В примере что сначала делать умножение или деление

Порядок действий в математике

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные операции в математике

Порядок вычисления простых выражений

Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:

Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.

Что первое, умножение или деление? — По порядку слева направо.

Сначала умножение или сложение? — Умножаем, потом складываем.

Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Рассмотрим порядок арифметических действий в примерах.

Пример 1. Выполнить вычисление: 11- 2 + 5.

В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.

Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.

Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?

Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.

Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.

Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.

Например, в такой последовательности можно решить пример по действиям:

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Действия первой и второй ступени

В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.

С этими терминами правило определения порядка выполнения действий звучит так:

Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Порядок вычислений в выражениях со скобками

Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:

Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.

Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.

Рассмотрим порядок выполнения действий на примерах со скобками.

Как правильно решить пример:

Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.

Подставляем полученные значения в исходное выражение:

Порядок действий: умножение, деление, и только потом — сложение. Получится:

10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.

На этом все действия выполнены.

Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.

Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).

Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:

Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:

5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.

Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.

Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.

Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.

И, как всегда, рассмотрим, как это работает на примере.

В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.

Подставляем полученное значение в исходное выражение:

Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:

Закрепить на практике тему «Порядок действий» можно на курсах по математике в Skysmart!

Источник

Порядок выполнения действий

В данном разделе мы познакомимся с порядком действий, с выражениями со скобками и без них.

1) Если тебе нужно выполнить только сложение и вычитание или только умножение и деление, то все действия выполняют по порядку слева направо.

Например, В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

В числовом выражении 3 арифметических действия: сложение, вычитание и вычитание.

Определим порядок действий и запишем их над арифметическими знаками: так как нет ни умножения ни деления, действия выполняют по порядку слева направо:

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Полностью пример записываем так:

Например, В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

В числовом выражении 3 арифметических действия: деление, умножение и деление.

Определим порядок действий и запишем их над арифметическими знаками: так как нет ни сложения ни вычитания, действия выполняют по порядку слева направо:

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Полностью пример записываем так:

15 : 5 • 4 : 6 = 3 • 4 : 6 = 12 : 6 = 2

2) Если тебе нужно выполнить несколько арифметических действий (сложение, вычитание, умножение и деление), то сначала выполняют умножение и деление по порядку слева направо, а затем сложение и вычитание по порядку слева направо.

Например, В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

В числовом выражении 4 арифметических действия: вычитание, деление, сложение и умножение.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим деление, потом умножение, затем вычитание и сложение.

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Полностью пример записываем так:

3) Если в выражении есть скобки, то сначала выполняют действия в скобках, но обязательно учитывать первое и второе правила.

Например, В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

В числовом выражении 4 арифметических действия: вычитание, деление, сложение и умножение.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим вычитание в скобках, затем деление, потом умножение и сложение.

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Полностью пример записываем так:

Например, В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

В числовом выражении 4 арифметических действия: сложение, деление, сложение и деление.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим действия в скобках (деление, затем сложение), затем деление, потом сложение.

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Полностью пример записываем так:

42 + 18 : (6 + 12 : 4) = 42 + 18 : (6 + 3) = 42 + 18 : 9 = 42 + 2 = 44

Вывод:

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Поделись с друзьями в социальных сетях:

Источник

Зубодробительная задачка с очень простой математикой

Эта задача поставит в тупик половину интернета, но не вас.

Вот вам очень простой математический пример:

8 / 2(2 + 2)

Вы удивитесь, но большинство людей не смогут правильно это посчитать. Посчитайте сами и потом смотрите правильный ответ:

В интернете много споров про такие примеры, поэтому мы решили разобраться, какие ошибки совершают чаще всего и почему многие считают неправильно. Для решения нам понадобятся три математических правила:

Разберём подробнее, что это значит в нашем случае.

1. То, что в скобках, выполняется в первую очередь. То есть в нашем примере, вне зависимости от чего угодно, сначала схлопнутся скобки:

2. Между числом и скобкой можно опустить знак умножения. У нас перед скобкой двойка, то есть можно сделать такую замену:

3. Математические действия при отсутствии скобок выполняются слева направо: как при чтении, сначала умножение и деление, потом — сложение и вычитание. Умножение и деление имеют одинаковый приоритет. Нет такого, что сначала всегда делается умножение, затем деление, или наоборот. Со сложением и вычитанием то же самое.

Некоторые считают, что раз множители были написаны близко друг к другу (когда там стояли скобки), то оно выполняется в первую очередь, ссылаясь при этом на разные методические пособия. На самом деле это не так, и нет такого скрытого умножения, которое имеет приоритет над другим умножением или делением. Это такое же умножение, как и остальные, и оно делается в общем порядке — как и принято во всём математическом мире.

Получается, что нам сначала надо сложить 2 + 2 в скобках, потом 8 разделить на 2, и полученный результат умножить на то, что в скобках:

8 / 2 × (2 + 2) = 8 / 2 × 4 = 4 × 4 = 16

Кстати, если на айфоне записать это выражение точно так же, как в условии, телефон тоже даст правильный ответ.

А инженерный калькулятор на Windows 10 так записывать не умеет и пропускает первую двойку-множитель. Попробуйте сами 🙂

Тут в тред врываются математики и с воплями «Шустеф!» поясняют криком:

«В АЛГЕБРЕ ТОТ ЖЕ ПОРЯДОК ДЕЙСТВИЙ, ЧТО И В АРИФМЕТИКЕ, но есть исключение: в алгебре знак умножения связывает компоненты действия сильнее, чем знак деления, поэтому знак умножения опускается. Например, a:b·c= a: (b·c)».

Этот текст из «Методики преподавания алгебры», курс лекций, Шустеф М. Ф., 1967 год. (стр. 43)

Раз в спорном примере знак умножения опущен, то спорный пример алгебраический, а значит, сначала умножаем 2 на 4, а потом 8 делим на 8!

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или делениеТа самая цитата.

А вот как на это отвечают те, кто действительно в теме и не ленится полностью посмотреть первоисточник:

«Для устранения недоразумений В. Л. Гончаров указывает, что предпочтительнее пользоваться в качестве знака деления чертой и ставить скобки [87]. П. С. Александров и А. Н. Колмогоров [59] предложили изменить порядок действий в арифметике и решать, например, так: 80:20×2=80:40=2 вместо обычного: 80:20×2=4×2=8. Однако это предложение не нашло поддержки».

Если апеллировать к Фриде Максовне Шустеф, то выходит, что:

Самое интересное, что дальше в примерах Фрида Максовна пользуется как раз правильным порядком действий, объясняя решение. Даже там, где есть умножение на скобку с опущенным знаком, она выполняет действия слева направо.

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или делениеПолная цитата из Шустеф, которая, оказывается, имеет в виду совсем не то.

Источник

Что сперва умножение или деление

Вот вам очень про­стой мате­ма­ти­че­ский при­мер:

8 / 2(2 + 2)

Вы уди­ви­тесь, но боль­шин­ство людей не смо­гут пра­виль­но это посчи­тать. Посчи­тай­те сами и потом смот­ри­те пра­виль­ный ответ:

В интер­не­те мно­го спо­ров про такие при­ме­ры, поэто­му мы реши­ли разо­брать­ся, какие ошиб­ки совер­ша­ют чаще все­го и поче­му мно­гие счи­та­ют непра­виль­но. Для реше­ния нам пона­до­бят­ся три мате­ма­ти­че­ских пра­ви­ла:

Раз­бе­рём подроб­нее, что это зна­чит в нашем слу­чае.

1. То, что в скоб­ках, выпол­ня­ет­ся в первую оче­редь. То есть в нашем при­ме­ре, вне зави­си­мо­сти от чего угод­но, сна­ча­ла схлоп­нут­ся скоб­ки:

2. Меж­ду чис­лом и скоб­кой мож­но опу­стить знак умно­же­ния. У нас перед скоб­кой двой­ка, то есть мож­но сде­лать такую заме­ну:

3. Мате­ма­ти­че­ские дей­ствия при отсут­ствии ско­бок выпол­ня­ют­ся сле­ва напра­во: как при чте­нии, сна­ча­ла умно­же­ние и деле­ние, потом — сло­же­ние и вычи­та­ние. Умно­же­ние и деле­ние име­ют оди­на­ко­вый при­о­ри­тет. Нет тако­го, что сна­ча­ла все­гда дела­ет­ся умно­же­ние, затем деле­ние, или наобо­рот. Со сло­же­ни­ем и вычи­та­ни­ем то же самое.

