В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

Ответы 2

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

ОПИСКА в условии. Дано решение для измененного условия.

Xd = √(AD²-Yd²) = √(10²-4²) = 2√21 ≈ 9,2.

АВ(Xb) = Xd+DC+BH = 9,2+3+3 = 15,2ед.

Тогда имеем точки: А(0;0), В(15,2;0), Е(13,7;2) и D(9,2;4).

Уравнение прямой ВD: (X-Xb)/(Xd—Xb) = (Y-Yb)/(Yd-Yb) или

(Х-15,2)/(9,2-15,2) = (Y-0)/4 => 2X+3Y = 30,4 (1).

Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/13,7 = (Y-0)/2 => 2X=13,7Y (2).

Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2). Подставим (2) в (1): 13,7Y+3Y = 30,4. => Y ≈ 1,82. => X ≈ 12,5.

Итак, точка М(12,5;1,82).

Теперь разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:

Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:

Xм = (13,7+(0/4))/(5/4) = 10,96. Yм = (2+0)/(5/4) =1,6.

Координаты точки М, полученные разными не совпали, следовательно точка М не лежит на прямой DB.

Доказательство (приложение 2):

Вектор BD = BC + CD (по правилу сложения).

Вектор МЕ = (1/5)*АЕ (дано).

MD = (2/5)ВС + (2/5)СD = (2/5)*(BC +CD) = (2/5)*BD.

Это доказывает, что вектора BD и MD лежат на одной прямой. Следовательно, точка М лежит на диагонали BD, что и требовалось доказать.

Метод координат (приложение 3):

Тогда имеем точки: А(0;0), В(2;4), Е(8,5;2) и D(10;0).

Уравнение прямой ВD: (X-Xb)/(Xd-Xb) = (Y-Yb)/(Yd-Yb) или

(Х-2)/8 = (Y-4)/(-4) => X+2Y = 10 (1).

Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/8,5 = (Y-0)/(2) => X=4,25Y (2).

Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2).

Подставим (2) в (1): 4,25Y+2Y = 10. =>

Разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:

Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:

Xм = (8,5+(0/4))/(5/4) = 6,8. Yм = (2+0)/(5/4) =1,6.

Координаты точки М, полученные разными совпали, следовательно точка М лежит на прямой DB, что и требовалось доказать.

P.S. В дополнение представлен рисунок, на котором с программы GeoGebra построена трапеция по условию, данному в задании. На нем видно, что точка М1 пересечения прямых BD и АЕ и точка М, делящая отрезок АЕ в отношении 4:1, не совпадают.

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm
В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm
В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm
В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

точка М лежит на АЕ, так что АМ:МЕ=4:1.Используя векторы, докажите, что точка М лежит на диагонали ВД.

Отметить нарушение Reginaleskina2 19.10.2016

ответы и объяснения

ОПИСКА в условии. Дано решение для измененного условия.

Xd = √(AD²-Yd²) = √(10²-4²) = 2√21 ≈ 9,2.

АВ(Xb) = Xd+DC+BH = 9,2+3+3 = 15,2ед.

Тогда имеем точки: А(0;0), В(15,2;0), Е(13,7;2) и D(9,2;4).

Уравнение прямой ВD: (X-Xb)/(Xd—Xb) = (Y-Yb)/(Yd-Yb) или

(Х-15,2)/(9,2-15,2) = (Y-0)/4 => 2X+3Y = 30,4 (1).

Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/13,7 = (Y-0)/2 => 2X=13,7Y (2).

Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2). Подставим (2) в (1): 13,7Y+3Y = 30,4. => Y ≈ 1,82. => X ≈ 12,5.

Итак, точка М(12,5;1,82).

Теперь разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:

Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:

Xм = (13,7+(0/4))/(5/4) = 10,96. Yм = (2+0)/(5/4) =1,6.

Координаты точки М, полученные разными не совпали, следовательно точка М не лежит на прямой DB.

Доказательство (приложение 2):

Вектор BD = BC + CD (по правилу сложения).

Вектор МЕ = (1/5)*АЕ (дано).

MD = (2/5)ВС + (2/5)СD = (2/5)*(BC +CD) = (2/5)*BD.

Это доказывает, что вектора BD и MD лежат на одной прямой. Следовательно, точка М лежит на диагонали BD, что и требовалось доказать.

Метод координат (приложение 3):

Тогда имеем точки: А(0;0), В(2;4), Е(8,5;2) и D(10;0).

Уравнение прямой ВD: (X-Xb)/(Xd-Xb) = (Y-Yb)/(Yd-Yb) или

(Х-2)/8 = (Y-4)/(-4) => X+2Y = 10 (1).

Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/8,5 = (Y-0)/(2) => X=4,25Y (2).

Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2).

Подставим (2) в (1): 4,25Y+2Y = 10. =>

Разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:

Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:

Xм = (8,5+(0/4))/(5/4) = 6,8. Yм = (2+0)/(5/4) =1,6.

Координаты точки М, полученные разными совпали, следовательно точка М лежит на прямой DB, что и требовалось доказать.

Источник

В квадрате abcd взяли точку m так что bm= dm. Докажите что точка m лежит на диагонали квадрата

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

Ответы 2

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

ОПИСКА в условии. Дано решение для измененного условия.

