В результате пиноцитоза что происходит
Пиноцитоз
Пиноцитоз
У клеток животных имеется особый механизм, который играет важную роль в проникновении вируса в клетку. Он заключается в том, что клетка захватывает («пьет») капельки окружающей среды. Если вирус находится на поверхности мембраны или в свободном виде в окружающей клетку жидкости, то в результате пиноцитоза он может переноситься внутрь ее.
После того как вирусная частица оказалась на клеточной поверхности или в цитоплазматической капсуле, наступает следующая стадия проникновения вирусного инфекционного начала в клетку. На этом этапе происходит изменение вирусной частицы. Например, у некоторых фагов изменение касается отдельных компонентов вирусной частицы — белков отростков. В других случаях под влиянием клеточных ферментов изменяется вся вирусная частица.
Из одной клетки в другую вирусы зачастую переходят по мельчайшим канальцам, даже не проходя внеклеточную среду, где они могли бы натолкнуться на опасное для них противодействие антител.
Вирус сбрасывает оболочку. Проникнув в клетку, вирус может вызвать: острую (явную) инфекцию или скрытую (латентную) инфекцию.
В первом случае клетка не выдерживает атаки вируса и, пройдя неинфекционную фазу, гибнет. Во втором в клетке долгое время никаких изменений не наблюдается, они появляются позже, при особых условиях.
Основная задача вируса проникшего в клетку
Основная задача вируса проникшего в клетку, — освободиться от оболочки, для того чтобы внутри клетки оказалась свободная нуклеиновая кислота. Некоторые вирионы способны сбрасывать оболочку в момент поглощения их клеткой. Именно таким образом проникает в клетку генетический материал вирусов осповакцины и герпеса. Однако, чем сложнее устроены капсиды, тем больше времени требуется для освобождения его нуклеиновой кислоты. Клетки «идут навстречу» вирусам и вырабатывают «раздевающий» белок. Объясняется это действие все теми же отработанными многовековой эволюцией приспособлениями поглощать и растворять частицы, идущие на питание клетки. Именно для растворения необходимых ей частиц и вырабатывает клетка специальные ферменты. И если клетке удастся подобрать растворитель, то капсид разрушится, а освободившаяся нуклеиновая кислота приступит к уничтожению хозяина.
Бактериофаг
Бактериофаг за «работой». Греческое слово phagos переводится — «пожиратель». Значит, бактериофаг должен «поглощать» бактерии. Но для того чтобы бактерии погибли от вируса, они должны сначала быть инфицированы. Но как вирус проникнет через плотную бактериальную стенку, если никакие насекомые не стремятся пронзить ее стилетом и если сама стенка не всасывает частицы? А как освободится нуклеиновая кислота от оболочки, если бактериальные клетки не вырабатывают растворитель?
Очевидно, что враг бактерий — бактериофаг должен иметь какие-то специальные органы и как-то по особому уметь взламывать оболочку. Вспомним интересное устройство фага Т4. Именно этот фаг успешно справляется с задачей «пожирания» бактерий. Вирус прикрепляется к оболочке с помощью нитей, и хвост отростка упирается в стенку. В состав хвоста входят молекулы аденозинтрифосфорной кислоты (АТФ) — те самые, что обеспечивают сокращение мышц животных. Когда эти молекулы теряют фосфатные группы, хвост сокращается и пробивает оболочку. Путь в клетку нуклеиновой кислоте вируса открыт. Капсид бактериофага сжимается, и ДНК впрыскивается внутрь клетки. Инъекция осуществилась! Чехол бактериофага, сыграв роль шприца, остается без нуклеиновой кислоты и уже не принимает никакого участия в развитии дальнейших событий. Зато ДНК, свободная от оболочек, сразу же приступает к своей работе.
Пиноцитоз
Пиноцито́з (от др.-греч. πίνω — пью, впитываю и κύτος — вместилище, здесь — клетка) — 1) Захват клеточной поверхностью жидкости с содержащимися в ней веществами. 2) Процесс поглощения и внутриклеточного разрушения макромолекул.
Один из основных механизмов проникновения в клетку высокомолекулярных соединений, в частности белков и углеводно-белковых комплексов.