Неко­то­рые счи­та­ют, что раз мно­жи­те­ли были напи­са­ны близ­ко друг к дру­гу (когда там сто­я­ли скоб­ки), то оно выпол­ня­ет­ся в первую оче­редь, ссы­ла­ясь при этом на раз­ные мето­ди­че­ские посо­бия. На самом деле это не так, и нет тако­го скры­то­го умно­же­ния, кото­рое име­ет при­о­ри­тет над дру­гим умно­же­ни­ем или деле­ни­ем. Это такое же умно­же­ние, как и осталь­ные, и оно дела­ет­ся в общем поряд­ке — как и при­ня­то во всём мате­ма­ти­че­ском мире.

Полу­ча­ет­ся, что нам сна­ча­ла надо сло­жить 2 + 2 в скоб­ках, потом 8 раз­де­лить на 2, и полу­чен­ный резуль­тат умно­жить на то, что в скоб­ках:

8 / 2 × (2 + 2) = 8 / 2 × 4 = 4 × 4 = 16

Кста­ти, если на айфоне запи­сать это выра­же­ние точ­но так же, как в усло­вии, теле­фон тоже даст пра­виль­ный ответ.

А инже­нер­ный каль­ку­ля­тор на Windows 10 так запи­сы­вать не уме­ет и про­пус­ка­ет первую двойку-множитель. Попро­буй­те сами 🙂

Тут в тред вры­ва­ют­ся мате­ма­ти­ки и с воп­ля­ми «Шустеф!» пояс­ня­ют кри­ком:

«В АЛГЕБРЕ ТОТ ЖЕ ПОРЯДОК ДЕЙСТВИЙ, ЧТО И В АРИФМЕТИКЕ, но есть исклю­че­ние: в алгеб­ре знак умно­же­ния свя­зы­ва­ет ком­по­нен­ты дей­ствия силь­нее, чем знак деле­ния, поэто­му знак умно­же­ния опус­ка­ет­ся. Напри­мер, a:b·c= a: (b·c)».

Этот текст из «Мето­ди­ки пре­по­да­ва­ния алгеб­ры», курс лек­ций, Шустеф М. Ф., 1967 год. (стр. 43)

Раз в спор­ном при­ме­ре знак умно­же­ния опу­щен, то спор­ный при­мер алгеб­ра­и­че­ский, а зна­чит, сна­ча­ла умно­жа­ем 2 на 4, а потом 8 делим на 8!

А вот как на это отве­ча­ют те, кто дей­стви­тель­но в теме и не ленит­ся пол­но­стью посмот­реть пер­во­ис­точ­ник:

«Для устра­не­ния недо­ра­зу­ме­ний В. Л. Гон­ча­ров ука­зы­ва­ет, что пред­по­чти­тель­нее поль­зо­вать­ся в каче­стве зна­ка деле­ния чер­той и ста­вить скоб­ки [87]. П. С. Алек­сан­дров и А. Н. Кол­мо­го­ров [59] пред­ло­жи­ли изме­нить поря­док дей­ствий в ариф­ме­ти­ке и решать, напри­мер, так: 80:20×2=80:40=2 вме­сто обыч­но­го: 80:20×2=4×2=8. Одна­ко это пред­ло­же­ние не нашло под­держ­ки».

Если апел­ли­ро­вать к Фри­де Мак­совне Шустеф, то выхо­дит, что:

Самое инте­рес­ное, что даль­ше в при­ме­рах Фри­да Мак­сов­на поль­зу­ет­ся как раз пра­виль­ным поряд­ком дей­ствий, объ­яс­няя реше­ние. Даже там, где есть умно­же­ние на скоб­ку с опу­щен­ным зна­ком, она выпол­ня­ет дей­ствия сле­ва напра­во.

На данном уроке подробно рассмотрен порядок выполнения арифметических действий в выражениях без скобок и со скобками. Учащимся предоставляется возможность в ходе выполнения заданий определить, зависит ли значение выражений от порядка выполнения арифметических действий, узнать отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренироваться в применении изученного правила, найти и исправить ошибки, допущенные при определении порядка действий.

Наблюдение за изменением значения выражения от порядка выполнения арифметических действий

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя.

Порядок выполнения арифметических действий в выражениях без скобок

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени.

Выполняем действия слева направо по порядку (рис. 2).

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления – это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

Порядок выполнения арифметических действий в выражениях со скобками

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

Вычислим значение выражения.

Правило выполнения арифметических действий в выражениях без скобок и со скобками

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Рис. 4. Порядок действий

Выполнение тренировочных заданий на изученное правило

Рассмотрим выражения, установим порядок действий и выполним вычисления.

Будем действовать по правилу. В выражении 43 – (20 – 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 – (20 – 7) +15 =43 – 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 – 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 – 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие – умножение, второе – деление, третье – вычитание.

Узнаем, правильно ли определен порядок действий в следующих выражениях.

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие – деление, второе – умножение. Третье действие должно быть сложение, четвертое – вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – деление, третье – сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – умножение, третье – вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого – вычитание.

Проверим себя (рис. 6).

В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.

Список литературы

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

2. Определи, в каком выражении такой порядок выполнения действий:

1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта. В примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или делениеВ примере что сначала делать умножение или деление. Смотреть фото В примере что сначала делать умножение или деление. Смотреть картинку В примере что сначала делать умножение или деление. Картинка про В примере что сначала делать умножение или деление. Фото В примере что сначала делать умножение или деление

Если несколько действий выполняются одно за другим, то результат, зависит от порядка действий.

Если производить действия в порядке их записи.

Если же сначала сложить 2 и 1 и вычесть полученную сумму из 4, то получим 1.

Чтобы указать, в каком порядке нужно выполнять действия (в тех случаях, когда результат зависит от порядка действий), пользуются скобками. Действия, заключенные в скобки, выполняются раньше других. В нашем случае:

Чтобы не загромождать чрезмерно записи, условились не писать скобок:

При вычислении таких выражений, которые либо совсем не содержат скобок, либо содержат лишь такие скобки, внутри которых больше нет скобок, нужно производить действия в таком порядке:

Сначала выполняем умножения:
2 · 5 = 10
3 · 3 = 9
затем вычитание:
10 – 9 = 1

Сначала выполняем действия в скобках:
16 – 2 · 7 + 4 = 16 – 14 + 4 = 6
2 + 5 = 7

Теперь выполняем остающиеся действия:
9 + 16 : 4 – 2 · 6 + 6 · 7 =
= 9 + 4 – 12 + 42 =
= 43

Часто для указания порядка действий необходимо заключать в скобки такие выражения, которые сами уже содержат скобки. Тогда, кроме обычных (круглых), применяют скобки иной формы, например квадратные []. Если в скобки нужно заключить выражение, содержащее уже круглые и квадратные скобки, пользуются фигурными скобками <>. Вычисление подобных выражений производится в следующем порядке: сначала производятся вычисления внутри всех круглых скобок в вышеуказанной последовательности. Затем — вычисления внутри всех квадратных скобок по тем же правилам. Далее — вычисления внутри фигурных скобок и т.д.. Наконец, выполняются остающиеся действия.

Выполняем действия в круглых скобках, имеем:
8 – 6 = 2
10 – 2 · 3 = 10 – 6 = 4

действия в квадратных скобках дают:
14 – 3 · 2 = 8

выполняя остающиеся действия скобках находим:
5 + 2 · 8 + 32 : 4 = 5 + 16 + 8 = 29

Порядок действий:
30 – 20 = 10
35 – 10 = 25
100 – 25 = 75
75 · 2 = 150

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *