В арифметической прогрессии an известно что a1 2 d 3 найдите четвертый
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение арифметической прогрессии.
Дано: an, d, n
Найти: a1
Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.
Числа \( a_n\) и \( d \) можно задать не только целые, но и дробные.
Число \( n \) может быть только целым положительным.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
Немного теории.
Числовая последовательность
В повседневной практике часто используется нумерация различных предметов, чтобы указать порядок их расположения. Например, дома на каждой улице нумеруются. В библиотеке нумеруются читательские абонементы и затем располагаются в порядке присвоенных номеров в специальных картотеках.
Арифметическая прогрессия
Продолжительность года приблизительно равна 365 суткам. Более точное значение равно \( 365\frac<1> <4>\) суток, поэтому каждые четыре года накапливается погрешность, равная одним суткам.
Для учёта этой погрешности к каждому четвёртому году добавляются сутки, и удлинённый год называют високосным.
В этой последовательности каждый её член, начиная со второго, равен предыдущему, сложенному с одним и тем же числом 4. Такие последовательности называют арифметическими прогрессиями.
По определению арифметической прогрессии имеем:
\( a_
откуда
\( a_n= \frac
Таким образом, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Этим объясняется название «арифметическая» прогрессия.
Отметим, что если a1 и d заданы, то остальные члены арифметической прогрессии можно вычислить по рекуррентной формуле an+1 = an + d. Таким способом нетрудно вычислить несколько первых членов прогрессии, однако, например, для a100 уже потребуется много вычислений. Обычно для этого используется формула n-го члена. По определению арифметической прогрессии
\( a_2=a_1+d, \)
\( a_3=a_2+d=a_1+2d, \)
\( a_4=a_3+d=a_1+3d \)
и т.д.
Вообще,
\( a_n=a_1+(n-1)d, \)
так как n-й член арифметической прогрессии получается из первого члена прибавлением (n-1) раз числа d.
Эту формулу называют формулой n-го члена арифметической прогрессии.
Сумма n первых членов арифметической прогрессии
Так как \( a_n=a_1+(n-1)d \), то заменив в этой формуле an получим еще одну формулу для нахождения суммы n первых членов арифметической прогрессии:
$$ S_n = n \cdot \frac<2a_1+(n-1)d> <2>$$