Открытие пиноцитоза
Явление пиноцитоза открыто американским учёным У.Льюисом в 1931 году.
Процесс пиноцитоза
При пиноцитозе на плазматической мембране клетки появляются короткие тонкие выросты, окружающие капельку жидкости. Этот участок плазматической мембраны впячивается, а затем отшнуровывается внутрь клетки в виде пузырька. Методами фазово-контрастной микроскопии и микрокиносъёмки прослежено формирование пиноцитозных пузырьков диаметром до 2 мкм. В электронном микроскопе различают пузырьки диаметром 0,07—0,1 мкм (микропиноцитоз). Пиноцитозные пузырьки способны перемещаться внутри клетки, сливаться друг с другом и с внутриклеточными мембранными структурами. Наиболее активный пиноцитоз наблюдается у амёб, в эпителиальных клетках кишечника и почечных канальцев, в эндотелии сосудов и растущих ооцитах. Пиноцитозная активность зависит от физиологического состояния клетки и состава окружающей среды. Активные индукторы пиноцитоза — γ-глобулин, желатин, некоторые соли.
См. также
Полезное
Смотреть что такое «Пиноцитоз» в других словарях:
пиноцитоз — пиноцитоз … Орфографический словарь-справочник
ПИНОЦИТОЗ — ПИНОЦИТОЗ, захват и транспортировка жидкости живыми КЛЕТКАМИ. При пиноцитозе поглощаемая капля жидкости окружается плазматической мембраной, которая смыкается над образовавшимся пузырьком, погруженным в клетку. Пиноцитоз является основным… … Научно-технический энциклопедический словарь
пиноцитоз — 1) поглощение жидких питательных веществ эукариотической клеткой; 2) основной путь внедрения животных и растительных вирусов в клетку–хозяина. При этом происходит впячивание клеточной оболочки и обволакивание вирусной частицы. (Источник:… … Словарь микробиологии
пиноцитоз — Поглощение клеткой капелек жидкости с образованием пиносом; П. наряду с фагоцитозом является формой эндоцитоза. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов 1995 407с.] Тематики генетика EN pinocytosis … Справочник технического переводчика
Пиноцитоз — * пінацытоз * pinocytosis процесс поглощения твердых и жидких материалов клеткой … Генетика. Энциклопедический словарь
пиноцитоз — pinocytosis пиноцитоз. Поглощение клеткой капелек жидкости с образованием пиносом
; П. наряду с фагоцитозом
является формой эндоцитоза. (Источник: «Англо русский толковый словарь генетических терминов».… … Молекулярная биология и генетика. Толковый словарь.
ПИНОЦИТОЗ — (pinocytosis) поглощение клеткой мельчайших капелек жидкости. Пиноцитоз осуществляют эндотелиальные клетки (ред.), большинство лейкоцитов, а также некоторые клетки печени и почек. Для сравнения: фагоцитоз … Толковый словарь по медицине
В результате пиноцитоза что происходит
Основа жизнедеятельности вируса заключена в молекуле нуклеиновой кислоты, покрытой белковой оболочкой. Нуклеиновая кислота, как и в клетках млекопитающих, представлена либо ДНК, либо РНК, которые при определенных условиях способны самокопироваться. Таким образом, вирус, как и клетки человека, воспроизводится от поколения к поколению, поддерживая свой «род».
В результате эволюции в состав организма наряду с нуклеиновыми кислотами и простыми белками вошли другие вещества, а различные отделы вируса начали выполнять специализированные функции. Вокруг вируса сформировалась мембрана, появился жидкий матрикс. Вещества, сформированные в матриксе, стали выполнять особые функции, появились ферменты, способные катализировать ряд химических реакций, которые в итоге и определяют жизнедеятельность организма.
На следующих ступенях развития, в частности на стадиях риккетсий и бактерий, появляются внутриклеточные органеллы, с помощью которых отдельные функции выполняются более эффективно, чем с помощью веществ, диффузно распределенных в матриксе.
Наконец, в ядросодержащей клетке возникают более сложные органеллы, важнейшим из которых является само ядро. Наличие ядра отличает данный тип клеток от более низких форм жизни; ядро осуществляет контроль над всеми функциями клетки и так организует процесс деления, что последующее поколение клеток оказывается почти идентичным клетке-предшественнику.
Сравнительные размеры доядерных структур с клеткой человеческого организма.
Эндоцитоз — захват веществ клеткой. Живая, растущая и делящаяся клетка должна получать питательные и другие вещества из окружающей жидкости. Большая часть веществ проникает через мембрану путем диффузии и активного транспорта. Под диффузией подразумевается простой неупорядоченный перенос молекул вещества через мембрану, которые проникают в клетку чаще через поры, а жирорастворимые вещества — непосредственно через липидный бислой.
Активный транспорт — это перенос веществ через толщу мембраны с помощью белка-переносчика. Механизмы активного транспорта крайне важны для деятельности клетки.
Частицы большого размера попадают в клетку путем процесса, называемого эндоцитозом. Главные виды эндоцитоза — пиноцитоз и фагоцитоз. Пиноцитозом называют захват и перенос в цитоплазму небольших пузырьков с внеклеточной жидкостью и микрочастицами. Фагоцитоз обеспечивает захват крупных элементов, включая бактерии, целые клетки или фрагменты поврежденных тканей.
Пиноцитоз. Пиноцитоз происходит постоянно, а в некоторых клетках — весьма активно. Так, в макрофагах этот процесс происходит настолько интенсивно, что за 1 мин около 3% общей площади мембраны преобразуется в пузырьки. Однако размеры пузырьков крайне малы — всего 100-200 нм в диаметре, поэтому их можно увидеть только при электронной микроскопии.
Пиноцитоз — единственный способ, благодаря которому большинство макромолекул могут проникать в клетку. Интенсивность пиноцитоза возрастает, когда такие молекулы соприкасаются с мембраной.
Как правило, белки присоединяются к поверхностным рецепторам мембраны, которые высокоспецифичны к абсорбируемым видам белков. Рецепторы концентрируются в основном в области мельчайших углублений на наружной поверхности мембраны, которые называют окаймленными ямками. Дно ямок со стороны цитоплазмы выстлано сетевидной конструкцией из фибриллярного белка клатрина, который, как и другие сократительные белки, содержит нити актина и миозина. Присоединение белковой молекулы к рецептору меняет форму мембраны в области ямки благодаря сократительным белкам: ее края смыкаются, мембрана все больше погружается в цитоплазму, захватывая молекулы белка вместе с небольшим количеством внеклеточной жидкости. Сразу после замыкания краев происходит отрыв пузырька от наружной мембраны клетки и формирование пиноцитозной вакуоли внутри цитоплазмы.
Пока не ясно, почему происходит деформация мембраны, необходимая для образования пузырьков. Известно, что этот процесс энергозависимый, т.е. требует макроэргического вещества АТФ, роль которого обсуждается далее. Присутствие ионов кальция во внеклеточной жидкости, по всей вероятности, также необходимо для взаимодействия с лежащими в области дна окаймленных ямок с сократительными филаментами, которые создают усилие, необходимое для отщепления пузырьков от наружной мембраны клетки.
Научная электронная библиотека
§ 3.1.4. Строение клетки
Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).
Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения
Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.
1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.
Повреждение наружной оболочки приводит к гибели клетки (цитолиз).
2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране
участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).
Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.
Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.
3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).
транспортировка питательных веществ и утилизация продуктов обмена клетки;
буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;
поддержание тургора (упругость) клетки;
все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.
4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).
Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления
Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.
При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери
Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.
В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.
В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.
Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.
– хранение генетической информации;
– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.
4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.
Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.
5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.
Функция рибосом: обеспечение биосинтеза белка.
6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).
Функции эндоплазматической сети:
– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;
– транспортировка продуктов синтеза ко всем частям клетки.
Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).
7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).
Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент
Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1
При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:
АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.
Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.
АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].
Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).
Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).
Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!
8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.
Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.
9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).
Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.
10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:
Пластиды бывают трех типов:
1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.
2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.
3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).
Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.
11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.
Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:
– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);
– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;
– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).
Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).
Более общая классификация клеток представлена на рис. 3.16.
Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.