводы, имеющие местные сопротивления;
г) трубопроводы, образующие систему труб с одним или несколькими ответвлениями.
6.6. Что такое характеристика трубопровода?
а) зависимость давления на конце трубопровода от расхода жидкости;
б) зависимость суммарной потери напора от давления;
в) зависимость суммарной потери напора от расхода;
г) зависимость сопротивления трубопровода от его длины.
а) разность геометрической высоты Δz и пьезометрической высоты в конечном сечении трубопровода;
б) сумма геометрической высоты Δz и пьезометрической высоты в конечном сечении трубопровода;
в) сумма пьезометрических высот в начальном и конечном сечении трубопровода;
г) разность скоростных высот между конечным и начальным сечениями.
6.8. Если для простого трубопровода записать уравнение Бернулли, то пьезометрическая высота, стоящая в левой части уравнения называется
а) потребным напором;
б) располагаемым напором;
в) полным напором;
г) начальным напором.
6.9. Кривая потребного напора отражает
а) зависимость потерь энергии от давления в трубопроводе;
б) зависимость сопротивления трубопровода от его пропускной способности;
в) зависимость потребного напора от расхода;
г) зависимость режима движения от расхода.
6.10. Потребный напор это
а) напор, полученный в конечном сечении трубопровода;
б) напор, который нужно сообщить системе для достижения необходимого давления и расхода в конечном сечении;
в) напор, затрачиваемый на преодоление местных сопротивлений трубопровода;
г) напор, сообщаемый системе.
6.11. При подаче жидкости по последовательно соединенным трубопроводам 1, 2, и 3 расход жидкости в них
6.13. При подаче жидкости по параллельно соединенным трубопроводам 1, 2, и 3 расход жидкости в них
6.15. Разветвленный трубопровод это
6.16. При подаче жидкости по разветвленным трубопроводам 1, 2, и 3 расход жидкости
Понятие о длинных и коротких трубопроводах
При гидравлическом расчете напорные трубопроводы разделяются на длинные и короткие.
К длинным трубопроводам относятся трубопроводы, в которых местные потери напора пренебрежимо малы по сравнению с потерями напора по длине.
При гидравлическом расчете таких трубопроводов местными потерями напора или пренебрегают вовсе, считая, что , или принимают их ориентировочно в размере 5-10% от потерь напора по длине, то есть
К коротким трубопроводам относятся трубопроводы небольшой длины, например всасывающие трубы насосных станций и сифоны. В этих трубопроводах местные потери напора являются величинами одного порядка с потерями напора по длине. Поэтому при гидравлическом расчете коротких трубопроводов вычисляются потери отдельно для каждого местного сопротивления.
Длинные напорные трубопроводы подразделяются на простые и сложные. Простым считается трубопровод постоянного или переменного диаметра без ответвлений (рис.5а,б). Сложным является трубопровод постоянного или переменного диаметра, имеющий одно или несколько ответвлений. Сложные трубопроводы, в свою очередь, подразделяются на незамкнутые (тупиковые), рис.6а и на замкнутые (кольцевые), рис.6 б,в.
Что такое длинный трубопровод?
трубопровод, длина которого превышает значение 100d;
трубопровод, в котором линейные потери напора не превышают 5…10% местных потерь напора;
трубопровод, в котором местные потери напора меньше 5…10% потерь напора по длине;
трубопровод постоянного сечения с местными сопротивлениями.
На какие виды делятся длинные трубопроводы?
на параллельные и последовательные;
на простые и сложные;
на прямолинейные и криволинейные;
на разветвленные и составные.
Какие трубопроводы называются простыми?
последовательно соединенные трубопроводы одного или различных сечений без ответвлений;
параллельно соединенные трубопроводы одного сечения;
трубопроводы, не содержащие местных сопротивлений;
последовательно соединенные трубопроводы содержащие не более одного ответвления.
Какие трубопроводы называются сложными?
последовательные трубопроводы, в которых основную долю потерь энергии составляют местные сопротивления;
параллельно соединенные трубопроводы разных сечений;
трубопроводы, имеющие местные сопротивления;
трубопроводы, образующие систему труб с одним или несколькими ответвлениями.
Что такое характеристика трубопровода?
зависимость давления на конце трубопровода от расхода жидкости;
зависимость суммарной потери напора от давления;
зависимость суммарной потери напора от расхода;
зависимость сопротивления трубопровода от его длины.
Статический напор Hст это:
разность геометрической высоты Δz и пьезометрической высоты в конечном сечении
сумма геометрической высоты Δz и пьезометрической высоты в конечном сечении трубопровода;
сумма пьезометрических высот в начальном и конечном сечении трубопровода;
разность скоростных высот между конечным и начальным сечениями.
Если для простого трубопровода записать уравнение Бернулли, то пьезометрическая высота, стоящая в левой части уравнения называется
Кривая потребного напора отражает
зависимость потерь энергии от давления в трубопроводе;
зависимость сопротивления трубопровода от его пропускной способности;
Основы гидравлики
Гидравлический расчет трубопроводов
Трубопроводы и их классификация
Трубопроводами в народном хозяйстве называют искусственно созданные сооружения, предназначенные для транспортировки жидких, газообразных или твердых веществ, либо их смесей за счет разницы давлений в поперечных сечениях трубы.
В гидравлике при расчете трубопроводов их подразделяют на короткие и длинные. Такое деление является условным, и основано на величине потерь напора при перемещении жидкости по трубопроводу.
В длинных трубопроводах потери напора по длине значительно превышают местные потери напора, а в коротких трубопроводах эти потери соизмеримы между собой.
Принято считать, что при длине l l > 100 м – трубопровод длинный.
При l = 50…100 м, в зависимости от соотношения потерь напора, трубопровод может быть длинным либо коротким.
Гидравлический расчет короткого трубопровода
Короткие трубопроводы рассчитывают непосредственно по уравнению Бернулли, представленному в следующем виде:
Здесь Б = 8/gπ 2 dр 2 – величина, зависящая от расчетного диаметра трубы и определяемая по специальным справочным таблицам;
ξ – коэффициент местных сопротивлений;
S0 = 8λ/π 2 gd 5 – удельное сопротивление трубы;
l – длины участков трубопроводов;
Нн и Нк – пьезометрические напоры в начале и конце трубопровода, определяемые по формуле:
где:
z – геодезическая отметка какой-либо точки трубопровода;
р – избыточное давление в этой точке;
р/ρg – пьезометрическая высота (свободный напор).
При расчетах трубопроводов применяют различные эмпирические зависимости и формулы, полученные экспериментально-опытным путем, позволяющие определить коэффициент гидравлического трения:
При скоростях потока v (переходная область сопротивления) удельные сопротивления S0 определяют по формуле
где θ – поправочный коэффициент, определяемый в зависимости от скорости.
При расчетах коротких трубопроводов из уравнения Бернулли (1) определяют (в зависимости от условий задачи) расход Q или необходимый напор Нн в начале трубопровода, либо диаметр трубопровода d и т. д.
Гидравлический расчет длинного трубопровода
Длинные трубопроводы рассчитываются, как и короткие, по уравнению Бернулли, но местными потерями и скоростными напорами в них пренебрегают ввиду их относительной малости.
Для большей точности местные потери напора можно приближенно учесть, приняв расчетную длину трубопровода на 5-10 % больше фактической.
С учетом этого уравнение (1) принимает вид:
Знак суммы Σ указывает, что если трубопровод состоит из нескольких последовательных участков, то потери напора на них складываются. Для одиночного трубопровода формула (2) упрощается:
Для расчета длинных трубопроводов применяется также формула
Значения расходных характеристик Ккв стальных, бетонных и железобетонных трубопроводов, имеющих разный коэффициент шероховатости, приводятся в справочных таблицах. При этом потери напора для труб, работающих в квадратичной области сопротивления (при скорости потока v ≥ 1,2 м/с) определяются по формуле:
При работе стальных труб в переходной области сопротивления ( v ) расходная характеристика определяется по формуле:
При проектировании новых трубопроводов могут быть неизвестны две величины – напор в начальной точке и диаметр трубы. В этом случае задаются диаметром трубопровода (в зависимости от требуемого расхода) и рекомендуемыми из экономических соображений предельными скоростями vпр :
Предельные скорости потока (в зависимости от величины расхода и материала труб) приводятся в справочных таблицах. Для ориентировочных расчетов можно принимать средние значения предельных скоростей для данного материала труб.
Если на участке трубопровода производится непрерывная раздача воды по пути, то расчетный расход увеличивается:
Если в начале трубопровода напор создается насосом, то его мощность определяется по формуле:
где:
η – коэффициент полезного действия насоса;
Ннас = h + ΣS0Q 2 l – полный напор насоса, состоящий из геометрической высоты подъема h = Hсв + zк – zн (здесь Нсв = рк/ρg – свободный напор в конце трубопровода) и суммы потерь напора на всасывающем и нагнетательном трубопроводах.
Если высота всасывания и потери напора во всасывающей трубе незначительны, то напор насоса можно принимать как сумму высоты нагнетания и потерь напора при нагнетании.