Tin что за металл
Олово
Олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов.Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120 Sn наиболее распространен (около 33%).
СТРУКТУРА
СВОЙСТВА
Предел прочности при растяжении 16,6 Мн/м 2 (1,7 кгс/мм 2 ); относительное удлинение 80-90%; твердость по Бринеллю 38,3-41,2 Мн/м 2 (3,9-4,2 кгс/мм 2 ). При изгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.
Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется.
ЗАПАСЫ И ДОБЫЧА
Олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10 −4 до 8·10 −3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn). Мировые месторождения олова находятся в основном в Китае и Юго-Восточной Азии — Индонезии, Малайзии и Таиланде. Также есть крупные месторождения в Южной Америке (Боливии, Перу, Бразилии) и Австралии.
В России запасы оловянных руд расположены в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин — разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Хабаровском крае (Солнечный район, Верхнебуреинский район (Правоурмийское месторождение)), в Якутии (месторождение Депутатское) и других районах.
В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем
10 мм, в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационным методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Таким образом удается повысить содержание олова в руде до 40-70 %. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановлении древесного угля, слои которого укладываются поочередно со слоями руды, или алюминием (цинком) в электропечах: SnO2 + C = Sn + CO2. Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.
ПРОИСХОЖДЕНИЕ
Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.
В общем можно выделить следующие формы нахождения олова в природе:
На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2 +1 Fe +2 SnS4 или тиллита PbSnS2 и других минералов.
ПРИМЕНЕНИЕ
Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).
Искусственные радиоактивные ядерные изомеры олова 117m Sn и 119m Sn — источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.
Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.
tin metal
1 tin metal
2 tin metal
3 tin metal
4 tin metal
5 tin foil
6 tin-base white metal
7 tin-free bearing metal
8 tin-base white metal
9 tin-free bearing metal
10 tin-base white metal
11 tin-free bearing metal
12 tin-free metal
13 tin-base white metal
14 tin-free metal
15 tin-free bearing metal
16 tin-free bearing metal
См. также в других словарях:
TIN — /tin/, n. taxpayer identification number. * * * Metallic chemical element, chemical symbol Sn, atomic number 50. It is a soft, silvery white metal with a bluish tinge, employed since antiquity in the traditional form of bronze, its alloy with… … Universalium
Tin(II) chloride — IUPAC name Tin(II) chloride Tin dichloride … Wikipedia
Tin — Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with a… … The Collaborative International Dictionary of English
Tin cry — Tin Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with… … The Collaborative International Dictionary of English
Tin foil — Tin Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with… … The Collaborative International Dictionary of English
Tin frame — Tin Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with… … The Collaborative International Dictionary of English
Tin liquor — Tin Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with… … The Collaborative International Dictionary of English
Tin mordant — Tin Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with… … The Collaborative International Dictionary of English
Tin penny — Tin Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with… … The Collaborative International Dictionary of English
Tin plate — Tin Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with… … The Collaborative International Dictionary of English
Tin pyrites — Tin Tin, n. [As. tin; akin to D. tin, G. zinn, OHG. zin, Icel. & Dan. tin, Sw. tenn; of unknown origin.] 1. (Chem.) An elementary substance found as an oxide in the mineral cassiterite, and reduced as a soft silvery white crystalline metal, with… … The Collaborative International Dictionary of English
Нитрид титана
Нитрид титана | |
Общие | |
---|---|
Систематическое наименование | мононитрид титана |
Традиционные названия | нитрид титана |
Химическая формула | TiN |
Физические свойства | |
Состояние (ст. усл.) | твёрдое |
Молярная масса | 61,874 г/моль |
Плотность | 5,44 г/см³ |
Термические свойства | |
Температура плавления | 2930 °C |
Молярная теплоёмкость (ст. усл.) | 37,12 Дж/(моль·К) |
Теплопроводность (ст. усл.) | 41,8 Вт/(м·K) |
Классификация | |
Рег. номер CAS | 25583-20-4 |
Регистрационный номер EC | 247-117-5 |
Содержание
Физические свойства
Нитрид титана представляет собой порошок желто-коричневого цвета, а в компактном состоянии приобретает золотистую окраску. Имеет кубическую гранецентрированную решётку типа NaCl, пространственная группа Fm3m, с периодом а = 0,4235 нм.
Получение
Химические свойства
Нитрид титана устойчив к окислению на воздухе до 700—800 °C, при этих же температурах сгорает в токе кислорода:
При нагреве до 1200 °C в среде водорода или в смеси азота и водорода нитрид титана является инертным веществом.
Нитрид титана стехиометрического состава проявляет стойкость к CO, но медленно реагирует с CO2 по реакции:
Реагирует на холоде с фтором:
Хлор не взаимодействует с нитридом титана до 270 °C, но реагирует с ним при температурах от 300 °C до 400 °C:
При температуре 1300 °C хлороводород взаимодействует с TiN с образованием газообразных хлоридов титана и азота с водородом.
Взаимодействует с дицианом образуя карбонитрид титана [3] :
При комнатной температуре, по отношению к серной, соляной, фосфорной, хлорной кислотам, а также к смесям хлорной и соляной, щавелевой и серной кислот, нитрид титана является стойким соединением. Кипящие кислоты (соляная, серная и хлорная) слабо взаимодействуют с TiN. На холоде малоустойчив против растворов гидроксида натрия. Взаимодействует с азотной кислотой, а в присутствии сильных окислителей растворяется плавиковой кислотой.
Применение
Применяется как жаропрочный материал, в частности из него делают тигли для бескислородной плавки металлов. В металлургии это соединение встречается в виде относительно крупных (единицы и десятки микрон) неметаллических включений в сталях, легированных титаном. Такие включения имеют, как правило, форму квадратов и прямоугольников, их легко идентифицировать методом металлографического анализа. Такие крупные частицы нитрида титана, образующиеся из расплава, приводят к ухудшению качества литого металла. Нитрид титана используется для создания износостойких покрытий (в частности, для зубных протезов жёлтого «под золото» цвета), используется в микроэлектронике в качестве диффузионного барьера совместно с медной металлизацией и др.
Нитрид титана применяется ещё и как износостойкое и декоративное покрытие. Изделия, покрытые им, по внешнему виду не отличаются от золота и могут иметь различные оттенки, в зависимости от соотношения металла и азота в соединении. Нанесение нитрида титана производится в специальных камерах термодиффузионным методом. При высокой температуре титан и азот реагируют вблизи поверхности покрываемого изделия и диффундируют в саму структуру металла.
Олово — любимый металл викингов
Пожалуй одним из самых древних металлов можно считать олово. Где-то в третьем тысячелетии до нашей эры персы и египтяне использовали олово для производства разнообразной утвари.
В XVII и XVIII веках олово широко использовалось для изготовления тарелок и блюд, однако до конца XIX столетия больше воспринималось как функциональный материал. Посуда того времени отличалась простотой форм и отсутствием декоративных элементов, поэтому оно так полюбилось последователями скандинавского стиля и широко применялось в Норвегии и Швеции. Благодаря мягкости и податливой структуре, оно стало рассматриваться как материал, пригодный для декоративной обработки. Оловянные инкрустации все чаще встречались в хрустале и деревянной мебели, комбинировались с натуральным камнем и минералами.
В наше время процесс получения олова трудоемкий и кропотливый, так как той руды, которая была раньше, не осталось. Нынешняя руда имеет множество примесей и ничтожный процент самого олова. При этом любовь и лояльность к металлу только растет. Матовый цвет в сочетании с натуральностью подчеркивают сдержанный и благородный вид предметов из олова.
Сегодня олово стремительно возвращается в наши дома из северной Европы — оловянные кубки, чаши, тарелки, кувшины, которые заполняли полки домов в послевоенное время, в 90-е были незаслуженно забыты и тогда же перекочевали на чердаки и в антикварные магазины. Теперь мы наблюдаем новый виток моды. Плюс к этому олово является одним из самых чистых металлов, оловянная посуда абсолютно безвредна для человеческого организма, она никак не влияет ни на запах, ни на вкус продуктов.
Одним из самых широко известных в быту предметом, в составе которого немало олова, есть консервные банки. Оловом покрывают ее внутренние части, чтобы продлить срок сохранности продуктов. Также оловянный сплав незаменим в лужении — это белесое покрытие дна и стенок медной посуды. Без олова не существует ни одна жестяная банка — печенье, сладости, чай и специи сохраняют свою свежесть исключительно в них.
Интернет-магазин 3 СОРОКИ изначально является приверженцем скандинавского стиля и его атрибута — олова во всех его проявлениях. Винтажные оловянные предметы тщательно отобраны и привезены из Норвегии, Швеции, Дании, Германии и Голландии. Большинство из них имеют клеймо TINN, Tenn или Tin, что, собственно, и означает «олово». Наши оловянные тарелки, приборы, блюда и вазы особенно любимы фотографами еды и интерьеров, за отсутствие бликов при выполнении снимка и за великолепный контраст, который создается лишь благодаря этому металлу.
Покрытия TiN, ZrN, TiCN, TiC, CrN, AlTiN, ZrAlN, ZrCN, TiO.
Наша компания оказывает услуги по нанесению упрочняющих покрытий на различные материалы с использованием вакуумного оборудования ионно-плазменного напыления. В производстве мы используем одни из самых современных вакуумных методов получения высокотехнологичных тонких плёнок для покрытия микро-нано-электроники, зубных протезов, режущего инструмента.
Нитрид титана – TiN.
Нитрид титана TiN – химическое соединение, которое получают при температуре 1200°С путем азотирования титана. Кубическая алмазоподобная структура покрытия обеспечивает ему высокую твердость, низкий коэффициент трения и оптимальную химическую стойкость. Благодаря таким качествам, TiN активно используется для упрочнения режущих инструментов, подшипников и штампов, предотвращает налипание обрабатываемого материала на инструмент.
Нержавеющая сталь после обработки нитридом титаном приобретает следующие свойства :
Кроме этого нитрид титана имеет золотой оттенок, что выгодно отличает покрытие от прочих. На сегодняшний день TiN – это самое похожее на золото соединение. Поэтому его часто используют в декоративных целях, когда необходимо добиться максимально натурального золотого цвета.
Если при напылении нитрида титана использовать большое содержания азота – получится медный цвет.
Нитрид циркония — ZrN.
Нитрид циркония ZrN представляет собой бинарное соединение неорганического типа, полученное в результате симбиоза азота и металла циркония. Имеет цвет белого золота.
Покрытие не заменимо в стоматологии – напыление нитрида циркония на элементы имплантов – абатменты, зубные коронки, зубные протезы.
Нитрид циркония успешно используется для обработки крепежных элементов. В результате значительно повышается износостойкость изделия (в 3-5 раз), а также его декоративные свойства. Состав хорошо защищает металл от коррозии, повышает эксплуатационный ресурс.
Состав обладает высокой химической стойкостью, а также оптимальным уровнем микротвердости. Нитрид циркония активно используют в качестве декоративного покрытия для аксессуаров — бижутерия и наручные часы.
Карбонитрид титана – TiCN.
Карбонитрид титана TiCN — получают практически так же, как и нитрид титана, только в качестве реакционного газа используется смесь азота с ацетиленом или пропаном, а не чистый азот. Покрытие применяется для сверл, которые подвергаются сильным термодинамическим нагрузкам, на инструменте резьбонарезного типа.
Карбонитрид титана TiCN — тугоплавкое соединение обладает высокими физико-механическими свойствами и имеет низкий коэффициент трения покрытия, благодаря чему обработанные инструменты могут полноценно работать в режиме фрезерования, ударном режиме, при нарезании резьбы.
Нитрид хрома – CrN.
Нитрид хрома CrN представляет собой неорганическое соединение азота и металла хрома. Покрытие обладает высокой адгезией, сопротивляемостью коррозийным процессам, высоким уровнем вязкости. CrN используется для повышения стойкости режущих инструментов и оснастки.
Инструменты с покрытием из нитрида хрома применяются для обработки цветных металлов, пластика. CrN не поддается воздействию воды как на холоде, так и при нагревании, нитрид хрома применяется для нанесения на штампы, пресс-формы, детали машин.
Комплексный нитрид титана алюминия – AlTiN.
Нитрид титана алюминия AlTiN – универсальное высокопроизводительное покрытие, применяется для обработки режущего инструмента, повышая его износостойкость, прочность и работоспособность в несколько раз. Покрытый инструмент используется при точении, сверлении, фрезеровке, развертке.
Наиболее эффективны покрытия при обработке материалов с низким уровнем теплопроводности – никелевые сплавы, нержавеющая сталь, титановые сплавы. AlTiN оптимально подходит для сухой высокоскоростной обработки, обработки закаленных сталей.
Комплексный нитрид циркония алюминия — ZrAlN.
Нитрида циркония алюминия ZrAlN используется для обработки инструментов с целью увеличить их производительность и работоспособность, защитить изделия от негативных внешних факторов, продлить срок эксплуатации.
Покрытие из нитрида циркония алюминия используется для обработки сплавов титана, алюминия, пластика. Состав оказывает на сталь микролегирующее и модифицирующее свойство, повышая ее прочностные характеристики. Также цирконий применяется для получения высокотвердой керамики. Из такого материала изготавливаются матрицы и фильеры для экструзии металлов, головки режущего типа, детали насосов и автомобильных двигателей.
Карбид титана — TiC.
Карбид титана TiC – порошок светло-серого цвета, полученный в результате соединения металлического титана и углерода. Покрытие используется для повышения эксплуатационных характеристик целого ряда инструментов.
Обработанные карбидом титана инструменты значительно повышают свои прочностные характеристики, лучше справляются с обработкой цветных металлов и прочих материалов.
Также покрытие TiC используется для покрытия высокоскоростных буров, и при производстве деталей реактивного двигателя, и шлифовально-абразивного инструмента. Карбид титана используют не только для нанесения износостойких покрытий, но для изготовления чехлов термопар, тиглей, для футеровки печей вакуумного высокотемпературного типа.
Карбонитрид циркония – ZrCN.
Карбонитрид циркония ZrCN известен своими уникальными эксплуатационными характеристиками, активно используют для обработки цветных металлов и алюминиевых сплавов. Покрытие препятствует налипанию обрабатываемого материала к поверхности инструмента. Состав рекомендуется также для обработки стекловолокна, нейлона, большинства полимерных материалов. Применяется ZrCN для защиты от коррозии.
Покрытие ZrCN применяется для обработки режущих инструментов, которые предназначены для работы с цветными металлами, а также для приспособлений для полировки. Карбонитрид циркония чрезвычайно устойчив к высоким температурам.
Оксид титана – TiO. Радужное напыление «Хамелеон».
Особенностью покрытий из оксида титана TiO является цветовой эффект «хамелеона». Поэтому такие покрытия в основном применяются в качестве декоративных и защитно-декоративных для изделий из различных материалов — сталей, алюминиевых сплавов, меди, пластмасс, стекла, керамики и т.д.
Покрытия TiO имеют небольшую толщину, обладая при этом достаточно высокой износостойкостью. При обработке поверхности твердосплавных инструментов диоксидом титана можно повысить их стойкость. Кроме того, покрытия на основе оксида титана известны как обладающие высокой фотокаталитической активностью: они эффективно используют свет для ускорения химических реакций.