В основе работы электрогенератора на гэс что лежит действие
Контрольная работа по физике на тему «Входной контроль» (9 класс)
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
ВХОДНАЯ КОНТРОЛЬНАЯ РАБОТА
Выберите один верный ответ
1. Тепловое расширение и электризация — это
2. Энергия передается через слой неподвижного вещества
при теплообмене теплопроводностью
при теплообмене излучением
при теплообмене конвекцией
при любом способе теплообмена
З. На каком из транспортных средств используется двигатель внутреннего сгорания?
4. При электризации тела заряжаются всегда разноименно потому, что.
электроны имеются в любых атомах
электрон гораздо легче ядра атома
одноименно заряженные тела отталкиваются
только электроны могут переходить к другому телу
5. Сила тока на участке цепи
1) прямо пропорциональна сопротивлению этого участка
2) обратно пропорциональна напряжению, приложенному к участку
обратно пропорциональна сопротивлению этого участка
прямо пропорциональна длине этого участка
6. Два электроприбора: лампу и выключатель электрик укрепил на стене. Выберите верное утверждение.
1 ) электроприборы соединены последовательно
2) сила тока в этих электроприборах не одинакова 3) напряжение на этих электроприборах одинаково 4) электроприборы соединены параллельно
7. В основе работы электрогенератора на ГЭС лежит
действие магнитного поля на проводник с электрическим током
явление электромагнитной индукции
тепловое действие тока
8. К каждой позиции первого столбца таблицы померите позицию второго столбца так, чтобы получились верные утверждения.
Превращение жидкости в па называют.
Превращение пара в жидкость называют.
Превращение жидкости в тве дое тело называют.
Превращеше твердого тела в жидкость называют.
Превращение твердого тела в газообразное состояние называют.
Прочитайте текст и ответьте на вопросы 9А — 9В
Каждый из нас хоть один раз пользовался фонариком. И сталкивался с проблемой как, например, сели или потекли батарейки в самый неподходящий момент. Еще неприятнее, если вы отдыхаете на природе, а батарейки пришли в негодность.
Динамо-машина или динамо — это устаревшее название генератора, служащего для выработки постоянного электрического тока. Динамо-машина состоит из катушки с проводом, вращающейся в магнитном поле, создаваемом статором. Энергия вращения преобразуется в переменный ток.
При длительном пребывании на отдыхе, вдали от цивилизации, вы можете зарядить свой мобильный телефон, послушать радио, используя функции динамо-фонарика. Данное устройство не приносит никакого вреда ни человеку, ни природе.
9 А. Аккумулятор — это устройство для
создания электрического тока
преобразования переменного тока в постоянный ток
накопления электрической энергии
преобразования переменного тока в постоянный ток
9 Б. Действие динамо-машины основано на применении явления
химического действия тока
9 В. В динамо-машине происходят преобразования энергии
механической в электрическую
механической в тепловую
тепловой в электрическую
электрической в механическую
Используя данные рисунка, определите сопротивление включенной части реостата.
На рисунке представлен график изменения температуры олова массой 2 кг от времени. Какие процессы происходили с веществом? Какое количество теплоты потребовалось или выделилось в результате всех процессов?
Выберите один верный ответ
1. Термометр и вольтметр — это
2. Энергия передается струями вещества
при теплообмене теплопроводностью
при теплообмене излучением
при теплообмене конвекцией
при любом способе теплообмена
З. Примером теплового двигателя может служить.
4. При электризации масса тел почти не изменяется потому, что.
1 ) электроны имеются в любых атомах
электрон гораздо легче ядра атома
одноименно заряженные тела отталкиваются
только электроны могут переходить к другому телу
5. Увеличение в металлическом проводнике силы тока приводит
к уменьшению напряжения на его концах
к увеличению сопротивления проводника
к увеличению напряжения на его концах
к уменьшению сопротивления проводника
Три электроприбора: утюг, пылесос и лампу включили в розетку через «тройник». Выберите верное утверждение
сила тока во всех электроприборах одинакова
электроприборы соединены последовательно
напряжение на всех электроприборах одинаково
сопротивление всех электроприборов одинаково
В воде рек и озер кажущаяся глубина меньше действительной примерно на 30%. Это происходит из-за
прямолинейного распространении света
К каждой позиции первого столбца таблицы померите позицию второго столбца так, чтобы получились верные утверждения.
При плавлении кристаллического тела.
При кипении жидкости.
При кристаллизации жидкости.
температура не изменяется
При нагревании тела.
температура сначала повышается, затем понижается
При охлаждении тела.
температура сначала понижается, затем повышается
Прочитайте текст и ответьте на вопросы 9А — 9В
Задавшись целью построить экономичный двигатель, Рудольф Дизель предпринял несколько попыток. В конце 1896г. был построен окончательный, четвертый вариант опытного двигателя.
Этот двигатель расходовал 0,24кг на 1 л. с. в час керосина, КПД его составил 0,26. Таких показателей не имел еще ни один из существовавших до того времени двигателей.
Работа двигателя осуществлялась за четыре такта. За первый ход поршня в цилиндр всасывался воздух, за второй он сжимался приблизительно до 3,5—4 МПа, нагреваясь при этом примерно до 600 0 С. В конце второго хода поршня в среду сжатого (разогретого сжатием) воздуха через форсунку начинало вводиться жидкое топливо (при испытаниях использовался керосин). Попадая в среду разогретого воздуха, топливо самовоспламенялось и горело почти при постоянном давлении по мере подачи его в цилиндр, продолжавшейся примерно половину третьего хода поршня. На остальной части хода поршня происходило расширение продуктов сгорания. За четвертый ход поршня осуществляется выпуск отработавших продуктов сгорания в атмосферу.
В 1897 г. на заводе в Аугсбурге был создан первый практический дизельный двигатель.
9 А. Конструктивным отличием двигателя Дизеля от двигателя
Отго (двигателя внутреннего сгорания) является
наличие второго поршня
большее число тактов в цикле
9 Б. В опытном двигателе Дизеля на каждые 100 Дж использованной энергии топлива полезной работы приходится
9 В. В двигателе Дизеля происходят преобразования энергии
механической в электрическую
механической в тепловую
тепловой в электрическую
4) тепловой в механическую
Используя данные рисунка, определите сопротивление резистора.
На рисунке представлен график изменения температуры свинца массой З кг от времени. Какие процессы происходили с веществом? Какое количество теплоты потребовалось или выделилось в результате всех процессов?
Устройство и принцип работы гидроэлектростанции
С давних времен люди пользовались движущей силой воды. Мололи муку на мельницах, колеса которых приводились в движение потоками воды, сплавляли тяжелые стволы деревьев вниз по течению, в общем использовали гидроэнергию для решения самых разных задач, включая промышленные.
Машинное отделение гидроэлектростанции «Hoover Dam» (Аризона, США)
В конце 19 века, с началом электрификации городов, гидроэлектростанции начали очень резко завоевывать популярность в мире. В 1878 году в Англии появилась первая в мире гидроэлектростанция, которая питала тогда всего одну дуговую лампу в картинной галерее изобретателя Уильяма Армстронга… А к 1889 году только в Соединенных Штатах гидроэлектростанций насчитывалось уже 200 штук.
Одним из важнейших шагов в освоении гидроэнергетики стало сооружение в 1930-е годы в США Плотины Гувера. Что касается России, то здесь уже в 1892 году, в Рудном Алтае на реке Березовка, была построена первая четырехтурбинная гидроэлектростанция мощностью 200 кВт, призванная обеспечить электричеством шахтный водоотлив Зыряновского рудника. Так, с освоением человечеством электричества, гидроэлектростанции ознаменовали собой стремительный ход промышленного прогресса.
Знаменитые исторические ГЭС:
Принцип работы ГЭС
Сегодня современные гидроэлектростанции — это огромные сооружения на гигаватты установленной мощности. Однако принцип работы любой ГЭС остается в целом достаточно простым, и везде почти полностью одинаковым. Напор воды, направленный на лопасти гидротурбины, приводит ее во вращение, а гидротурбина в свою очередь, будучи соединена с генератором, вращает генератор. Генератор вырабатывает электроэнергию, которая и подается на трансформаторную станцию, а затем и на ЛЭП.
В машинном зале гидроэлектростанции установлены гидроагрегаты, которые преобразуют энергию потока воды в энергию электрическую, а непосредственно в здании гидроэлектростанции располагаются все необходимые распределительные устройства, а также устройства управления и контроля работы ГЭС.
Наиболее распространенные плотинные ГЭС имеют в своей основе плотину, перегораживающую русло реки. За плотиной вода поднимается, накапливается, создавая своего рода водяной столб, обеспечивающий давление и напор. Чем выше плотина — тем сильнее напор. Самая высокая в мире плотина имеет высоту 305 метров, это плотина на Цзиньпинской ГЭС мощностью 3,6 ГВт, что на реке Ялунцзян в западной части провинции Сычуань на Юго-Западне Китая.
Гидростанции, использующие энергию воды, бывают двух типов. Если река имеет небольшое падение, но относительно многоводна, то при помощи плотины, перегораживающей реку, создают достаточную разность уровней воды.
Над плотиной образуется водохранилище, обеспечивающее равномерную работу станции в течение года. У берега ниже плотины, в непосредственной близости к ней устанавливается водяная турбина, соединенная с электрическим генератором (приплотинная станция). Если река судоходна, то у противоположного берега делается шлюз для пропуска судов.
Если же река не очень многоводна, но имеет большое падение и бурное течение (например, горные реки), то часть воды отводится по специальному каналу, имеющему гораздо меньший уклон, чем река. Канал этот иногда имеет протяженность в несколько километров. Иногда условия местности вынуждают заменить канал тоннелем (для мощных станций). Таким образом создается значительная разность уровней между выходным отверстием канала и нижним течением реки.
У конца канала вода поступает в трубу с крутым наклоном, у нижнего конца которой располагается гидротурбина с генератором. Благодаря значительной разности уровней вода приобретает большую кинетическую энергию, достаточную для питания станции (деривационные станции).
Здание Жигулевской ГЭС с верхнего бьефа
Принципиальная схема электрических соединений Жигулёвской ГЭС
Разрез по зданию Жигулёвской ГЭС. 1 —выводы на открытое распределительное устройство 400 кВ; 2 —этаж кабелей 220 и 110 кВ; 3 — этаж электрооборудования, 4 — аппаратура охлаждения трансформаторов; 5 — шинопроводы соединяющие обмотки генераторного напряжения трансформаторов в «треугольники»; 6 — кран грузоподъемностью 2X125 т; 7 — кран грузоподъемностью 30 т; 8 — кран грузоподъемностью 2X125 т ; 9 — сороудерживающее сооружение; 10 — кран грузоподъемностью 2X125 т; 11 — металлический шпунт; 12 — кран грузоподъемностью 2X125 т.
Жигулёвская ГЭС — вторая по мощности гидроэлектростанция в Европе, в 1957—1960 годах была крупнейшей ГЭС в мире.
Первый агрегат станции мощностью 105 тыс. кет был введен в эксплуатацию в конце 1955 г., в течение 1956 г. было введено в эксплуатацию еще 11 агрегатов и за 10 мес. 1957 г. — остальные восемь агрегатов.
На ГЭС установлено и работает большое количество нового, в ряде случаев уникального, энергетического оборудования.
Виды ГЭС и их устройства
Кроме плотины гидроэлектростанция включает в себя здание и распределительное устройство. Основное оборудование ГЭС находится в здании, здесь установлены турбины и генераторы. Кроме плотины и здания, в ГЭС могут наличествовать шлюзы, водосбросные устройства, рыбоходы и судоподъемники.
Каждая ГЭС представляет собой уникальное сооружение, поэтому главная отличительная черта ГЭС от других типов промышленных электростанций — это их индивидуальность. Кстати, самое большое в мире водохранилище находится в Гане, это водохранилище Акосомбо на реке Вольта. Оно занимает 8500 квадратных километров, что составляет 3,6% площади всей страны.
Если по ходу русла реки имеется значительный уклон, то возводят деривационную ГЭС. Здесь нет необходимости в строительстве большого плотинного водохранилища, вместо этого вода только направляется через специально возводимые водоводные каналы или тоннели прямо к зданию электростанции.
Иногда на деривационных ГЭС устраивают небольшие бассейны суточного регулирования, позволяющие управлять напором, и таким образом влиять на количество вырабатываемой электроэнергии в зависимости от загруженности электросети.
Гидроаккумулирующие электростанции (ГАЭС) — особый вид гидроэлектростанций. Здесь сама станция предназначена для того, чтобы сгладить суточные перепады и пиковые нагрузки на энергосистему, и тем самым повысить надежность работы электросети.
Такая станция способна работать как в генераторном режиме, так и в накопительном, когда насосы закачивают воду в верхний бьеф из нижнего бьефа. Бьефом, в данном контексте, называется объект типа бассейна, являющийся частью водохранилища, и примыкающий к гидроэлектростанции. Верхний бьеф располагается по течению выше, нижний — ниже по течению.
Примером ГАЭС может служить водохранилище Таум Саук в Миссури, возведенное в 80 километрах от Миссисипи, вместимостью 5,55 млрд. литров, позволяющее энергосистеме обеспечить пиковую мощность в 440 МВт.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Гидроэлектростанция (ГЭС)
Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока.
На высоконапорных ГЭС применяются ковшовые и радиально-осевые турбины с металлическими спиральными камерами.
На средненапорных ГЭС применяются поворотнолопастные и радиально-осевые турбины.
На низконапорных ГЭС применяются поворотнолопастные турбины в железобетонных камерах.
ГЭС делятся в зависимости от принципа использования природных ресурсов:
На русловых ГЭС напор воды создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку.
Такие гидроэлектростанции на горных реках, в местах, где русло реки более узкое, сжатое.
Вода подается непосредственно к турбинам ГЭС.
На приплотинных ГЭС напор воды также создается при полном перегораживании плотины, здание ГЭС располагается за плотиной, в нижней её части.
Вода, имеющая большее давление, нежели на русловых ГЭС, подводится к турбинам через специальные напорные тоннели.
На деривационных ГЭС необходимая концентрация воды посредством деривации.
Вода подводится непосредственно к зданию ГЭС.
На гидроаккумулирующих ГЭС (обозначаемых ГАЭС) вырабатываемая электроэнергия аккумулируется и используется в моменты пиковых нагрузок.
В течение времени не пиковой нагрузки агрегаты ГАЭС работают как насосы от внешних источников энергии, когда её стоимость не высока (например, ночью), и закачивают воду в специально оборудованные верхние бассейны.
В моменты пиковых нагрузок вода из них поступает в напорный трубопровод и приводит в действие турбины.
Для производства электрической энергии используются возобновляемые природные ресурсы, поэтому конечная стоимость получаемой электроэнергии ниже, чем при использовании других видов электростанций, и нет вредных выбросов в атмосферу.
Однако построить ГЭС можно только там, где можно создать большой напор воды.
Создаваемые при этом водохранилища обычно заливают большую территорию земли, иногда это приводит к нарушению экологического равновесия.
Гидроэлектростанции принцип работы
ГЭС: принцип работы
Практически каждый представляет себе предназначение гидроэлектростанций, однако лишь немногие достоверно понимают принцип работы ГЭС. Основная загадка для людей – каким образом вся эта огромная плотина без какого-либо топлива генерирует электрическую энергию. Об этом и поговорим.
Что такое ГЭС?
Гидроэлектростанция – это сложный комплекс, состоящий из разных сооружений и специального оборудования. Возводятся гидроэлектростанции на реках, где есть постоянный приток воды для наполнения плотины и водохранилища. Подобные сооружения (плотины), создаваемые при постройке гидроэлектростанции, необходимы для концентрации постоянного потока воды, который при помощи специального оборудования для ГЭС преобразовывается в электрическую энергию.
Отметим, что важную роль в плане эффективности работы ГЭС играет выбор места для строительства. Необходимо наличие двух условий: гарантированная неиссякаемая обеспеченность водой и высокий угол уклона реки.
Принцип работы ГЭС
Работа гидроэлектростанции достаточно проста. Возведенные гидротехнические сооружения обеспечивают стабильный напор воды, который поступает на лопасти турбины. Напор приводит турбину в движение, в результате чего она вращает генераторы. Последние и вырабатывают электроэнергию, которую затем по линиям высоковольтных передач доставляют потребителю.
Основная сложность подобного сооружения – обеспечение постоянного напора воды, что достигается путем возведения плотины. Благодаря ей большой объем воды концентрируется в одном месте. В некоторых случаях используют естественный ток воды, а иногда плотину и деривацию (естественное течение) применяют совместно.
В самом здании находится оборудование для ГЭС, основная задача которого заключается в преобразование механической энергии движения воды в электрическую. Эта задача возложена на генератор. Также используется и дополнительное оборудование для контроля работы станции, распределяющие устройства и трансформаторные станции.
Ниже на картинке показана принципиальная схема ГЭС.
Как видите, поток воды вращает турбину генератора, тот вырабатывает энергию, подает ее на трансформатор для преобразования, после чего она транспортируется по ЛЭП к поставщику.
Мощности
Есть разные гидроэлектростанции, которые можно поделить по вырабатываемой мощности:
Мощность ГЭС зависит от в первую очередь от потока воды и КПД самого генератора, который на ней применяется. Но даже самая эффективная установка не сможет производить большие объемы электроэнергии при слабом напоре воды. Также стоит учитывать, что мощность гидроэлектростанции не является постоянной. В силу естественных природных причин уровень воды в дамбе может увеличиваться или уменьшаться. Все это оказывает влияние на объемы производимой электроэнергии.
Роль плотины
Самый сложный, большой и вообще основной элемент любой ГЭС – плотина. Невозможно понять, что такое ГЭС, не разобравшись в сути работы плотины. Они представляют собой огромные перемычки, которые удерживают водный поток. В зависимости от конструкции они могут отличаться: есть гравитационные, арочные и другие сооружения, но их цель всегда одна – удержание большого объема воды. Именно благодаря плотине удается концентрировать стабильный и мощный поток воды, направляя его на лопасти турбины, которая вращает генератор. Он, в свою очередь, и производит электрическую энергию.
Технологии
Как мы уже знаем, принцип работы ГЭС основан на использовании механический энергии падающей воды, которая в дальнейшем с помощью турбины и генератора преобразуется в электрическую. Сами турбины могут быть установлены либо в дамбе, либо возле нее. В некоторых случаях применяют трубопровод, через который вода, находящаяся ниже уровня дамбы, проходит под высоким давлением.
Индикаторов мощности любой ГЭС несколько: расход воды и гидростатический напор. Последний показатель определяется разницей высот между начальной и конечной точкой свободного падения воды. При создании проекта станции на одном из этих показателей основывают всю конструкцию.
Известные сегодня технологии производства электричества позволяют получать высокий КПД при преобразовании механической энергии в электрическую. Иногда он в несколько раз превышает аналогичные показатели тепловых электростанций. Столь высокая эффективность достигается за счет применяемого на гидроэлектростанции оборудования. Оно надежное и относительно простое в использовании. К тому же за счет отсутствия топлива и выделения большого количества тепловой энергии срок службы подобного оборудования достаточно большой. Поломки здесь случаются крайне редко. Считается, что минимальный срок службы генераторных установок и вообще сооружений – около 50 лет. Хотя на самом деле даже сегодня вполне успешно функционируют гидроэлектростанции, которые были построены в тридцатых годах прошлого века.
Гидроэлектростанции России
На сегодняшний день на территории России действует около 100 гидроэлектростанций. Конечно, их мощность разная, и большая часть – это станции с установленной мощностью до 10 МВт. Есть также такие станции, как Пироговская или Акуловская, которые были введены в эксплуатацию еще в 1937 году, а их мощность составляет всего 0.28 МВт.
Самыми крупными являются Саяно-Шушенская и Красноярская ГЭС с мощностью 6400 и 6000 МВт соответственно. За ними следуют станции:
Несмотря на огромное количество подобных станций, они вырабатывают всего 47700 МВт, что равно 20% от суммарного объема всей производимой энергии в России.
В заключение
Теперь вы понимаете принцип работы ГЭС, преобразовывающих механическую энергию потока воды в электрическую. Несмотря на достаточно простую идею получения энергии, комплекс оборудования и новые технологии делают подобные сооружения сложными. Впрочем, по сравнению с атомными электростанциями они действительно являются примитивными.
Принцип работы ГЭС Гидроэлектростанции
Принцип работы ГЭСГидроэлектростанции давно стали одним из символов промышленного прогресса. Их изображают на банкнотах и марках, посвящают им поэмы, а страны соревнуются в сооружении все более и более мощных «гидрогигантов». Однако несмотря на монументальность этих сооружений, принцип работ любой ГЭС довольно прост.
Вода под напором поступает на лопасти турбины гидроэлектростанции, которая в свою очередь приводит в действие генераторы, вырабатывающие электричество. Мощность ГЭС зависит от напора и количества воды, проходящей через гидроагрегаты.
Собственно, главной задачей в строительстве гидроэлектростанции является создание напора воды. По принципу решения этой проблемы ГЭС делятся на плотинные и деривационные. Иногда также встречаются ГЭС смешанного (плотинно-деривационного) типа.
Деривация – отвод воды от русла реки по каналу или тоннелю.
При наиболее распространенном варианте строительства реку перегораживают плотиной, которая поднимает уровень воды, создавая необходимый напор. Причем его величина напрямую зависит от высоты сооружения.
Деривационный канал Майкопской ГЭС
Самую высокую в мире плотину (305 метров) имеет Цзиньпинская ГЭС, расположенная на реке Ялунцзян.
Помимо плотины (или нескольких) такая ГЭС состоит из здания гидроэлектростанции и распределительного устройства. В здании ГЭС располагается все основное оборудование станции – турбины и генераторы. Также ГЭС могут включать в себя дополнительные сооружения, например, водосбросные устройства, шлюзы, судоподъемники или рыбоходы.
Саяно-Шушенская ГЭС – типичная станция плотинного типа
Деривационные ГЭС обычно строят в тех местах, где река имеет довольно большой уклон. Таким образом, отпадает необходимость в сооружении водохранилища, а вода через специальные водоводы (тоннели или каналы) попадает прямиком к зданию ГЭС. Впрочем, даже на деривационных ГЭС нередко стараются возводить небольшие водохранилища (бассейны суточного регулирования), чтобы иметь определенные возможности по регулированию стока и соответственно изменять выработку электроэнергии в зависимости от потребностей энергосистемы.
Видео не поддерживается на вашем устройстве
Схема работы Майкопской ГЭС (деривационной)
Это интересно: водохранилище Вольта в Гане – крупнейшее в мире. Его площадь – 8500 квадратных километров, что составляет 3,6% территории страны.
Отдельно можно выделить гидроаккумулирующие электростанции (ГАЭС). Их используют для сглаживания суточных перепадов нагрузки энергосистемы, чтобы обеспечить надежность ее работы. В отличие от обычной гидроэлектростанции ГАЭС работают не только в турбинном, но и в насосном режиме, закачивая воду из нижнего бьефа в верхний.
Бьеф – часть водохранилища, реки, канала или другого водного объекта, примыкающая к гидротехническому сооружению. Различают верхний бьеф, располагаемый выше по течению, и нижний, располагаемый по другую сторону гидротехнического сооружения. Верхним бьефом часто является водохранилище.
Пожалуй, самой необычной ГАЭС в мире является Том Сок в Лестервиле, штат Миссури. Ее уникальность в том, что она расположена в 80 км от ближайшего источника воды – реки Миссисипи!
Верхний бассейн ГАЭС Том Сок в США
Одним из главных отличий гидроэлектростанций от других энергетических сооружений является их индивидуальность. Если тепловые или атомные станции строят по давно отлаженным схемам из одинаковых типовых блоков, то каждая ГЭС является уникальной в своем роде.
В 2005 произошла авария, излилось 4 миллиона кубических метров воды за двенадцать минут, тем самым вызвав 7 метровый гребень воды по Черной Реке.Привет! Приглашаю вас в сообщество Лига образования (http://pikabu.ru/community/education). Ваши посты прекрасно там будут смотреться ;)Всегда интересно было, что с рыбой происходит при прохождении в потоке воды через турбину. Или перед водоводом фильтры какие-то стоят?
Принцип работы и классификация гидроэлектростанций
Гидроэлектрические станции для выработки электрической энергии используют энергию падающей воды. Речная вода из-за разности уровней непрерывным потоком перемещается от истока к устью. Если построить такое сооружение как плотина, которая перекроет движение воды реки, то уровень воды перед плотиной будет намного больше чем после нее.
Разность между верхним и нижним уровнем (бьефом) называют напором, или еще могут называть высотой падения. Принцип работы гидроэлектростанции довольно прост – на уровне нижнего бьефа устанавливают турбину и направляют на ее лопатки поток воды с верхнего бьефа. Под действием силы падающего водяного потока турбина начнет вращаться, приводя в движение ротор электрического генератора, с которым связана механически. Мощность гидроэлектростанций напрямую зависит от величины напора, а также от количества воды, которая пройдет через все турбины гидроэлектрической станции. Коэффициент полезного действия (КПД) гидроэлектрических станций значительно выше тепловых и составляет порядка 85%.
По характеру воздвигнутых сооружений гидроэлектростанции разделяют на:
Крупные гидроэлектростанции не работают изолировано от других электрических станций. Наиболее часто применяют работу гидроэлектростанций параллельно с тепловыми, тем самым создавая оптимальный режим потребления топлива ТЭС и гидроэнергии ГЭС. Это процесс заключатся в следующем – зимой, когда уровень воды в реках идет на спад и, соответственно, ГЭС не могут работать на полную мощность, тогда часть нагрузки ГЭС берет на себя ТЭС, а летом, когда уровень воды в реках увеличивается, ГЭС начинают работать на полную мощность, а ТЭС снижает выработок электрической энергии, снижая тем самым потребления органического топлива. Таким образом происходит экономия средств на твердом топливе, что снижает стоимость электрической энергии.
Гидроэлектростанции имеют ряд преимуществ над тепловыми электростанциями, а именно:
Главным недостатком ГЭС является их длительное сооружения и очень высокая стоимость.
ГЭС: принцип работы, схема, оборудование, мощность
ГЭС как основной и постоянный источник электроэнергии. Лаконичное объяснение принципа работы ГЭС и их схемы, разработка собственной мини ГЭС. Отличие ГЭС от ГАЭС.
Содержание статьи
ГЭС ее понятие и виды гидроэлектростанций
ГЭС отличаются вырабатываемой мощностью, поэтому выделяют три вида ГЭС по мощности:
Также ГЭС отличают по максимальному количеству использования воды:
Существует и отдельный тип ГЭС, так называемая ГАЭС, что расшифровывается как гидроаккумулирующая электростанция.
Здание ГЭС Сооружение, подземная выработка или помещение в плотине, в которомустанавливается гидросиловое электротехническое
Схемы различных видов гидроэлектростанций
Гидроэлектрические станции делятся также в зависимости от принципа использования природных ресурсов, можно выделить следующие ГЭС:
Принцип работы гидроэлектростанции
Принцип действия ГЭС дотстаточно прост. Вода под давлением, большим напором попадает, а чаще падает, на лопасти гидротурбины, которые, в свою очередь вращают ротор генератора, который уже вырабатывает электричество. Для достяжения необходимого напора воды создаются плотины, и как следствие, образуется концентрация реки в определенном месте. Также может использоваться и деривация- отвод воды от главного русла реки в сторону по каналу. Есть случаи использования двух методов создания напора одновременно.
Принцип работы гидроаккумулирующей электростанции отличен от обычной, привычной нас ГЭС. У ГАЭС существуют два периода работы, такие как турбинный и насосный. Во время насосного режима ГАЭС потребляет электроэнергию, которая подаётся от тепловых электростанций во время минимальной нагрузки (примерно 7-12 часов в сутки). В этом режиме на ГАЭС происходит перекачка воды в верхний аккумулирующий бассейн из нижнего питающего водохранилища (станция запасает энергию). В турбинном режиме ГАЭС отдаёт накопленную энергию обратно в сеть во время максимальной нагрузки на неё (2-6 часов в сутки). Вода в этот период из верхнего бассейна направляется обратно в питающее водохранилище, вращая при этом турбину генератора.
Оборудование гидроэлектростанций
Гидросиловое оборудование включает в себя турбины, и гидрогенераторы. В состав данной группы кроме перечисленного входят устройства, связанные с подачей воды на турбину и регулированием ее количества.
Механическое оборудование включает в себя гидротехнические затворы, подъемно-транспортные механизмы, сороудерживающие решетки и т. п.
Вспомогательное оборудование состоит из системы технического водоснабжения, пневматического хозяйства, масляного хозяйства, противопожарных и санитарно-технических устройств. Из перечисленного оборудования далее рассмотрим более подробно конструкции турбин.
Мощность гидроэлектростанций
Режим работы ГЭС в энергосистеме зависит от расхода воды, напора, объема водохранилища, потребностей энергосистемы, ограничений по верхнему и нижнему бьефу. Агрегаты ГЭС по техническим условиям могут быстро включаться, набирать нагрузку и останавливаться. Причем включение и выключение агрегатов, регулирование нагрузки могут происходить автоматически при изменении частоты электрического тока в энергосистеме. Для включения остановленного агрегата и набора полной нагрузки обычно требуется всего 1—2 мин.
Мощность на валу гидротурбины можно определить по формуле указанной справа, где :
Для расчета мощности гидроэлектростанции нужно значение напора воды,
который можно расчитать по следующей формуле, где:
КПД современных турбин может достигать значения 0,95.
Крупнейшие ГЭС России
Подведя итоги рассмотрим на примере пару из крупнейших гидроэлектростанций в России.
В заключение можно сказать, что гидроэлектростанции являются менее воздействующими на окружающую среду, нежели други види электростанций.
Видео по теме
Источники
Производство электроэнергии на ГЭС: просто о сложном
Принцип работы гидроэлектростанции состоит в том, что вода падает на лопасти турбины и вращает их. Далее энергия передается генератору, который за счет явления электромагнитной индукции генерирует ток. На ГЭС производят порядка 15% всей электроэнергии в мире.
Гидроэлектростанции называют сокращенно ГЭС. Важно не путать их с ГРЭС – государственными районными электростанциями, работающими за счет сжигания топлива (угля, торфа или иного). Сокращение ГРЭС относится к временам СССР, сейчас его практически не используют.
Как производят э/э на ГЭС, ясно уже из названия – с помощью энергии гидры – воды.
Около 15% всего электричества в мире производится именно на гидроэлектростанциях.
Устройство
Общий принцип работы прост: для вращения турбины используется энергия воды. Чем больше турбина, тем сильнее должен быть напор воды. Отчасти он достигается перепадом высоты.
Фото: схема работы ГЭС
Чтобы обеспечить нужный перепад, строится плотина. Этим решается еще одна задача: создается водохранилище, запасы воды в котором позволяют не зависеть от колебаний объема реки в зависимости от времени года. Водохранилище перед плотиной называется верхним бьефом, вода, которая прошла через плотину, образует нижний бьеф. Разность высот между бьефами влияет на напор Н.
Комплекс сооружений ГЭС состоит из:
Фото: вид на Саяно-Шушенскую ГЭС сверху
Вода приводит в движение гидротурбины, которые вращают синхронные гидрогенераторы. Формула мощности проста: прямая зависимость от напора H и расхода жидкости Q: P = H*Q.
Получается, чем круче перепад высот и чем больше поток воды, тем мощнее станция.
Самая высокая в мире платина – 305 метров. Она находится на Цзиньпинской ГЭС на реке Ялунцзян в западной части провинции Сычуань на Юго-Западе Китая. Ее мощность − 3,6 ГВт.
Виды ГЭС, в зависимости от природных особенностей
Каждая гидроэлектростанция строится по собственному проекту. Она должна использовать энергию рек или приливов, которые в любой точке земного шара уникальны.
Водохранилища и плотины большой площади возводят там, где реки полноводны, но большого перепада высот нет и сложно создать достаточный напор.
В горных районах, где реки текут по большому уклону, строят так называемые деривационные ГЭС. Вода в них вначале отводится из русла, а затем направляется на турбины через специальные каналы или тоннели. Именно на станциях такого типа часто применяют систему, позволяющую работать в двух режимах: как производителю, так и потребителю электроэнергии.
Еще один тип ГЭС получил название ГАЭС – гидроаккумулирующие электростанции. Принцип устройства у них такой же, как у ГЭС, но в часы минимального потребления электрической энергии генераторы начинают работать как двигатели, а турбины − как насосы. Система перекачивает воду в верхний бьеф, где она накапливается, чтобы в нужный момент потечь вниз.
Водохранилище Акосомбо в Гане на реке Вольта – самое крупное в мире. Его площадь − 8500 км2 – 3,6% площади страны.
Еще один вид ГЭС – приливной. В этом случае используется энергия приливов, а станции называют ПЭС. При их строительстве перекрывают плотиной залив или устье реки.
Технология производства электроэнергии
Гидростанции во многом напоминают старинные водяные мельницы, только усилие передается не на жернова, которые перемалывают зерно в муку, а на генераторы э/э.
Происходит преобразование кинетической энергии (течения воды) в электрическую. Каким образом? Здесь надо вспомнить законы электромагнитной индукции: в проводнике, который движется перпендикулярно магнитному полю, появляется электрический ток.
Фото: Схема устройства гидрогенератора
Произведенное электричество подается на трансформаторы, которые преобразуют полученный электрический ток в высоковольтный. Он передается по линиям электропередач к распределительным станциям и через них – потребителям.
Фото: Выработка э/э на ГЭС
Управление
При всей простоте принципа работы сама гидроэлектростанция – стратегический объект, который нуждается в оперативном управлении. Необходимо не только отслеживать запасы воды в водохранилище, но и регулировать подачу потока на турбины, количество производимой электроэнергии.
Если река, на которой расположена станция, судоходная, то нужно пропускать суда через специальные шлюзы. Ошибки могут привести как к техногенным, так и к экологическим катастрофам.
Запуск агрегата ГЭС происходит не более чем за 50 секунд. КПД – 85-90%. На современных станциях предусмотрены системы аварийно-ремонтного затвора, установлены датчики для контроля важных параметров.
ГЭС в России и мире
Самый крупный российский холдинг, которому принадлежит более 70 объектов, – ПАО «РусГидро». По данным портала «Зачестныйбизнес», компания зарегистрирована в 2004 году с уставным капиталом 426 млрд рублей в Красноярске. На момент создания 100% акций принадлежало ОАО РАО «ЕЭС РОССИИ».
В дополнение: история успеха генерального директора «РусГидро» Николая Шульгинова.
В 2007 году более половины акций компании было передано в государственное управление.
Саяно-Шушенская им. П.С. Непорожнего
Хакасия, г. Саяногорск
Красноярский край, г. Кодинск
Источник: официальные сайты ГЭС
Есть еще Волжская, Жигулевская, Бурейская и другие менее мощные объекты. А на берегу Баренцева моря расположилась единственная в России приливная ЭС – Кислогубская.
Какими бы мощными ни были российские гидроэлектростанции, они уступают лидерам отрасли в мире.
Китай, провинция Хубэй
Источник: сайт «Альтернативная энергия»
Преимущество ГЭС в том, что стоимость произведенной на ней электроэнергии ощутимо ниже, по сравнению с энергией АЭС, ТЭС и других станций. Поэтому ее стараются использовать алюминиевые заводы – очень энергоемкие производства. Российская компания «РУСАЛ» даже объединилась с «РусГидро» для реализации проекта БЭМО, в котором на Богучанском алюминиевом заводе используется энергия местной гидроэлектростанции.
ГЭС – удивительный пример того, как простое технологическое решение может воплощаться в таких громадных масштабах.
Устройство и принцип работы гидроэлектростанции
Дать краткое описание общего устройства и принципа работы русловой ГЭС плотинного или приплотинного типа. Объяснить роль отдельных элементов ГЭС (турбины, спиральной камеры, отсасывающей трубы, направляющего аппарата и генератора) при преобразовании механической энергии воды в электрическую. Привести зависимости для определения энергетических показателей ГЭС и объяснить назначение в них расчетных параметров (напора, расхода воды и установленной мощности).
Практическая работа № 2
Установление типа и основных параметров турбины
По заданной мощности всей ГЭС (N,тыс. КВт ) и числу турбин (m) определить мощность на валу одной турбины (NТ, тыс. КВт). В зависимости от установленной мощности и заданной величины расчетного напора (Н, м) по сводному графику областей применения поворотно-лопастных и радиально-осевых турбин установить тип турбины. Определить приближенные значения диаметра рабочего колеса (Д1, м) частоты вращения (n, об/мин.) и высоты отсасывания (Нs, м). Окончательные значения диаметра рабочего колеса выбирают из ряда унифицированных значений согласно номенклатуре.
Если заданным значениям мощности и расчетного напора на сводном графике соответствуют два типа турбин, то в этом случае необходимо выполнить технико-экономическое сравнение. Объяснить физический смысл отдельных параметров и их влияние на энергетические показатели турбины.
СОДЕРЖАНИЕ КУРСОВОГО ПРОЕКТА И ПОРЯДОК ЕГО
ВЫПОЛНЕНИЯ
1. По типу турбины выбрать тип турбинной камеры и установить предварительные размеры ее входного сечения.
2. Произвести гидромеханический расчет турбинной камеры и вычертить в установленном масштабе продольный разрез входного сечения камеры и очертание в плане спирального канала.
3. Выбрать тип отсасывающей трубы, ее колена и определить их основные размеры. Продольный разрез и план отсасывающей трубы вычерчивается в таком же масштабе, как и турбинная камера.
4. Выбрать конструкцию и установить основные размеры здания ГЭС, предусмотрев, если это целесообразно, водосбросные отверстия в здании станции. Вычертить схему ГЭС и разрез по оси агрегата.
5. Выбрать тип и определить основные размеры затвора отсасывающей трубы. Составить схему конструкции затвора и выполнить расчет его основных элементов. Определить тяговое усилие для подъема затвора.
6. Распределить максимальный расчетный расход воды в реке по водопропускным сооружениям (ГЭС, плотина и судоходный шлюз). Расположить сооружения на плане реки. Построить разрезы по напорной линии и по оси судоходной трассы. Дать обоснование предлагаемой компоновки с указанием последовательности производства работ, при которой обеспечивается пропуск строительных расходов и непрерывность судоходства при сооружении гидроузла.
Оформление практических работ и курсового проекта
В состав практических работ входит пояснительная записка, которая должна содержать основные сведения по изучаемым вопросам, необходимые расчеты, схемы и эскизы. Курсовой проект представляется в виде пояснительной записки и одного листа чертежей. Материал записки должен соответствовать содержанию проекта и последовательности выполнения задания.
Лист чертежей должен содержать схемы устройства здания ГЭС и ее основных элементов (разрезы и планы здания, турбинной камеры, отсасывающей трубы) в масштабе 1:200 – 1:500, а также чертежи затвора отсасывающей трубы.
Пояснительная записка и чертежи выполняются в соответствии с требованиями ЕСКД.
ОБЩЕЕ УСТРОЙСТВО И ПРИНЦИП РАБОТЫ
ГИДРОЭЛЕКТРОСТАНЦИИ
Гидроэлектрическая станция (ГЭС) – гидротехническое сооружение, предназначенное для преобразования механической энергии потока воды в электрическую. ГЭС представляют собой комплекс сооружений, создающих подпор, подводящих к турбинам и отводящих от них воду, и здания, необходимого для размещения гидроагрегатов, механического и электрического оборудования.
Гидроэлектростанции используют механическую энергию водотоков и являются высокоэффективными источниками электроэнергии. В конструктивном отношении они имеют самое разнообразное устройство, определяемое величиной используемого напора, типом турбины, топографическими, гидрологическими, экологическими и другими условиями. Наиболее широкое применение получили русловые ГЭС (плотинные и приплотинные) и станции деривационного типа (напорные и безнапорные).
Основным элементом ГЭС является турбина, позволяющая преобразовать энергию водного потока в механическую энергию вращения рабочего колеса, которое приводит во вращение ротор генератора электрического тока.
Подача воды к турбине плотинной ГЭС (рис. 1) осуществляется по водоводу 2, называемому спиральной камерой, охватывающему по окружности рабочее колесо турбины 1, а отвод воды в нижний бьеф – по изогнутому водоводу – отсасывающей трубе 11.
Спиральная камера со стороны верхнего бьефа закрывается быстропадающими затворами 6, перед которыми располагаются сороудерживающие решетки с механизмами их очистки. Для ремонта и осмотра турбины спиральная камера со стороны верхнего бьефа и отсасывающая труба со стороны нижнего бьефа закрывается ремонтными затворами 7. Маневрирование затворами осуществляется при помощи специальных механизмов.
В машинном зале 9 для перемещения турбины и частей генераторов предусмотрены мостовые краны, передвигающиеся по путям на колоннах. Оборудование ГЭС и мастерские располагаются в соответствующих помещениях здания. Трансформаторные подстанции, передающие электрический ток в линию высокого напряжения, обычно размещают со стороны нижнего бьефа. Со стороны верхнего бьефа устроен мост 8 для проезда автомобильного и железнодорожного транспорта
Здание гидроэлектростанции проверяется на прочность и устойчивость, а подземный контур на фильтрационное воздействие грунтовых вод. Для увеличения пути фильтрационного потока со стороны верхнего бьефа устраивают железобетонный анкерный понур или предусматривают забивку шпунта 12. Для предотвращения размыва дна реки перед зданием ГЭС и в нижнем бьефе предусматривается крепление бетонными плитами.
Рис. 1. Общее устройство гидроэлектростанции:
1 – турбина; 2 – спиральная камера; 3 – генератор; 4 – вал турбины; 5 – возбудитель; 6 – паз рабочего затвора ГЭС; 7 – паз ремонтного затвора; 8 – мост; 9 – машинный зал; 10 – паз ремонтного затвора отсасывающей трубы; 11 – отсасывающая труба; 12 – шпунт
По длине здание ГЭС разделяется на отдельные блоки, в которых устроено определенное число агрегатов. При разбивке на блоки по соображениям простоты схемы электрических соединений чаще всего принимают четное число агрегатов. Наименьшее число агрегатов по условию обеспечения непрерывности работы ГЭС обычно принимается равным двум: предусматривается возможность ремонта одного из агрегатов.
Подвод воды к приплотинным и деривационным ГЭС осуществляется по напорным водоводам, устроенным в теле плотины или непосредственно на местности к каждому агрегату. Станции этих типов работают преимущественно при больших напорах, они используют значительную часть потенциальной энергии потока и отличаются от плотинных станций более высокими энергетическими показателями.
Источник энергии гидроэлектростанции
Гидроэлектрические станции или в гидроэлектростанциях используется потенциальная энергия воды рек и является на сегодняшний день распространенным средством производства электроэнергии из возобновляемых источников.
Гидроэлектростанции поставляют более чем 16% мировой электроэнергии (99% в Норвегии, 58% в Канаде, 55% в Швейцарии, 45% в Швеции, 7% в США, 6% в Австралии) из более чем 1060 ГВт установленной мощности. Половина этих мощностей находится в пяти странах: Китай (212 ГВт), Бразилия (82,2 ГВт), США (79 ГВт), Канада (76,4 ГВт) и Россия (46 ГВт). Помимо этих четырех стран с относительным обилием (Норвегия, Канада, Швейцария и Швеция), гидропотенциал обычно применяется при пиковой нагрузке, потому что гидроэлектростанция легко может быть остановлена и запущена. Это также означает, что она является идеальным дополнением к энергии ветра в сетке системы и используется наиболее эффективно в Дании.
Гидроэлектростанции используют энергию падающей воды для выработки электроэнергии. Турбина преобразует кинетическую силу падающей H2O в механическую. Затем генератор преобразует механическую из турбины в электроэнергию.
Гидроэнергетика в мире
Главным преимуществом гидросистем является их способность обрабатывать сезонные (а также ежедневные) высокие пиковые нагрузки. На практике использование хранимой энергии воды иногда осложняется требованиями для орошения, которые могут произойти в противофазе с пиком нагрузок.
Запуск из реки гидросистем обычно гораздо дешевле, чем создание плотин и имеет потенциально более широкое применение. Мелкие гидроэлектростанции под 10 МВт представляют около 10% мирового потенциала и большинство из них работают из реки.
Существует три типа гидроэнергетических сооружений: гидроэлектростанции, насосные станции, гидроаккумулирующие электростанции.
Принцип работы гидроэлектростанции
Принцип работы гидроэлектростанции когда энергия воды преобразуется в механическую через гидравлические турбины. Генератор преобразует эту механическую энергию воды в электричество.
Работа генератора основана на принципах Фарадея: когда магнит перемещается мимо проводника то вырабатывается электроэнергия. В генераторе электромагниты созданы текущим постоянным током. Они создают поля полюсов и установлены по периметру ротора. Ротор присоединен к валу который вращают турбины на фиксированной скорости. Когда ротор вращается, это вызывает смену полюсов в проводнике, смонтированном в статоре. Это, в свою очередь, по закону Фарадея вырабатывает электричество на выводах генератора.
Состав гидроэлектростанции
Мощность гидроэлектростанций варьируется в размерах от «микро ГЭС» питающую несколько домов до гигантских плотин, которые обеспечивают электроэнергией миллионы людей.
Большинство обычных ГЭС включают в себя четыре основных компонента:
Использование гидроэнергии достигло пика в середине 20-го века, но идея использования H2O для выработки электроэнергии насчитывает тысячи лет. Более чем 2000 лет назад, греки использовали водяное колесо для помола пшеницы в муку. Эти древние колеса, как турбины сегодня, через которые идет поток воды.
Гидроэнергетические станции крупнейший источник возобновляемой энергии мира.
Устройство и принцип работы гидроэлектростанции
Федеральное государственное бюджетное образовательное
Учреждение высшего образования
Государственный университет морского и речного флота
Имени адмирала С.О. МАКАРОВА»
Кафедра Гидротехнических сооружений, конструкций и гидравлики
Дисциплина «ГТС общего назначения»
Практическая работа № 1
Устройство и принцип работы гидроэлектростанции
Выполнил: ст. гр. В-5-4
Проверил: Гапеев А.М.
Гидроэлектрическая станция (ГЭС) – гидротехническое сооружение, предназначенное для преобразования механической энергии потока воды в электрическую. ГЭС представляют собой комплекс сооружений, создающих подпор, подводящих к турбинам и отводящих от них воду, и здания, необходимого для размещения гидроагрегатов, механического и электрического оборудования.
Гидроэлектростанции используют механическую энергию водотоков и являются высокоэффективными источниками электроэнергии. В конструктивном отношении они имеют самое разнообразное устройство, определяемое величиной используемого напора, типом турбины, топографическими, гидрологическими, экологическими и другими условиями. Наиболее широкое применение получили русловые ГЭС (плотинные и приплотинные) и станции деривационного типа (напорные и безнапорные).
Основным элементом ГЭС является турбина, позволяющая преобразовать энергию водного потока в механическую энергию вращения рабочего колеса, которое приводит во вращение ротор генератора электрического тока.
Подача воды к турбине плотинной ГЭС (рис. 1) осуществляется по водоводу 2, называемому спиральной камерой, охватывающему по окружности рабочее колесо турбины 1, а отвод воды в нижний бьеф – по изогнутому водоводу – отсасывающей трубе 11.
Спиральная камера со стороны верхнего бьефа закрывается быстропадающими затворами 6, перед которыми располагаются сороудерживающие решетки с механизмами их очистки. Для ремонта и осмотра турбины спиральная камера со стороны верхнего бьефа и отсасывающая труба со стороны нижнего бьефа закрывается ремонтными затворами 7. Маневрирование затворами осуществляется при помощи специальных механизмов.
В машинном зале 9 для перемещения турбины и частей генераторов предусмотрены мостовые краны, передвигающиеся по путям на колоннах. Оборудование ГЭС и мастерские располагаются в соответствующих помещениях здания. Трансформаторные подстанции, передающие электрический ток в линию высокого напряжения, обычно размещают со стороны нижнего бьефа. Со стороны верхнего бьефа устроен мост 8 для проезда автомобильного и железнодорожного транспорта
Здание гидроэлектростанции проверяется на прочность и устойчивость, а подземный контур на фильтрационное воздействие грунтовых вод. Для увеличения пути фильтрационного потока со стороны верхнего бьефа устраивают железобетонный анкерный понур или предусматривают забивку шпунта 12. Для предотвращения размыва дна реки перед зданием ГЭС и в нижнем бьефе предусматривается крепление бетонными плитами.
Рис. 1. Общее устройство гидроэлектростанции:
1 – турбина; 2 – спиральная камера; 3 – генератор; 4 – вал турбины; 5 – возбудитель; 6 – паз рабочего затвора ГЭС; 7 – паз ремонтного затвора; 8 – мост; 9 – машинный зал; 10 – паз ремонтного затвора отсасывающей трубы; 11 – отсасывающая труба; 12 – шпунт
В ГЭС приплотинного типа здание располагается в нижнем бьефе за плотиной и не воспринимает давление воды. На крупных гидроэлектростанциях такого типа напор может достигать 500 м и более. В них чаще всего устанавливаются радиально-осевые турбины (рис. 2). При напорах от 45 до 75 м возможна также установка высоконапорных поворотно-лопастных турбин. В этом случае могут быть использованы бетонные турбинные камеры с металлической облицовкой.
В зданиях ГЭС приплотинного типа подвод воды к турбине осуществляется по напорному водоводу, как правило, круглого сечения. Давление верхнего бьефа на здание в этом случае сравнительно невелико и оно учитывается только в расчетах отдельных конструкций здания. Для обеспечения равномерного подвода воды к турбине водовод перед турбинной камерой имеет горизонтальный участок длиной (4 ÷ 6)Д1.
Гидроэлектростанции приплотинного типа, как уже отмечалось, возводятся при больших напорах и поэтому имеют высокие энергетические показатели. На рис. 2 приведен вариант проекта здания Саяно-Шушенской ГЭС с агрегатами мощностью по 640 МВт (напор в среднем 200 м).
Рис. 2. Здание ГЭС приплотинного типа (Вариант конструкции здания Саяно-Шушенской ГЭС):
1 – рабочий затвор; 2 – паз ремонтного затвора; 3 – сороудерживающая решетка;
4 – турбинный водовод; 5 – трансформаторная подстанция; 6 – здание ГЭС;
7 – бетонная плотина; 8 – скважины цементации;
9 – скважины вертикального дренажа
Подвод воды к приплотинным и деривационным ГЭС осуществляется по напорным водоводам, устроенным в теле плотины или непосредственно на местности к каждому агрегату. Станции этих типов работают преимущественно при больших напорах, они используют значительную часть потенциальной энергии потока и отличаются от плотинных станций более высокими энергетическими показателями.
Турбина
Турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. В зависимости от вида гидравлической энергии, преобразуемой рабочим колесом турбины, они разделяются на два класса: реактивного и активного действия.
Турбины, преобразующие гидравлическую энергию в механическую в основном за счет потенциальной энергии потока воды, относятся к классу реактивных турбин, а турбины, преобразующие гидравлическую энергию в механическую за счет кинетической энергии потока воды, относятся к классу активных турбин.
Реактивные турбины нашли самое широкое распространение при наиболее часто встречающихся напорах на ГЭС от 3 до 700 м. По принципу протекания воды по рабочему колесу их разделяют на осевые, диагональные и радиально-осевые. Если поток поступает на лопасти рабочего колеса и протекает в направлении, параллельном оси вращения турбины (рис. 2, а, г), то такие турбины называют осевыми. Турбины, у которых меридианные составляющие скорости наклонены относительно оси турбины, являются диагональными (рис. 2, в), а турбины, лопасти рабочего колеса которых расположены в зоне поворота меридианных скоростей из радиального направления в осевое – радиально-осевыми (рис. 2, б).
Рис. 2. Схемы гидротурбин:
а – осевая вертикальная; б – радиально-осевая вертикальная; в – диагональная вертикальная; г –капсульно-горизонтальная; д – ковшовая горизонтальная
Спиральная камера
Спиральная камера обеспечивает равномерное поступление воды по всему периметру направляющего аппарата, т. е. осесимметричный режим работы всех направляющих лопаток; сечение спиральной камеры равномерно
сужается по ходу потока. На ГЭС с напором, превышающим 50—60м,
применяются стальные. Спиральная камера круглого сечения, охватывающие статор почти полностью.
Отсасывающие трубы
Отсасывающие трубы определяют габариты подводной части здания ГЭС и оказывают существенное влияние на энергетические показатели и условия надежной работы гидроагрегата. Они обеспечивают:
· преобразование значительной части кинетической энергии потока в энергию давления, особенно в турбинах повышенной быстроходности;
· полное использование перепадов уровней между верхним и нижним бьефами ГЭС;
· благоприятные условия отвода воды от гидромашины в нижний бьеф.
В настоящее время используются два основных типа отсасывающих труб: прямоосные конические и изогнутые.
Направляющий аппарат
Направляющий аппарат является одним из главных узлов, определяющих компоновку всей турбины. Подает воду на лопасти рабочего колеса(РК) под некоторым углом. Окружная скорость на лопасти всегда поддерживается неизменной, так как неизменной должна оставаться частота вращения ротора генератора. Это необходимо для поддержания постоянной частоты переменного электрического тока в сети.
Генератор
Гидрогенераторы имеют сравнительно малую частоту вращения (до 500 об/мин) и достаточно большой диаметр (до 20 м).
Гидрогенераторы состоят из следующих основных частей: статор, ротор, верхняя крестовина, нижняя крестовина, подпятник (упорный подшипник, который воспринимает вертикальную нагрузку от вращающихся частей гидрогенератора и гидротурбины), направляющие подшипники.
Как устроена Саяно-Шушенская ГЭС.
Как устроена Саяно-Шушенская ГЭС.
Саяно-Шушенская гидроэлектростанция имени П. С. Непорожнего — крупнейшая по установленной мощности электростанция России, 8-я — среди ныне действующих гидроэлектростанций в мире.
Расположена на реке Енисей, на границе между Красноярским краем и Хакасией, у посёлка Черёмушки, возле Саяногорска. Является верхней ступенью Енисейского каскада ГЭС. Уникальная арочно-гравитационная плотина станции высотой 242 м — самая высокая плотина России и одна из высочайших плотин мира. Название станции происходит от названий Саянских гор и расположенного неподалёку от станции села Шушенское, широко известного в СССР как место ссылки В. И. Ленина.
Проект Саяно-Шушенской ГЭС был разработан Ленинградским отделением института «Гидропроект». Строители приступили к работам в 1963 году. Первый гидроагрегат принял промышленную нагрузку в декабре 1978 года, десятый – в 1985-м.
Саянскую ГЭС строила молодежь, в 1967 году ЦК ВЛКСМ объявил строительство Всесоюзной ударной комсомольской стройкой. Летом 1979 года в возведении крупнейшей ГЭС принимали участие студенческие строительные отряды общей численностью 1700 человек, в 1980 году – более 1300 человек со всех концов страны. К этому времени на строительстве сформировались уже 69 собственных комсомольско-молодежных коллективов, 15 из них – именные.
2. Строительство Саяно-Шушенской ГЭС, начатое в 1963 году, было официально завершено только в 2000 году. В ходе строительства и эксплуатации ГЭС имели место проблемы, связанные с разрушением водосбросных сооружений и образованием трещин в плотине, позднее успешно решённые.Памятник строителям ГЭС на смотровой площадке.
3. 17 августа 2009 года на станции произошла крупнейшая в истории российской гидроэнергетики авария, ставшая причиной гибели 75 человек. Восстановление станции завершилось 12 ноября 2014 года.
4. 10 февраля 2011 года в 78 км от Саяно-Шушенской ГЭС произошло землетрясение силой около 8 баллов по шкале MSK-64. В районе плотины ГЭС сила толчков составила около 5 баллов, каких-либо повреждений сооружений станции не зафиксировано.
5. Саяно-Шушенская ГЭС представляет собой мощную высоконапорную гидроэлектростанцию приплотинного типа.Конструктивно сооружения ГЭС разделяются на плотину, здание ГЭС с корпусами вспомогательного назначения, водобойный колодец эксплуатационного водосброса, береговой водосброс, открытое распределительное устройство (ОРУ).
6. Периодически в средствах массовой информации высказываются сомнения в надёжности плотины Саяно-Шушенской ГЭС. В то же время авторитетные специалисты в области гидротехники неоднократно заявляли о безопасности сооружений станции.Саяно-Шушенская ГЭС имеет действующую декларацию безопасности.
7. Напорный фронт Саяно-Шушенской ГЭС образует уникальная бетонная арочно-гравитационная плотина, устойчивость и прочность которой обеспечивается действием собственного веса (на 60 %) и частично упором верхней арочной части в берега (на 40 %).Плотина имеет максимальную высоту 245 м, её верховая грань очерчена дугой с радиусом 600 м, ширина плотины по основанию — 105,7 м, по гребню — 25 м. Длина гребня плотины с учётом береговых врезок составляет 1074,4 м.
8. Эксплуатационный водосброс предназначен для сброса избыточного притока воды в половодье и паводки, который не может быть пропущен через гидроагрегаты ГЭС либо аккумулирован в водохранилище. Проектная максимальная пропускная способность эксплуатационного водосброса составляет 13 600 м³/сек, фактическая при отметке водохранилища 540 м — 13 090 м³/сек.
10. Плотина врезана в породы левого и правого берегов на глубину 15 м и 10 м соответственно, в породы основания — на глубину до 5 м.
14. В здании ГЭС размещено 10 гидроагрегатов, мощностью 640 МВт каждый.
17. Гидроагрегат № 2. Именно с него в августе 2009 года началась авария на Саяно-Шушенской ГЭС, которая вывела из строя всё оборудование станции и унесла жизни 75 человек. Под сильнейшим напором воды была сорвана крышка турбины, ротор этой машины (весом в 900 тонн!) поднялся на несколько метров и, вращаясь, стал крушить машинный зал — потолок, стены.
21. Саяно-Шушенская ГЭС является крупнейшей электростанцией России, к тому же вырабатывающей очень дешёвую электроэнергию — себестоимость 1 кВт⋅ч электроэнергии в 2001 году Саяно-Шушенского гидроэнергетического комплекса составляла 1,62 коп.
22. ГЭС является самым мощным источником покрытия пиковых перепадов электроэнергии в Единой энергосистеме России. Гидроэлектростанция является основой и источником энергоснабжения Саянского территориально-производственного комплекса, включающего в себя крупные алюминиевые заводы — Саянский и Хакасский (принадлежат компании «Российский алюминий»), Абаканвагонмаш, угольные разрезы, железные рудники, ряд предприятий лёгкой и пищевой промышленности.
26. Береговой водосброс расположен на правом берегу и предназначен для пропуска паводков редкой повторяемости.
31. Береговой водосброс.Конструктивно водосброс состоит из водоприёмного сооружения, двух безнапорных тоннелей, пятиступенчатого перепада и отводящего канала.
32. Саяно-Шушенская ГЭС любимая станция главы «РусГидро» Евгения Дода.
33. Ночной вид на бреговой водосброс.
34. Увидев один раз эту махину, в нее влюбляешься на всю жизнь, и все время опять тянет опять вернуться на берега Енисея.
Взят у dervishv в Саяно-Шушенская ГЭС
Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану (shauey@yandex.ru) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано
Еще раз напомню, что посты теперь можно читать на канале в Телеграме
и как обычно в инстаграме. Жмите на ссылки, подписывайтесь и комментируйте, если вопросы по делу, я всегда отвечаю.
Tags: Хакасия, электростанция
ГЭС – это гидроэлектростанция, преобразующая энергию водного потока в электрическую. Поток воды, падая на лопасти, вращает турбины, которые, в свою очередь, приводят в движение генераторы, преобразующие механическую энергию в электрическую. Гидроэлектростанции сооружаются на руслах рек, при этом обычно строятся плотины и водохранилища.
Принцип работы
Основа работы ГЭС – это энергия падающей воды. Из-за разности уровней речная вода образует непрерывный поток от истока к устью. Плотина – неотъемлемая часть практически всех гидроэлектростанций, перекрывает движение воды в русле реки. Перед плотиной образуется водохранилище, создавая значительную разницу уровня воды до и после нее.
Особенности
Существует три фактора эффективного производства энергии на гидроэлектростанциях:
Эксплуатация гидроэлектростанция имеет несколько, в том числе сравнительных особенностей:
Гидроэлектростанции разделяют по характеру возведенных сооружений:
Гидроэнергетика России
Список крупнейших ГЭС России
Волжская ГЭС
В прошлом Сталинградская и Волгоградская ГЭС, а ныне «Волжская», расположенная в одноименном городе Волжский на реке Волга, средненапорная станция руслового типа. На сегодняшний день считается крупнейшей гидроэлектростанцией в Европе. Количество гидроагрегатов – 22, электрическая мощность – 2592,5 МВт, среднегодовое количество вырабатываемой электроэнергии 11,1 млрд кВт*ч. Пропускная способность гидроузла – 25000 м3/с. Большая часть вырабатываемой электроэнергии поставляется местным потребителям.
Возведение ГЭС стартовало в 1950 году. Пуск первого гидроагрегата был осуществлен в декабре 1958. В полном объеме Волжская гидроэлектростанция заработала в сентябре 1961 года. Ввод в эксплуатацию сыграл важнейшую роль в объединении значимых энергосистем Поволжья, Центра, Юга и энергоснабжения Нижнего Поволжья и Донбасса. Уже в 2000-х годах было произведено несколько модернизаций, что позволило увеличить общую мощность станции. Кроме производства электроэнергии Волжская ГЭС используется для орошения засушливых земельных массивов Заволжья. На сооружениях гидроузла устроены автодорожные и железнодорожные переходы через Волгу, обеспечивающие связь районов Поволжья между собой.
ГИДРОЭЛЕКТРИ́ЧЕСКАЯ СТА́НЦИЯ
Рис. 1. Схема ГЭС: 1 – плотина; 2 – затвор на гребне водослива; 3 – водоприёмник; 4 – затвор водоприёмника; 5 – напорный водоток; 6 – задвижка; 7 – гидравличе.
ГИДРОЭЛЕКТРИ́ЧЕСКАЯ СТА́НЦИЯ (гидроэлектростанция, ГЭС), комплекс сооружений и оборудования для преобразования энергии потока воды (водотока) в электрич. энергию. Гидравлич. энергия относится к возобновляемым источникам энергии (ВИЭ), причём цикличность её воспроизводства полностью зависит от потока воды, вследствие чего гидроэнергоресурсы неравномерно распределяются в течение года; кроме того, их величина меняется из года в год. Характерная особенность ГЭС – преобразование механической энергии воды в электрическую происходит без промежуточного произ-ва тепла. Для получения электроэнергии наиболее часто используют эффект «падающей» воды, когда естественные или искусственно создаваемые перепады уровней воды (с помощью плотины и/или деривации) формируют водоток, направляемый в гидравлическую турбину.
ГЭС классифицируются: по установленной мощности (МВт) – крупные (св. 250), средние (до 250) и малые (до 10); величине напора; схеме использования водных ресурсов; условиям работы. Мощность ГЭС N (кВт) зависит от напора Нб (разности уровней верхнего и нижнего бьефа, м), расхода воды Q (м3/с), проходящего через гидротурбины, кпд гидроагрегата hг и определяется выражением N=hгQНб.
Крупные и средние ГЭС
Крупные и средние ГЭС занимают главенствующее положение в получении гидроэлектрич. энергии и строятся на крупных реках; состоят из системы гидротехнических сооружений, обеспечивающих создание необходимого напора, энергетич. оборудования (гидравлич. турбин), преобразующего энергию движущейся под напором воды в механич. энергию, которая, в свою очередь, преобразуется в электрич. энергию. Схема крупной (средней) ГЭС представлена на рис. 1. Плотина образует водохранилище, обеспечивая постоянный напор воды, которая через защитную решётку и регулируемый затвор входит в водоприёмник и, пройдя по водотоку, вращает гидравлич. турбину, приводящую в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределит. подстанции, а затем – потребителям. После совершения работы вода вытекает в реку. В здании ГЭС размещается осн. энергетич. оборудование: в машинном зале – гидроагрегаты, вспомогат. оборудование, устройства автоматич. управления и контроля; на центр. посту управления – пульт оператора-диспетчера или автооператор ГЭС. Повышающая трансформаторная подстанция может находиться как внутри здания ГЭС, так и в отд. зданиях или на открытых площадках. Распределит. устройства зачастую располагаются на открытой площадке. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта оборудования и для вспомогат. операций по обслуживанию ГЭС.
Крупнейшие ГЭС мира (2005)* | |||
ГЭС | Страна | г Год завершения строительства | Мощность, тыс. МВт |
«Itaipo» | Бразилия-Парагвай | 1983 | 12,6 |
«Guri» | Венесуэла | 1983 | 10,0 |
«Grand Cooley» | США | 1988 | 6,8 |
Саяно-Шушенская | Россия | 1988 | 6,4 |
Красноярская | Россия | 1972 | 6,0 |
«La Grande 2» (с 1981 «Robert-Bourassa») | Канада | 1981 | 5,6 |
«Churchill Falls» | Канада | 1971 | 5,4 |
Братская | Россия | 1967 | 4,5 |
«Tucurui» | Бразилия | 1986 | 4,2 |
Усть-Илимская | Россия | 1980 | 3,8 |
* В 2003 на p. Янцзы (КНР) введено в эксплуатацию 6 блоков ГЭС «Санься» («Три ущелья»), которая при достижении проектной мощности в 18,2 тыс. МВт ежегодно будет производить 84,7 млрд. кВт-ч (2009) и может стать самой большой ГЭС в мире. |
По величине напора различают ГЭС высоконапорные (св. 60 м), среднего напора (до 60 м) и низконапорные (3–25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации – до 1500 м. Отличит. особенностью ГЭС, сооружаемых на равнинных реках (как на мягких основаниях, так и на скальных породах), являются большие объёмы земляных и бетонных работ. В каньонах и горных ущельях на твёрдых скальных основаниях тяжёлые гравитационные плотины экономически невыгодны, для таких гидроузлов более эффективны арочные плотины или арочно-гравитационные. В зависимости от напора используют разл. энергетич. оборудование: на низконапорных ГЭС – поворотно-лопастные или горизонтальные (реже) турбины; на средненапорных – поворотно-лопастные и радиально-осевые турбины; на высоконапорных – ковшовые и радиально-осевые турбины.
По схеме использования водных ресурсов ГЭС обычно подразделяют на русловые, приплотинные, деривационные (с напорной и безнапорной деривацией), смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. Русловые и приплотинные ГЭС строят как на равнинных многоводных реках, так и на горных реках в узких сжатых долинах. В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. У русловой ГЭС здание с размещёнными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. Для русловых ГЭС характерны напоры до 30–40 м. На крупных равнинных реках осн. русло обычно перекрывается земляной плотиной, к ней примыкает бетонная водосливная плотина, на которой сооружается здание ГЭС. Такая компоновка типична для мн. отеч. ГЭС на больших равнинных реках, напр. Волжской ГЭС (г. Волгоград) мощностью 2,56 тыс. МВт (1962); Майнской ГЭС на р. Енисей мощностью 321 МВт (1987). При более высоких напорах здание ГЭС не может воспринимать большое гидростатич. давление воды. В этом случае сооружается приплотинная ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, со стороны нижнего бьефа (напр., Братская ГЭС на р. Ангара). Примером др. типа приплотинных ГЭС, соответствующих горным условиям, может быть компоновка Нурекской ГЭС на р. Вахш (Таджикистан) проектной мощностью 2,7 тыс. МВт, Мингечаурской ГЭС на р. Кура (Азербайджан) мощностью 359 МВт.
В деривационных ГЭС вода в начале используемого участка реки отводится из речного русла водоводом с уклоном значительно меньшим, чем средний уклон реки на данном участке, и со спрямлением изгибов и поворотов русла. Конец деривации подводят к месту расположения здания ГЭС. Отработанная вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривация выгодна, если уклон реки велик. Деривационная схема концентрации напора (бесплотинный водозабор или низкая водозаборная плотина) на практике приводит к тому, что из реки забирается лишь небольшая часть её стока. При отборе всего стока в начале деривации на реке сооружается более высокая плотина и создаётся водохранилище: такая схема концентрации падения воды называется смешанной, т. к. используются оба принципа создания напора. В ряде случаев с помощью деривации производится переброска стока реки в соседнюю реку, имеющую более низкие отметки русла, напр., на Ингурской ГЭС (Грузия), где сток р. Ингури перебрасывается туннелем в соседнюю р. Эрисцкали. Сооружения безнапорных деривационных ГЭС состоят из здания, водозаборного сооружения, водоприёмной плотины и собственно деривации (канал, лоток, безнапорный туннель). Крупнейшая ГЭС с безнапорной подводящей деривацией – ГЭС «Robert Moses» (США) мощностью 1,95 тыс. МВт, а с безнапорной отводящей деривацией – Ингурская ГЭС мощностью 1,3 тыс. МВт.
На ГЭС с напорной деривацией водовод прокладывается с несколько большим продольным уклоном, чем при безнапорной деривации. Применение напорной подводящей деривации обусловливается изменяемостью горизонта воды в верхнем бьефе. Крупнейшая станция с напорной подводящей деривацией – ГЭС «Nechako-Kemano» (Канада) проектной мощностью 1,79 тыс. МВт. ГЭС с напорной отводящей деривацией применяется в условиях значит. изменений уровня воды в реке в месте выхода отводящей деривации или по экономич. соображениям. В этом случае необходимо сооружение уравнит. резервуара (в начале отводящей деривации) для выравнивания неустановившегося потока воды в реке – напр., ГЭС «Harspranget» (Швеция) мощностью 350 МВт.
Особое место занимают гидроаккумулирующие электростанции (ГАЭС) и приливные электростанции (ПЭС). ГАЭС являются наиболее эффективным типом манёвренных электростанций, повышающих надёжность и экономичность работы энергосистемы в период покрытия пиковых нагрузок. ПЭС преобразуют энергию мор. приливов в электрическую и могут быть использованы в энергосистемах лишь совместно с энергией регулирующих электростанций, восполняющих провалы мощности ПЭС.
По условиям работы и характеру использования воды различают ГЭС на стоке без регулирования, с суточным, недельным, сезонным (годовым) и многолетним регулированием. Отд. ГЭС или каскады ГЭС, как правило, работают в системе совместно с конденсационными электростанциями, теплоэлектроцентралями, атомными электростанциями, газотурбинными установками (ГТУ), причём в зависимости от графика нагрузки энергосистемы ГЭС могут быть базисными, полупиковыми и пиковыми.
Из всех существующих типов электростанций именно ГЭС являются наиболее манёвренными и способны при необходимости существенно увеличить мощность в считаные минуты, покрывая пиковые нагрузки. Для тепловых станций (ТЭС) этот показатель измеряется часами, для АЭС – сутками. Мощность крупнейших ГЭС мира превышает 3 тыс. МВт (табл.).
Малые ГЭС
Рис. 2. Схема микроГЭС: 1 – водозаборное устройство; 2 – напор воды (Н); 3 – водовод; 4 – энергоблок; 5 – устройство автоматического регулирования; 6 – ток к потребителю.
Малые ГЭС, мощность которых не превышает 10 МВт, строятся на малых реках, водоёмах, они, как правило, бесплотинные и включают мини-ГЭС (установленная мощность до 1000 кВт) и микро ГЭС (мощность 1–100 кВт); получили широкое развитие во многих странах мира со 2-й пол. 1950-х гг. Схема микроГЭС представлена на рис. 2. Малые ГЭС предназначены для выработки электроэнергии в пром. электросеть и/или для работы на автономную нагрузку.
По характеру исполнения малые ГЭС подразделяются на два типа: реализующие потенциальную энергию водотока (стационарные приплотинные, с совмещением плотины и здания ГЭС; стационарные бесплотинные, с трубопроводом напорной деривации; мобильные в контейнерном исполнении, с использованием в качестве напорной деривации пластиковых труб или гибких армированных рукавов; переносные мощностью до 10 кВт); реализующие непосредственно кинетич. энергию водотока (погружные бесплотинные, гирляндные ГЭС и др.).
Диапазон напора воды колеблется от 3 до 80 м. По номинальному напряжению различают ГЭС низкого напряжения – до 1 кВ; высокого напряжения – 1–10 кВ. По частоте вращения турбины – от 200 до 1500 оборотов в минуту. Малые ГЭС в России построены в Туве (мощность 168 кВт), на Алтае (мощность 400 кВт), в Камчатской обл. на р. Быстрая (мощность 1,7 МВт), каскад Толмачёвской ГЭС.
Мини- и микроГЭС устанавливаются также в водотоках (продуктопроводах), где требуется применение гасителей давления – питьевых водопроводах и технологич. водотоках предприятий, водосбросах ТЭЦ, а также на пром. и канализац. стоках.
Строительство малых ГЭС рационально там, где социально-экономич. условия и перспективы развития производит. сил региона не требуют создания большой энергетики и малые ГЭС могут обеспечить местное энергоснабжение отд. городов и посёлков (напр., мини-ГЭС мощностью 1000 кВт может вырабатывать 6000 МВт·ч/год электроэнергии). Малые ГЭС – надёжные, экологически чистые, компактные, быстроокупаемые источники электроэнергии для деревень, хуторов, дачных посёлков, фермерских хозяйств в отдалённых, горных и труднодоступных районах, где нет поблизости ЛЭП.
Историческая справка
Одни из первых гидроэлектрич. установок мощностью в неск. сотен ватт были сооружены в 1876–81 в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их пром. использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места, наиболее удобные для сооружения ГЭС, удалены от осн. потребителей электроэнергии. Протяжённость существовавших в то время ЛЭП не превышала 5–10 км. Сооружение крупной ЛЭП (170 км) от Лауфенской ГЭС до Франкфурта-на-Майне для снабжения электроэнергией Междунар. электротехнич. выставки (1891) открыло широкие возможности для развития ГЭС.
Первенцем гидроэнергетики в России следует считать станцию на Рудном Алтае, построенную в 1892. Эта четырёхтурбинная ГЭС (мощность 0,15 МВт) была создана под рук. горного инж. Н. И. Кокшарова для шахтного водоотлива Зыряновского рудника на р. Берёзовка (ныне г. Зыряновск, Казахстан). В Европ. части России первая пром. ГЭС мощностью 0,26 МВт построена в 1896 на р. Охта близ С.-Петербурга под рук. инженеров В. Н. Чиколева и Р. Э. Классона. Она снабжала электроэнергией Охтинский пороховой завод. В 1898 на Ленских приисках (р. Ныгри) построена ГЭС, на которой впервые в России были установлены генераторы трёхфазного (переменного) тока. Трансформатор напряжением 10 кВ позволил передать ток на расстояние 20 км. Для этого была специально сооружена высоковольтная линия. В 1909 закончилось строительство крупнейшей в дореволюц. России Гиндукушской ГЭС на р. Мургаб (Туркмения) мощностью 1,35 МВт. В период 1905–17 вступили в строй Саткинская, Алавердинская, Каракультукская, Тургусунская, Сестрорецкая и др. ГЭС небольшой мощности.
Становление электроэнергетики СССР (России) связано с ГОЭЛРО планом. Сов. Союз впервые в мире начал строить крупные гидроузлы на мягких основаниях. В СССР (России) были построены плотины новых типов, чрезвычайно высокие, а в отд. случаях – рекордные по высоте в мировой практике: арочные – Ингурская (выс. 271 м), Чиркейская (230 м); арочно-гравитационные – Саянская (236 м), Токтогульская (215 м); гравийно-галечниковая – Нурекская (310 м); плотины в районах вечной мерзлоты – Мамаканская, Вилюйская и Хантайская. В 1970-х гг. продолжалось строительство крупных гидроузлов с высокими плотинами в высокосейсмичных районах (Токтогульский в зоне св. 9 баллов и ряд др.).
Архив Н. В. Надыкто Саяно-Шушенская ГЭС. Архив Н. В. Надыкто Машинный зал Саяно-Шушенской ГЭС.
В РФ самые мощные (каскадные) ГЭС сооружены на реках Волга, Кама, Ангара, Енисей, Обь и Иртыш. Каскад ГЭС представляет собой группу ГЭС, расположенную ступенями по течению водного потока с целью полного последоват. использования его энергии. Гидроустановки в каскаде обычно связаны общностью режима, при котором водохранилища верхних ступеней оказывают регулирующее влияние на водохранилища нижних ступеней. На основе ГЭС вост. районов страны формируются пром. комплексы, специализирующиеся на энергоёмких производствах. Наиболее эффективные по технико-экономич. показателям гидроресурсы сосредоточены в Сибири. Ангаро-Енисейский каскад, в состав которого входят самые крупные ГЭС страны: Саяно-Шушенская, Красноярская, Братская, Усть-Илимская. Строится Богучанская ГЭС (проектная мощность 3 тыс. МВт, 2006).
ГЭС и окружающая среда
Процесс произ-ва электроэнергии на ГЭС, в отличие от ТЭС и АЭС, экологически безвреден. При нормальной работе ГЭС к.-л. вредные выбросы в окружающую среду отсутствуют. Большинство ГЭС России располагается в Европ. части страны, которая характеризуется равнинной местностью. Создание водохранилищ для эксплуатации ГЭС влечёт за собой изменение природных условий. Влияние искусств. водохранилищ может быть положительным и отрицательным. Положительное влияние состоит в возможности орошения земельных угодий из созданных водохранилищ. В то же время создание крупных водохранилищ в равнинных районах приводит к затоплению земель, изъятию их из хозяйств. оборота, подъёму грунтовых вод и, как следствие, к изменению температурного режима воды, заболачиванию и связанному с этим ухудшению санитарно-эпидемиологич. условий местности. Из-за увеличения зеркала водной поверхности резко возрастают потери воды на испарение. Летом и осенью темп-ра воды в водохранилище из-за значительного его объёма становится ниже, чем в реке (нижнем бьефе). Это приводит к более раннему ледоставу, сокращает сроки навигации, неблагоприятно воздействует на фауну. В районе водохранилища изменяется микроклимат, повышается влажность воздуха, часто образуются туманы. При этом снижается среднегодовая сумма осадков, изменяются направление и скорость ветра, уменьшается амплитуда колебаний темп-ры в течение суток. Увеличение давления на дно реки может привести к созданию условий для повышения сейсмич. активности в регионе. Частые колебания уровня воды в водохранилище приводят к переформированию его берегов и дна, сопровождаются образованием подводных отмелей. На дне водохранилища (водоёмов) накапливаются тысячи тонн осадков (как правило, ядовитых, за счёт слива пром. и бытовых стоков в реку). Это практически навсегда выводит территорию из дальнейшего использования, даже в случае спуска водохранилища. Ликвидация водохранилищ потребует дополнит. строительства железных и шоссейных дорог и затруднена также тем, что совр. суда приспособлены к бóльшим глубинам, чем в реках с незарегулированным стоком, и замена их на суда с меньшей осадкой потребует значит. финансовых затрат.
ГЭС на горных реках удобны тем, что не связаны с затоплением больших территорий, но они могут быть опасны из-за довольно высокой вероятности катастроф ввиду сейсмич. нестабильности этих районов. Землетрясения приводят к огромным жертвам; так, в 1963 при прорыве плотины ГРЭС в Вайоне (Италия) погибло более 2 тыс. чел., а в 1979 в штате Гуджарат (Индия) при прорыве плотины на ГЭС «Морви-Мачу» – более 15 тыс. человек.
Экологич. организации рассматривают строительство малых ГЭС как технологии, щадящие окружающую среду, и поддерживают развитие малой гидроэнергетики. Проведены исследования (1990–2000) по определению количественного ущерба окружающей среде, вызванного генерацией электроэнергии от 8 источников: бурого и каменного угля, нефтяного топлива, природного газа, ядерного топлива, ветра, солнечных фотоэлементов и малых ГЭС. В результате получены следующие выводы: малые ГЭС в целом в 31 раз менее вредны для окружающей среды, чем традиц. источники, а 1 кВт·ч электрич. энергии, произведённый малыми ГЭС, в 300 раз чище, чем при сжигании бурого угля. См. также Гидроэнергетика.
Принцип действия ГЭС. Основные сооружения и оборудование гидроэлектростанций
Мощность гидравлического потока зависит от расхода и напора. Скорость потока воды в реке изменяется по ее длине с изменением сечения русла и гидравлического уклона. Для концентрации мощности и сосредоточения напора реки в каком-либо одном месте возводят гидротехнические сооружения: плотину, деривационный канал.
Водосбросные сооружения перепускают воду из верхнего бьефа в нижний во избежание превышения максимального расчетного уровня воды в период паводка, сбрасывает лед, шугу и т.п.
Если река судоходна, то к плотине примыкают шлюзы (судоподъемники) с подходными каналами для пропуска судов и плотов через гидроузел, перевалки грузов и пересадки пассажиров с водного на сухопутный транспорт и пр.
Для обеспечения отбора и подачи воды неэнергетическим потребителям в состав гидроузла входят водоприемные сооружения и насосные станции.
Для связи объектов гидроузла между собой, соединения их с сетью государственных автомобильных и железных дорог, а также для пропуска этих дорог через сооружения гидроузла строят транспортные сооружения: мосты, дороги и др.
Принцип действия ГЭС заключается в следующем: плотина образует водохранилище, обеспечивая постоянный напор воды. Вода входит в водоприемник и, пройдя по напорному водоводу, вращает гидротурбину, которая приводит в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределительные подстанции и затем потребителям.
Одними из самых важных составляющих ГЭС считаются гидрогенераторы и гидротурбины.
Гидротурбины.
Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала.
По принципу действия гидротурбины делят на реактивные (напороструйные) и активные (свободноструйные). Вода к рабочему колесу поступает либо через сопла (в активных гидротурбинах), либо через направляющий аппарат (в реактивных гидротурбинах).
Гидрогенераторы имеют сравнительно малую частоту вращения (до 500 об/мин) и достаточно большой диаметр (до 20 м), чем в первую очередь определяется вертикальное исполнение большинства гидрогенераторов, так как при горизонтальном исполнении становится невозможным обеспечение необходимой механической прочности и жесткости элементов их конструкции.
Гидрогенераторы состоят из следующих основных частей: статор, ротор, верхняя крестовина, нижняя крестовина, подпятник (упорный подшипник, который воспринимает вертикальную нагрузку от вращающихся частей гидрогенератора и гидротурбины), направляющие подшипники. По особенностям конструкции подразделяются на подвесные и зонтичные. У подвесных подпятник располагается над ротором в верхней крестовине, у зонтичных подпятник располагается под ротором в нижней крестовине или опирается на крышку турбины (в этом случае нижняя крестовина у гидрогенератора отсутствует).
На гидроаккумулирующих электростанциях используются обратимые гидрогенераторы (гидрогенераторы-двигатели), которые могут как вырабатывать электрическую энергию, так и потреблять ее. От обычных гидрогенераторов они отличаются особой конструкцией подпятника, позволяющей ротору вращаться в обе стороны.
Большое будущее малых ГЭС
Основные ресурсы малой гидроэнергетики России сосредоточены в горных районах республик Северного Кавказа, в Ставропольском и Краснодарском краях, на Среднем Урале, в Южной Сибири, Прибайкалье и на Дальнем Востоке.
Конструкция типовой малой ГЭС базируется на гидроагрегате, который включает в себя турбину, водозаборное устройство и элементы управления. В зависимости от того, какие гидроресурсы задействованы малыми гидростанциями, их делят на несколько категорий:
русловые или приплотинные с небольшими искусственными водохранилищами; основанные на существующих перепадах уровней воды; использующие энергию свободного течения рек.
По величине напора выделяют низконапорные (Н 75 м) малые гидроэлектростанции.
Как и на крупных станциях, на малых ГЭС, используются пропеллерные, радиально-осевые и ковшовые турбины (более подробно о них см. «Энерговектор» № 5/2014 г.) соответствующих размеров и модификаций. Чаще применяются пропеллерные турбины и турбины Френсиса.
Существует множество типов конструкций малых ГЭС, проектируемых с учётом различных условий применения. Конечно, охватить их все в этой статье не удастся, поэтому остановимся на некоторых оригинальных разработках.
Для устройства рукавной микроГЭС на реке или ручье строится небольшая плотина, к отверстию в которой прикрепляется труба-шланг, уложенная вниз по склону вдоль водотока до электрогенератора. Перепад высот от плотины до генератора должен быть не менее 4-5 м. Вход в «рукав» располагают так, чтобы захватить среднюю, самую быструю, часть течения реки, и воду по сужающемуся каналу подводят к турбинам. Установленная мощность такой станции может варьироваться от 1 до 100 кВт. В 70-х годах прошлого века гидроагрегаты для рукавных микроГЭС выпускались серийно на предприятиях сельхозмашиностроения.
В 2008 г. компания Bourne Energy (Калифорния) разработала генераторные установки RiverStar («Речная звезда») для устройства мини-ГЭС на небольших реках. RiverStar представляет собой капсулу с поплавком для фиксации ротора на требуемой глубине, ориентируемым глубинным стабилизатором, крыльчаткой, генератором с блоком преобразователя напряжения.
Модули RiverStar удерживаются на месте стальными тросами, натянутыми под водой поперёк течения реки, поэтому они не нуждаются в установке плотин, якорей и проведении каких-либо дополнительных работ на речном дне. Параллельно тросам на берег выходят кабели, по которым, собственно, и идёт электроэнергия. Мощность одного модуля при скорости течения реки 7,4 км/ч составляет 50 кВт. Генераторные установки RiverStar можно устанавливать блоками по несколько штук для увеличения мощности.
Установка способна поднимать морскую воду на высоту до 200 м и вырабатывать мощность 0,25 МВт.
Природные условия в России весьма благоприятны для развития малой гидроэнергетики, а при современном уровне доступности информации и всевозможных материалов умельцы могут сделать мини-ГЭС даже своими руками, была бы подходящая река или ручей. Поэтому у малых ГЭС как альтернативных источников энергии, есть все шансы вновь широко распространиться в нашей стране.
Несколько фактов о ГЭС, которые вас удивят
Сегодня я расскажу о том, что мало кто из обычных людей знает о ГЭС.
Сейчас я нахожусь на стройплощадке Усть-Среднеканской ГЭС, которая расположена в 400 километрах от Магадана. Подробно о ГЭС и строительстве я ещё расскажу, а сегодня несколько любопытных фактов.
2. Пока ГЭС строится, в её гидроагрегатах работают временные рабочие колёса, рассчитанные на малый напор воды. Когда плотина будет достроена, напор воды повысится и временные колёса заменят постоянными для высокого напора с другой формой лопастей.
3. Несмотря на то, что строительство ГЭС очень дорогое удовольствие, многие ГЭС окупаются ещё до того, как их достраивают до конца. Кстати, Усть-Среднеканская ГЭС продаёт электричество по 1.10 руб за кВтч.
Чтобы осознать размеры конструкции, обратите внимание на рабочих, занимающихся монтажом спиральной камеры.
5. Рабочее колесо гидроагрегата всегда крутится с одинаковой скоростью, обеспечивая стабильную частоту 50 герц. Для меня всегда было загадкой, как поддерживается стабильная скорость вращения. Оказалось, просто с помощью изменения потока воды. Лопатки, управляемые компьютером, постоянно находятся в движении, уменьшая и увеличивая поток воды. Задача системы добиться точной скорости вращения независимо от усилия, с которым крутится вал генератора (а оно зависит от вырабатываемой мощности).
6. Напряжение, выдаваемое генератором, регулируется с помощью изменения напряжения возбуждения. Это постоянное напряжение, которое подаётся на электромагнит ротора. При этом напряжение, которое генерируется обмоткой статора зависит от силы магнитного поля. На фото у меня над головой вращается многотонный ротор.
7. Генератор ГЭС вырабатывает напряжение 15.75 кВ. На Усть-Среднеканской ГЭС установлены генераторы, имеющие номинальную мощность 142.5 МВт (142500000 Вт) и ток в проводах, отводящих выработанное электричество от генератора, может достигать 6150 А. Поэтому эти провода, а точнее шины, имеют огромное сечение и заключены вот в такие трубы.
Любая коммутация при таких токах превращается в большую проблему. Вот так выглядит простой выключатель. Конечно, на токе в шесть тысяч ампер и напряжении пятнадцать тысяч вольт он становится совсем непростым.
8. Повышающие трансформаторы обычно стоят на улице за машинным залом ГЭС (для передачи потребителям напряжение, полученное с генераторов, повышается чаще всего до 220 кВ).
9. По проводам линий электропередач передаётся не только электроэнергия на частоте 50 Гц, но и информационные сигналы на высокой частоте. С помощью них, например, можно с высокой точностью определить место аварии на ЛЭП. На электростанциях и подстанциях ставятся специальные фильтры высокочастотного сигнала. Наверняка, вы такие штуки видели, но вряд ли знали, для чего они.
10. Вся коммутация на высоких напряжениях происходит в среде элегаза (фторид серы, имеющий очень низкую электропроводность), поэтому провода выглядят, как трубы и электрика больше напоминает сантехнику. 🙂
p.s. Спасибо сотрудникам Усть-Среднеканской ГЭС Илье Горбунову и Вячеславу Сладкевичу (он на фото) за подробные ответы на мои многочисленные вопросы, а так же компании Русгидро за возможность своими глазами посмотреть на строительство и работу такого грандиозного сооружения.
© 2016, Алексей Надёжин
Метки: ГЭС, Интересное, Русгидро
Гидрогенератор – строение, особенности и самостоятельная сборка
Гидрогенератор на одной из кубанских ГЭС
Все мы приблизительно представляем, что для промышленной выработки электрической энергии люди используют атомные, ветровые и гидроэлектростанции. За исключением первого варианта, практически каждый может установить такие генераторы у себя дома, и пользоваться практически бесплатной энергией, естественно, при соблюдении определенных условий. Например, чтобы поставить у себя ветряк, необходимо проживать в достаточно ветреном районе, где средняя скорость ветра будет составлять 5-6 м/с, соответственно, для водяной установки требуется наличие реки.
Гидрогенераторы имеют неоспоримое преимущество перед ветряными аналогами – их работа не зависит от условий погоды, речной поток практически не меняет скорости, что в значительной мере упрощает конструкцию агрегата. Сегодня мы поговорим с вами про устройство гидрогенератора, расскажем много интересного про их параметры и характеристики, а также попробуем собрать такое устройство своими руками.
Строение гидрогенераторов и их типы
Горизонтальный гидрогенератор (Ленинградский электромеханический завод)
Состоит гидрогенератор их двух частей: гидравлической машины (турбины, обратимой гидромашины или насоса) и электрической машины (генератор, двигатель, двигатель-генератор) – результате гидроагрегаты можно подразделять на турбинные, обратимые или насосные.
Строение гидрогенераторов разных типов
Интересно знать! Эффективно применяется мультипликатор в капсульных гидрогенераторах на ГЭС, позволяя снизить диаметры статора и капсулы. Для аналогичных целей применяются редукторы, но уже в капсульных наносных станциях.
Строение капсульного гидроагрегата киевской ГЭС
Конструкции гидрогенераторов
Массивная турбина гидрогенератора
Итак, на гидроэлектростанциях в основном устанавливают трехфазные генераторы синхронного типа. Иногда ставят и гидрогенераторы асинхронные, но они, несмотря на большую надежность не столь эффективны
Гидрогенераторы для малых ГЭС: схемы генераторов подвесного и зонтичного типа
Генератор подвесного типа
Характеристики гидрогенератора Куйбышевской ГЭС
Давайте разберем строение вертикального гидрогенератора на примере подвесного типа. Для наглядности прилагаем следующую схему.
Схематическое строение подвесного гидрогенератора
Шихтованный сердечник ротора
Пассивная часть гидрогенератора – статор
Интересно знать! Упорный подшипник называется подпятником.
Как видите, строение этой огромной машины ничем не отличается от любого другого компактного генератора, например, автомобильного. При вращении ротора, запитанный электромагнит, который, как вы понимаете, тоже вращается, заставит двигаться вслед за собой магнитное поле.
Далее в действие вступает закон электромагнитной индукции – в проводнике, перемещающемся перпендикулярно направлению электромагнитного поля, будет образовываться электродвижущая сила (ЭДС), которая при подключении внешней цепи с нагрузкой станет электрическим током.
Напомним, что нет никакой разницы, двигается ли проводник относительно магнитного поля, или все происходит наоборот – ЭДС всегда вырабатывается. Проводником в случае любого генератора является обмотка статора, которая соединяется с трансформатором, задающим получаемому току нужные параметры.
Все это значит, что применить гидрогенератор в домашних условиях будет довольно просто, если суметь правильно изготовить гидротурбину, о чем мы поговорим в нашей статье дальше.
Типы гидрогенераторов непромышленного назначения
Итак, мы поняли, что гидрогенератор – это устройство способное преобразовывать энергию движения воды в электрическую. Применяются такие устройства в основном на ГЭС, однако и небольшие модели, вырабатывающие сотни киловатт не стали редкостью, особенно в регионах, не обедненных водными ресурсами.
Давайте посмотрим, какие типы таких устройств можно сегодня приобрести в магазине, или сделать самому.
Станция гирляндного типа
Поперек реки натягивается гибкий стальной трос, на который на манер гирлянды, вешается цепь из роторов (не путать с ротором генератора). Трос при этом играет роль вала вращения, один конец которого присоединен к валу генератора, а второй к свободно вращающемуся подшипнику качения.
Совет! Гирляндные гидростанции возводятся преимущественно в безлюдных местах и на время, например, на летних пастбищах для скота, где энергию взять больше не откуда.
Гидрогенератор гирляндного типа погружной, рамный
Сегодня конструкция гирляндного гидрогенератора получила свое продолжение в виде погружных рамных устройств. Их преимущество в том, что они не преграждают все русло, плюс устройство можно расположить на дне водоема, где оно никому не будет мешать.
Такая станция способна вырабатывать до 9,3 МВт в месяц, что позволяет решать проблемы электрификации в населенных пунктах, удаленных от центральных магистралей.
Ротор Дарье
Если вы читали нашу предыдущую статью про вертикальные ветрогенераторы, то наверняка помните про конструкции роторов Дарье.
Ротор Дарье на ветрогенераторе
Данные устройства могут успешно применяться и в воде, правда, используют их в силу сложности эксплуатации в основном промышленные предприятия.
Такие роторы очень сложно раскрутить, ровно, как и остановить (происходит это только при замерзании реки). Сама конструкция обладает приличными показателями КПД.
Подводные пропеллеры
Еще одна конструкция, сделанная по образу и подобию ветряного генератора, но теперь с вертикально расположенной осью – пропеллерный генератор. Ставятся они напротив потока, однако вращаются не за счет давящего напора воды, а по принципу возникновения подъемной силы, так же как это делает винт корабля или крыло самолета.
Водяное колесо, оснащенное лопастями
Самый старый из известных водяных двигателей
Конструкция водяного колеса известна человечеству еще со временен далекой античности, однако данный гидродвигатель применяется и сегодня, не потеряв ни капли актуальности. Эффективность данного двигателя целиком зависит от типа источника, на котором он установлен.
По этому критерию различают три типа:
Несмотря на некоторые отличия, принцип работы всех вариантов одинаков – напор воды толкает лопасти, которые приводят в движение колесо, центральная ось которого соединена с валом. Далее подключается генератор – напрямую или через цепь передаточных устройств.
Наливное колесо под акведуком из металлической бочки
Именно эта конструкция используется чаще всего народными умельцами при изготовлении самодельных гидрогенераторов. Строение ее очень простое, что позволяет применять различные подручные материалы.
Промышленное производство водяные колеса тоже не забывает, и сегодня на рынке предлагаются очень эффективные модели, лопасти которых рассчитаны на работу при определенной скорости потока воды. Из чего можно сделать такое колесо, и как собирается сам генератор, мы разберем чуть позже.
Водный генератор в водопроводной трубе
А теперь несколько слов о последних достижениях мировой инженерной мысли.
Буквально каких-то 10 лет назад, американская компания Lucid Energy представила миру первые гидрогенераторы в водопроводе. Представители фирмы утверждают, что проблема энергоснабжения населения может быть частично решена за счет совершенно новой технологии, при которой гидрогенераторы приводятся в движение от водопровода. На фото выше показано строение подобного устройства.
Гидрогенераторы водопровода: процесс установки
Транспортировка водопроводного гидрогенератора
Проблемы с гидрогенераторами
Авария на Саяно-Шушенской ГЭС
Подпятник для гидрогенератора
Создание собственного гидрогенератора
Изготовление промышленного гидрогенератора
Итак, добрались до самого интересного. Далее будет дана инструкция, как своими руками смастерить устройство, которое поможет существенно сэкономить на электроэнергии.
Самодельный гидрогенератор в действии
Наша основная задача – смастерить водяное колесо, которое нужно через привод соединить с валом генератора. Сам генератор можно также изготовить самостоятельно, либо задействовать готовое устройство, которое при имеющихся оборотах будет выдавать необходимую мощность.
Строение электрической части гидрогенератора ничем не отличается от вертикального ветряка, что мы рассматривали в прошлой статье. Поэтому, если вам интересно, как самому сделать генератор (и ротор, и статор) обязательно ее прочитайте. Нас же сейчас больше интересует механическая часть, которая сильно зависит от мощности водяного потока.
Водяное колесо из влагостойкой фанеры, применяемой в судостроительстве
Колесо из металла будет служить дольше
Сопло можно сделать закрытым
Совет! Если вы используете в агрегате генератор переменного тока, то вам потребуется дополнить цепь выпрямителем в виде диодного моста, который к аккумулятору уже будет подавать постоянный ток.
На этом закончим наш обзор. Мы разобрали характеристики гидрогенераторов нескольких типов, посмотрели, как эти устройства могут быть собраны самостоятельно и узнали много чего интересного.
Решение об установке такого устройства поможет принять видео в этой статье, рассказывающее и показывающее основные требования к монтажу таких устройств.