Xd = √(AD²-Yd²) = √(10²-4²) = 2√21 ≈ 9,2.

АВ(Xb) = Xd+DC+BH = 9,2+3+3 = 15,2ед.

Тогда имеем точки: А(0;0), В(15,2;0), Е(13,7;2) и D(9,2;4).

Уравнение прямой ВD: (X-Xb)/(Xd—Xb) = (Y-Yb)/(Yd-Yb) или

(Х-15,2)/(9,2-15,2) = (Y-0)/4 => 2X+3Y = 30,4 (1).

Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/13,7 = (Y-0)/2 => 2X=13,7Y (2).

Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2). Подставим (2) в (1): 13,7Y+3Y = 30,4. => Y ≈ 1,82. => X ≈ 12,5.

Итак, точка М(12,5;1,82).

Теперь разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:

Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:

Xм = (13,7+(0/4))/(5/4) = 10,96. Yм = (2+0)/(5/4) =1,6.

Координаты точки М, полученные разными не совпали, следовательно точка М не лежит на прямой DB.

Доказательство (приложение 2):

Вектор BD = BC + CD (по правилу сложения).

Вектор МЕ = (1/5)*АЕ (дано).

MD = (2/5)ВС + (2/5)СD = (2/5)*(BC +CD) = (2/5)*BD.

Это доказывает, что вектора BD и MD лежат на одной прямой. Следовательно, точка М лежит на диагонали BD, что и требовалось доказать.

Метод координат (приложение 3):

Тогда имеем точки: А(0;0), В(2;4), Е(8,5;2) и D(10;0).

Уравнение прямой ВD: (X-Xb)/(Xd-Xb) = (Y-Yb)/(Yd-Yb) или

(Х-2)/8 = (Y-4)/(-4) => X+2Y = 10 (1).

Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/8,5 = (Y-0)/(2) => X=4,25Y (2).

Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2).

Подставим (2) в (1): 4,25Y+2Y = 10. =>

Разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:

Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:

Xм = (8,5+(0/4))/(5/4) = 6,8. Yм = (2+0)/(5/4) =1,6.

Координаты точки М, полученные разными совпали, следовательно точка М лежит на прямой DB, что и требовалось доказать.

P.S. В дополнение представлен рисунок, на котором с программы GeoGebra построена трапеция по условию, данному в задании. На нем видно, что точка М1 пересечения прямых BD и АЕ и точка М, делящая отрезок АЕ в отношении 4:1, не совпадают.

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm
В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm
В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm
В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

В квадрате abcd взяли точку m так что bm равно dm. Смотреть фото В квадрате abcd взяли точку m так что bm равно dm. Смотреть картинку В квадрате abcd взяли точку m так что bm равно dm. Картинка про В квадрате abcd взяли точку m так что bm равно dm. Фото В квадрате abcd взяли точку m так что bm равно dm

точка М лежит на АЕ, так что АМ:МЕ=4:1.Используя векторы, докажите, что точка М лежит на диагонали ВД.

Отметить нарушение Reginaleskina2 19.10.2016

ответы и объяснения

ОПИСКА в условии. Дано решение для измененного условия.

Xd = √(AD²-Yd²) = √(10²-4²) = 2√21 ≈ 9,2.

АВ(Xb) = Xd+DC+BH = 9,2+3+3 = 15,2ед.

Тогда имеем точки: А(0;0), В(15,2;0), Е(13,7;2) и D(9,2;4).

Уравнение прямой ВD: (X-Xb)/(Xd—Xb) = (Y-Yb)/(Yd-Yb) или

(Х-15,2)/(9,2-15,2) = (Y-0)/4 => 2X+3Y = 30,4 (1).

Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/13,7 = (Y-0)/2 => 2X=13,7Y (2).

Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2). Подставим (2) в (1): 13,7Y+3Y = 30,4. => Y ≈ 1,82. => X ≈ 12,5.

Итак, точка М(12,5;1,82).

Теперь разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:

Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:

Xм = (13,7+(0/4))/(5/4) = 10,96. Yм = (2+0)/(5/4) =1,6.

Координаты точки М, полученные разными не совпали, следовательно точка М не лежит на прямой DB.

Доказательство (приложение 2):

Вектор BD = BC + CD (по правилу сложения).

Вектор МЕ = (1/5)*АЕ (дано).

MD = (2/5)ВС + (2/5)СD = (2/5)*(BC +CD) = (2/5)*BD.

Это доказывает, что вектора BD и MD лежат на одной прямой. Следовательно, точка М лежит на диагонали BD, что и требовалось доказать.

Метод координат (приложение 3):

Тогда имеем точки: А(0;0), В(2;4), Е(8,5;2) и D(10;0).

Уравнение прямой ВD: (X-Xb)/(Xd-Xb) = (Y-Yb)/(Yd-Yb) или

(Х-2)/8 = (Y-4)/(-4) => X+2Y = 10 (1).

Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/8,5 = (Y-0)/(2) => X=4,25Y (2).

Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2).

Подставим (2) в (1): 4,25Y+2Y = 10. =>

Разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:

Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:

Xм = (8,5+(0/4))/(5/4) = 6,8. Yм = (2+0)/(5/4) =1,6.

Координаты точки М, полученные разными совпали, следовательно точка М лежит на прямой DB, что и требовалось доказать.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *