System agent voltage что это

Сore (ядро), Uncore (субъядро), System agent (системный агент).

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Сore (ядро), Uncore (субъядро), System agent (системный агент).

Все компоненты, входящие в микроархитектуру процессоров Nehalem, были разделены на два основных блока (рис. 1). В Intel их называют: core (ядро) и uncore (субъядро).

Субъядро (uncore) охватывает компоненты, отвечающие за средства коммуникации с внешним миром, сюда относятся :

— контроллер памяти (memory controller),

— интерконнект QuickPath (QuickPath links),

— кэш 3-го уровня ( L 3 cache ),

— средства управления энергопитанием ( powermanagement ),

— встроенный графический контроллер.

Предложенное архитектурное деление позволило перейти на новый принцип модельного деления серии выпускаемых процессоров. Отличительным признаком серии будет использованное ядро (core). А вот различная комплектация (рис. 1) уровня субъядро («uncore») позволит выделить специализированные типы процессоров для отдельных применений:

— настольные для бизнес-решений,

— серверные (серверная версия будет отличаться расширенным размером кэша L 3 и добавление каналов QPI ).

С истемный агент ( System agent ). Этот термин стали использовать для процессоров IvyBridge. Блок под названием «системный агент» ( System agent ) является по сути северным мостом и содержит многоканальный контроллер памяти, «мосты» PCI-Express, DMI, дисплейные интерфейсы, блок аппаратного декодирования видео. Модуль управления питанием PCU (Power Control Unit). Как и все элементы архитектуры, он подключен к кольцевой шине (см. рис. 2).

Источник

Этот FAQ содержит информацию по процессорам intel эпохи Core. Рекомендуется к прочтению новичкам, дабы ориентироваться в терминологии. Материал содержит большой объем информации собранной из разных источников, поэтому просьба в случае обнаружения неточностей и ошибок сообщить о них автору данного FAQ alex1974.

Расширение системы команд

MMX (Multimedia Extensions — мультимедийные расширения) — коммерческое название дополнительного набора инструкций, выполняющих характерные для процессов кодирования/декодирования потоковых ау.

Этот FAQ содержит информацию по процессорам intel эпохи Core. Рекомендуется к прочтению новичкам, дабы ориентироваться в терминологии. Материал содержит большой объем информации собранной из разных источников, поэтому просьба в случае обнаружения неточностей и ошибок сообщить о них автору данного FAQ alex1974.

Расширение системы команд

MMX (Multimedia Extensions — мультимедийные расширения) — коммерческое название дополнительного набора инструкций, выполняющих характерные для процессов кодирования/декодирования потоковых аудио/видео данных действия за одну машинную инструкцию. Впервые появился в процессорах Pentium MMX.

SSE (Streaming SIMD Extensions, потоковое SIMD-расширение процессора) — это SIMD (Single Instruction, Multiple Data, Одна инструкция — множество данных) набор инструкций, разработанный Intel и впервые представленный в процессорах серии Pentium III как ответ на аналогичный набор инструкций 3DNow! от AMD, который был представлен годом раньше. Первоначально названием этих инструкций было KNI — Katmai New Instructions (Katmai — название первой версии ядра процессора Pentium III).

Технология SSE позволяла преодолеть 2 основные проблемы MMX — при использовании MMX невозможно было одновременно использовать инструкции сопроцессора, так как его регистры были общими с регистрами MMX, и возможность MMX работать только с целыми числами.

SSE включает в архитектуру процессора восемь 128-битных регистров и набор инструкций, работающих со скалярными и упакованными типами данных.

Преимущество в производительности достигается в том случае, когда необходимо произвести одну и ту же последовательность действий над разными данными. В таком случае блоком SSE осуществляется распараллеливание вычислительного процесса между данными.

SSE2 (Streaming SIMD Extensions 2, потоковое SIMD-расширение процессора) — это SIMD (Single Instruction, Multiple Data, Одна инструкция — множество данных) набор инструкций, разработанный Intel и впервые представленный в процессорах серии Pentium 4. SSE2 расширяет набор инструкций SSE с целью полностью вытеснить MMX. Набор SSE2 добавил 144 новые команды к SSE, в котором было только 70 команд.

SSSE3 (Supplemental Streaming SIMD Extension 3) — это обозначение данное Intel’ом четвёртому расширению системы команд. Предыдущее имело обозначение SSE3 и Intel добавил ещё один символ ‘S’ вместо того, чтобы увеличить номер расширения, возможно потому, что они посчитали SSSE3 простым дополнением к SSE3. Также их называли кодовыми именами Tejas New Instructions (TNI) и Merom New Instructions (MNI) по названию процессоров, где впервые Intel намеревалась поддержать эти новые команды. Появившись в Intel Core Microarchitecture, SSSE3 доступно в сериях процессоров Xeon 5100 (Server и Workstation версии), а также в процессорах Intel Core 2 (Notebook и Desktop версии) и Intel Atom. Новыми в SSSE3, по сравнению с SSE3, являются 16 уникальных команд, работающих с упакованными целыми. Каждая из них может работать как с 64-х битными (MMX), так и с 128-ми битными (XMM) регистрами, поэтому Intel в своих материалах ссылается на 32 новые команды.

SSE4 — новый набор команд микроархитектуры Intel Core, впервые реализованный в процессорах серии Penryn. SSE4 состоит из 54 инструкций, 47 из них относят к SSE4.1 (они есть в процессорах Penryn). Полный набор команд (SSE4.1 и SSE4.2, то есть 47 + оставшиеся 7 команд) доступен только в процессорах Intel с микроархитектурой Nehalem, которые были выпущены в середине ноября 2008 года. Ни одна из SSE4 инструкций не работает с 64-х битными mmx регистрами (только с 128-ми битными xmm0-15).

AVX (Advanced Vector Extensions) — расширение системы команд x86 для микропроцессоров Intel, предложенное Intel в марте 2008. AVX предоставляет различные улучшения, новые инструкции и новую схему кодирования машинных кодов: 1. Размер векторных регистров SIMD увеличивается с 128 до 256 бит. Существующие 128-битные инструкции будут использовать младшую половину новых YMM регистров. В будущем возможно расширение до 512 или 1024 бит. 2. Неразрушающие операции. Набор инструкций AVX позволяет использовать любую двухоперандную инструкцию XMM в трёхоперандном виде без модификации двух регистров-источников, с отдельным регистром для результата. Например, вместо a = a + b можно использовать c = a + b, при этом регистр a остаётся не изменённым. AVX не поддерживает неразрушающие формы операций над обычными регистрами общего назначения, такими как EAX, но такая поддержка, возможно, будет добавлена в последующих расширениях. 3.Требования выравнивания данных для операндов SIMD в памяти ослаблены.

AES (Advanced Encryption Standard) — расширение системы команд x86 для микропроцессоров, предложенное компанией Intel в марте 2008. Целью данного расширения является ускорение приложений, использующий шифрование и дешифрирование по алгоритму AES.

EM64T (также x86-64/ x64/Intel64/) — 64-битная аппаратная платформа для выполнения 64-разрядных приложений. Это расширение архитектуры x86 с полной обратной совместимостью. Основной отличительной особенностью EM64T является поддержка 64-битных регистров общего назначения, 64-битных арифметических и логических операций над целыми числами и 64-битных виртуальных адресов. В процессоры с EM64T добавились 16 целочисленных 64-битных регистра общего назначения, 8 80-битных регистров с плавающей точкой, 8 64-битных регистров Multimedia Extensions, 16 128-битных регистров SSE, 64-битный указатель RIP и 64-битный регистр флагов RFLAGS. Кроме поддержки со стороны процессора, технология так же требует поддержки со стороны материнской платы (чипсета). Технология впервые была реализована в поздних моделях Pentium4.

EIST или Enhanced Intel SpeedStep – программно-управляемая технология энергосбережения, динамически изменяющая множитель и напряжение питания ядра процессора в зависимости от нагрузки и настроек операционной системы, в этом ее главное отличие от C1E. Чрезвычайно полезна в ноутбуках, где с помощью настроек плана электропитания позволяет увеличить длительность работы от батареи, за счет ограничения потребления процессора. На десктопах позволяет тонко настроить в ОС пороги снижения множителя в зависимости от нагрузки. Если в биос EIST включена, а в ОС множитель не снижается – проверьте настройки плана электропитания. О настройке плана электропитания читать тут.

LLC (LoadLine Calibration, Vcore Drop Control ) – интеллектуальная функция устранения просадки напряжения Vcore в нагрузке. Как правило имеет несколько режимов устранения просадок, чем жестче режим, тем выше будет нагрев процессора.

Execute Disable Bit (XD) — атрибут страницы памяти в архитектурах x86 и x86-64. Поскольку в современных компьютерных системах память разделяется на страницы, имеющие определенные атрибуты, разработчики процессоров добавили ещё один: запрет исполнения кода на странице. То есть, такая страница может быть использована для хранения данных, но не программного кода. При попытке передать управление на такую страницу процессор сформирует особый случай ошибки страницы и программа (чаще всего) будет завершена аварийно.

Physical Address Extension (PAE) — режим работы встроенного блока управления памятью x86-совместимых процессоров, в котором используются 64-битные элементы таблиц страниц (из которых для адресации используются только 36 бит), c помощью которых процессор может адресовать 64 ГБ физической памяти (вместо 4 ГБ, адресуемых при использовании 32-разрядных таблиц), хотя каждая задача (программа) всё равно может адресовать максимум 4 ГБ виртуальной памяти.

Температуры, термомониторинг, термозащита

Thermal Monitor 1 (TM1) – он же троттлинг, Throttling, или Thermal Throttling, а также Thermal Trip. Механизм TM1 заключается в снижении тепловыделения за счет пропуска тактов при перегреве процессора. TM1 основан на механизме модуляции тактового сигнала (clock modulation), позволяющем регулировать эффективную частоту работы ядра с помощью введения холостых циклов — периодического отключения подачи тактового сигнала на функциональные блоки процессора. Перегревом считается достижение значения 0 по датчикам DTS. Впервые появился в процессорах Pentium M.

TurboThrottling – выражение, появившееся на страницах оверклокерских форумов. Означает прекращение работы технологии TurboBoost в Nehalem или TurboBoost 2.0 в Sandy Bridge, по сути дальнейшее развитие TM2 в процессорах Core i7(i5, i3), постепенно снижает турбомножитель вплоть до стандартного в нагрузке, если были превышены турболимиты (Sandy Bridge) или превышено TDP (nehalem). TurboThrottling также срабатывает при достижении критической температуры.

Tjmax – значение для вычисления температуры по датчикам DTS, формула проста: Tcore = Tjmax – Distance to tjmax. В процессорах nehalem и более поздних содержится в специальном регистре, и может быть считано программами мониторинга. Для всех процессоров Core 2 значение Tjmax составляет 100 градусов за исключением экстремальных моделей QX****. Автор данного FAQ предпочитает игнорировать Tjmax и в качестве индикатора температуры предпочитает Distance to tjmax.

TDP (Thermal Design Package, Thermal Design Power) – или проще термопакет. Параметр, характеризующий максимальную выделяемую процессором тепловую мощность, необходим для расчета мощности системы охлаждения. Измеряется в ваттах.

ThrottleStop Показывает параметры энергосбережения, турбобуста, потребляемую мощность, реальный множитель для всех ядер. Ну и как видно из названия позволяет заблокировать троттлинг, а так же тонко настроить энергосбережение.

Функциональные блоки, шины, и т.п.

Чипсет (англ. chipset) — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет, размещаемый на материнской плате, выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, центрального процессора (ЦП), ввода-вывода и других.

PCH (Platform Controller Hub) – так называется южный мост в чипсетах для процессоров Lynnfield и Sandy Bridge. Главное отличие от ЮМ в том, что PCH подключается непосредственно к процессору через шину DMI. Функционально – самый обычный ЮМ.

IMC (Integrated Memory Controller) – интегрированный контроллер памяти как правило в процессорах s1156.

FSB (Front Side Bus) – шина эпохи s775 обеспечивающая соединение между процессором и северным мостом.

Частота CPU = BCLK x Множитель процессора

Частота Uncore = BCLK x Множитель Uncore (в процессорах поколения Nehalem)

Частота памяти = BCLK x Множитель памяти

Частота QPI = BCLK x Множитель QPI (в процессорах поколения Nehalem, в исполнении 1366)

iGPU (integrated Graphics processing unit) – интегрированное графическое ядро процессоров интел.

PLL (Phase-locked loop) – ФАПЧ, или Фа́зовая автоподстро́йка частоты.

Absolute maximum and minimum ratings для процессоров Sandy Bridge до сих пор не представлены (отсутствует в даташитах), поэтому о допустимых вольтажах приходится судить по косвенным данным:

Исходя из одинакового техпроцесса (32nm) о допустимых вольтажах для Sandy Bridge можно судить по таблице для i7 32nm для s1366.

Vcore (CPU Voltage)– напряжение питания ядра (ядер) процессора. Увеличение этого напряжения благоприятно влияет на разгон ядер процессора. В процессорах i7(i5, i3), установка Vcore через этот пункт приводит к невозможности энергосберегающих технологий управлять напряжением Vcore.

CPU Offset Voltage (DVID) – параметр биос материнских плат для процессоров i7(i5, i3) устанавливает смещение Vcore в вольтах, может принимать как положительное так и отрицательное значение. При этом параметр CPU Voltage должен быть установлен в normal или в offset mode (зависит от материнской платы). Установка Vcore через этот параметр позволяет корректно работать энергосберегалкам. Так же подобный параметр присутствовал на некоторых платах с чипсетом х38/48 но не был широко распространен.

Vtt (FSB termination voltage)– напряжение питания терминаторов внешних шин процессора, ключевое напряжение в GTL логике. Поднятие напряжения благоприятно влияет на стабильность всех внешних шин процессора, положительно влияет на стабильность операций с памятью.

QPI/VTT, QPI/DRAM – в процессорах поколения Nehalem совмещенное напряжение питающее блок Uncore, а также терминаторы внешних шин процессора. Рекомендуется поднимать при разгоне Uncore/DDRIII.

VccIO – аналог VTT в процессорах Sandy Bridge.

CPU PLL Voltage (VccPLL)— Напряжение питания блока ФАПЧ (Фазовой автоподстройки частоты, и тактового генератора в Sandy Bridge). На материнских платах s775 часто совмещалось с напряжением питания южного моста. На процессорах Core i7(i5, i3) становится полностью самостоятельным параметром. Считается, что напряжение благоприятно влияет на стабильность системы при экстремальном разгоне. При среднем и низком разгоне параметром можно пренебречь, а иногда и снизить (на Nehalem и Sandy Bridge).

NB Core Voltage (MCH Voltage)– напряжение питания Северного Моста на материнских платах эпохи s775. Поднятие напряжение положительно влияет на стабильность при высоких шинах FSB, а также на стабильность подсистемы памяти.

SB Core Voltage (ICH Voltage, PCH Voltage)– напряжение питания Южного Моста, теоретически поднятие этого напряжения положительно влияет на стабильность внешних интерфейсов материнской платы, таких как IDE, SATA, USB, etc.

IMC Voltage – напряжение питания контроллера памяти в процессорах Lynnfield.

DDR Voltage (DRAM Voltage)– напряжение питания модулей памяти, в процессорах поколения Nehalem так же питает шину памяти процессора.

Стабильность, тесты, мониторинг

Prime95 является клиентом распределенных вычислений для решения математической задачи – поиска простых чисел Мерсенна. Как и любой другой подобный клиент, программа загружает задание с центрального сервера, производит необходимые вычисления и возвращает результат. Но компьютерным энтузиастам Prime95 известна благодаря другим способностям – ее можно использовать как достаточно эффективный тест стабильности компьютера. Сравнение полученных результатов с эталонными помогает выявить ошибки в работе связки процессор–память (правда, определить, что именно «виновато» в возникновении ошибок – процессор или же память, бывает затруднительно). Имеется три режима проверки стабильности, причем Large FFT более эффективно тестирует CPU, а Blend – память. Для уверенности в стабильности рекомендуется тестирование праймом проводить не менее 3 часов, а для железной стабильности не менее 12.

Linpack — программная библиотека, написанная на языке Фортран, которая содержит набор подпрограмм для решения систем линейных алгебраических уравнений. Изначально предназначалась для работы на суперкомпьютерах которые использовались в 1970-х — начале 1980-х годов.

Сегодня переработанный и оптимизированный компанией intel линпак используется для измерения производительности системы в гигафлопсах. В оверклокерской среде линпак получил популярность благодаря способности создавать максимальную нагрузку сопровождаемую максимальным энергопотреблением и нагревом процессора. Поэтому тест рекомендуется использовать в первую очередь для испытания на прочность охлаждения и проверки достаточности Vcore. При тестировании используйте максимальный объем задачи и минимум 20 проходов (рекомендую не менее 50-ти). Память линпак тестирует плохо, и даже с заведомой нестабильностью подсистемы память-северный мост может пройти успешно как 20 так и 100 проходов. Так что тест не самодостаточен, и без тестов основанных на прайм коде не обойтись.

График зависимости нагрузки от объема вычислений в линпак, взят с сайта интел:

Если результаты в Linx снижаются с каждым следующим проходом или «прыгают» от прохода к проходу возможно сработал троттлинг, турботроттлинг (i7, i5, i3) или троттлинг памяти (i7, i5, i3 только ахитектуры Sandy Bridge). Попытайтесь понизить температуру процессора, если с температурой все в порядке, проверьте установку турболимитов, а также память соотв софтом (см. выше).

Программа поддерживает несколько процессоров (от номера версии), имеет оптимизированные тесты прогрева с обнаружением ошибок под процессоры AMD, Intel Pentium4 и Core2. Тест памяти может проверять любой объем памяти. Тестирование так-же сегментами, тесты сделаны по образу и подобию TM1 и TM2.

Тест диска, особенно тест интерфейса, тоже вовсе не декоративный элемент программы. 🙂

Тест-комбайн включающий в последних версиях практически все популярные тесты стабильности почти для всех узлов системы.

CPU OCCT основан на прайм коде, может заменить прайм95.

Кроме самих тестов в программу встроен очень недурной мониторинг, сопровождаемый графическими логами.

После тестирования можно просмотреть графики просадки напряжений и сопоставить их с нагрузкой на разные узлы системы. Как вы уже наверное поняли, для непредвзятых пользователей OCCT Perestroïka 3.1.0 способен заменить линпак прайм и фурмарк.

Перед запуском теста рекомендуется установить в свойствах максимально допустимую температуру равной tjmax вашего камня.

Intel Thermal Analysis Tool (TAT) – отличная грелка для процессоров Pentium 4, Pentium D, Core 2 65 нм. Не работает с камнями архитектуры Penryn и более поздними. Отслеживает троттлинг, мониторит температуры.

Известен наверное всем. Утилита работает из под DOS, и отлично тестирует память на дефекты. В качестве теста стабильности памяти для разогнанной системы подходит слабо (очень долго выявляет ошибки). Для разогнанной системы желательно пройти несколько полных циклов тестирования (хотя бы три). Для тестирования систем на базе Sandy Bridge используйте версию не младше 4.2.

Новый тест памяти от камрада serj, подробности можно прочесть в теме https://forums.overclockers.ru Программа имеет очень гибкие настройки и оптимизирована под современные многоядерные процессоры.

BSOD в разогнанных системах

BSOD Codes for i7 x58 chipset:

0x101 = необходимо увеличить Vcore.

0x124 = увеличить или уменьшить QPI/VTT, если не помогло увеличить Vcore.

0x1A = Возможно неисправный модуль памяти, проверить память с помощью MemTest. Так же возможна нехватка Vddr.

0x1E = Увеличить Vcore.

0x3B = Увеличить Vcore.

0x3D = Увеличить Vcore.

0xD1 = увеличить или уменьшить QPI/VTT, если не помогло увеличить Vddr.

0x9C = увеличить или уменьшить QPI/VTT, если не помогло увеличить Vcore.

0x109 = увеличить/уменьшить Vddr.

0x116 = занижен IOH (NB) voltage, либо проблемы с видиосистемой, особенно актуально для систем с несколькими видеокартами.

BSOD Codes for SandyBridge:

0x101 = необходимо увеличить Vcore.

0x50 = неверно подобраны тайминги или множитель памяти, увеличить/уменьшить Vddr, если не помогло VccIO и/или VccSA.

0x1E = необходимо увеличить Vcore.

0x3B = необходимо увеличить Vcore.

0xD1 = увеличить VccIO /или VccSA.

0x9C = увеличить или уменьшить VccIO и/или VccSA, если не помогло увеличить Vcore.

Источник

Особенности разгона современных процессоров Intel для LGA1150

Возможность разгона процессоров уже многие годы является их неотъемлемой частью. Конечно, с ростом производительности эта процедура стала менее востребованной, но своей актуальности все же не утратила. Центральный процессор до сих пор остается основным компонентом ПК, в связи с чем остальные комплектующие в системе очень сильно зависят от его быстродействия. Причем, чем выше уровень конфигурации, тем сильнее сказывается эта зависимость. Вторая причина, заставляющая пользователей смотреть в сторону разгона процессора, заключается в недостаточной оптимизации программного обеспечения. Так, купив многоядерный процессор, вы еще не гарантируете обеспечение максимальной производительности. Например, в играх не редки случаи, когда модель с меньшим количеством ядер, но большей частотой, показывает лучшие результаты, чем ее более дорогой аналог.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Таким образом, чтобы там не говорили скептики, оверклокинг на сегодняшний день не является просто развлечением, а несет реальную практическую пользу. В этих словах мы уже неоднократно убеждались, тестируя процессоры разной производительности. Однако в рамках обычного обзора трудно рассказать обо всех нюансах, касающихся процесса оптимизации параметров. Поэтому данному вопросу мы решили посвятить отдельный материал, вернее сказать, цикл материалов. Первой его частью станет эта статья, где мы постараемся в полной мере раскрыть особенности разгона современных процессоров компании Intel. Речь пойдет о моделях, основанных на микроархитектуре Intel Haswell: семействах Intel Haswell, Intel Haswell Refresh, Intel Devil’s Canyon и Intel Haswell-E.

Способы разгона

Суть оптимизации параметров процессора в подавляющем большинстве случаев сводится к увеличению его тактовой частоты. В современных решениях от Intel она вычисляется по формуле:

CPU Freq = CPU Ratio × CPU Cores Base Freq

В связи с этим можно выделить три основные способа их разгона:

Во время оверклокинга также требуется настройка массы дополнительных параметров, затрагивающих работу не только самого процессора, но и других структурных узлов ПК (подсистемы оперативной памяти, чипсета, слотов расширения, интерфейсов). Более того, нужно постоянно отслеживать основные показатели всей конфигурации и на каждом этапе проверять стабильность ее функционирования.

Чтобы избавить пользователя от большинства из этих обязанностей, производители материнских плат предлагают инструменты автоматического разгона процессоров.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Как правило, они реализованы на уровне драйвера.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

. или же доступны в виде специального раздела в меню BIOS.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

В некоторых случаях для этих целей даже предусмотрена специальная группа кнопок, распаянных непосредственно на текстолите.

Вроде бы, основная цель достигнута − производительность процессора увеличена, и на этом материал можно заканчивать. Но у автоматического способа разгона есть много недостатков, которые выявляются в процессе повседневной эксплуатации. Во-первых, он нередко завышает многие параметры для обеспечения стабильной работы системы, тем самым излишне нагружая другие компоненты ПК. В результате конфигурация потребляет больше энергии, требует лучшего охлаждения и издает дополнительный шум. Во-вторых, материнская плата содержит лишь несколько профилей оверклокинга. Поэтому разогнать процессор до той отметки, которая требуется именно вам, не всегда получится. Придется довольствоваться только значениями, предусмотренными производителем. Более того, в некоторых случаях у системы может попросту не получиться подобрать необходимые параметры (например, при использовании решения с заблокированным множителем) и никакого ощутимого прироста от процедуры оверклокинга вы не получите. В-третьих, использование определенных функций вместе с автоматическим разгоном может быть затруднено. Особенно это касается тонкой настройки режимов энергосбережения. В-четвертых, в автоматическом режиме вы никогда не сможете достичь тех показателей и результатов, которые будут продемонстрированы при ручной оптимизации параметров.

Исходя из этого, мы рекомендуем отказаться от автоматического способа оверклокинга в пользу ручного. Однако для начала потребуются определенные знания о принципе работы процессора и подконтрольных ему узлов, а также способы его взаимодействия с другими комплектующими. Об этом мы поговорим в следующем разделе.

Особенности функционирования современных процессоров Intel. Анализ работы структурных элементов, задействованных во время процедуры разгона

Более детально об особенностях микроархитектуры Intel Haswell и Intel Haswell-E можно узнать, перейдя по соответствующим ссылкам. Здесь же внимание будет акцентировано на структурных элементах, касающихся разгона.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Самым главным из них является базовая (или опорная) частота тактового генератора (BCLK), которая по умолчанию равна 100 МГц. Как видно из схемы, все узлы процессора (процессорные ядра, кэш-память последнего уровня, встроенное графическое ядро, кольцевая шина, контроллеры памяти, шин PCI Express и DMI) так или иначе с ней связаны. Поэтому любое изменение опорной частоты неминуемо отразится на их работе. Причем, если процессорные ядра без проблем переносят такую процедуру, то другие узлы процессора и компоненты ПК могут терять стабильность своего функционирования при значении базовой частоты, которое всего лишь на несколько мегагерц превышает отметку в 100 МГц. Иными словами, разгон процессора по базовой частоте, по сути, просто лимитируется остальными узлами системы.

Чтобы решить сложившуюся проблему, в микроархитектуру Intel Haswell было внедрено понятие CPU Strap − множитель опорной частоты процессорных ядер. Таким образом, имеем следующее:

CPU Cores Base Freq = CPU Strap × BCLK Freq

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Как правило, для параметра CPU Strap доступны четыре значения: 1,00; 1,25; 1,66 и 2,5. Но и их хватит с головой для максимального разгона процессора по опорной частоте. Поскольку при стандартном значении BCLK (100 МГц) базовая частота процессорных ядер может достигать 250 МГц при использовании максимального множителя CPU Strap. То есть теоретически скорость процессора можно увеличить в 2,5 раза, не меняя его множителя. Владельцы решений из серий Intel Sandy Bridge / Ivy Bridge о таком могли только мечтать.

Правда, потенциальным покупателям современных моделей на основе микроархитектуры Intel Haswell тоже не стоит сильно обольщаться. Параметр CPU Strap доступен только для процессоров с разблокированным множителем (с индексом «K» в конце названия). Иными словами, обычные решения в данном случае тоже не смогут похвастать большим оверклокерским потенциалом − максимум +5. +10 МГц к опорной частоте BCLK без потери стабильности работы всей системы, что даст прибавку в скорости в виде дополнительных 150 − 400 МГц в зависимости от процессорного множителя.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Отметим, что параметр CPU Strap можно использовать двумя способами. В первом случае его значение фиксируется вручную, а во втором − подбирается автоматически материнской платой на основе желаемой базовой частоты опорных ядер процессора. Допустим, мы хотим, чтобы наша частота CPU Cores Base Freq была равна 150 МГц. На основе этого значения материнская плата сама определит, что параметр CPU Strap нужно зафиксировать на уровне 1,66, что даст нам скорость BCLK (BCLK Freq) на уровне 90,3 МГц (150 МГц / 1,66 = 90,3 МГц). Правда, стоит понимать, что стабильная работа системы при этом тоже не гарантируется. Зато так проще производить оптимизацию, поскольку фактически мы меняем только один параметр (скорость работы процессорных ядер). Тогда как в ручном режиме придется производить манипуляцию уже с двумя настройками (CPU Strap и базовая частота BCLK).

Теперь давайте вкратце пройдемся по узлам процессора и комплектующим ПК, скорость работы которых тактируется базовой частотой BCLK. Самыми чувствительными к изменению этого значения являются встроенные в процессор контроллеры памяти, линий PCI Express и шины DMI, служащие для «общения» с внешними компонентами системы (оперативной памятью, картами расширения и чипсетом соответственно). Поэтому очень важно позаботиться об их стабильной работе. Достигается это с помощью увеличения напряжения питания на конкретных узлах, а также путем отключения энергосберегающих технологий (более детально об этом читайте в следующих разделах).

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

В современных процессорах часто на кристалле распаивается графическое ядро. Скорость его работы рассчитывается по формуле:

iGPU Freq = iGPU Ratio × BCLK Freq / 2

Из-за архитектурных особенностей, встроенное графическое ядро чуть лучше «переваривает» повышенные значения базовой частоты BCLK, особенно при увеличении напряжения на нем. Однако в большинстве случаев в составе современных ПК используется дискретная видеокарта, в связи с чем встроенная графика автоматически деактивируется. Тем самым убирается один из компонентов, который может лимитировать разгон процессора. Еще одной положительной стороной отказа от использования iGPU является снижение нагрева процессора. К примеру, разгон встроенного графического ядра Intel HD Graphics 4600 с номинальных 1250 МГц до 1700 МГц приводит к росту энергопотребления модели Intel Core i7-4770K в среднем на 40 Вт.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Для расчета скорости оперативной памяти используется следующая формула:

Memory Freq = Memory Ratio × BCLK Freq × Memory Strap

Как видим, в данном случае мы также имеем два множителя (или делителя, смотря относительно каких величин анализировать). Первый (Memory Ratio) задает непосредственно коэффициент умножения для скорости подсистемы оперативной памяти. Второй же (Memory Strap) указывает на соотношение опорной частоты BCLK к базовой частоте модулей оперативной памяти. По сути, этот параметр является аналогом CPU Strap, только для оперативной памяти. Правда, в данном случае доступно уже меньше значений (в основном только 1,00 и 1,33). Использование значения 1,33 позволяет устанавливать более низкий множитель (Memory Ratio) и запускать память с меньшими таймингами. Таким способом можно улучшить показатели при прохождении определенных синтетических тестов, критических к задержкам модулей. Но с другой стороны, от этого страдает стабильность работы всего ПК. Поэтому при разгоне процессора оптимальное соотношение опорной частоты BCLK к базовой скорости планок оперативной памяти все же будет 1,00.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Последним важным структурным компонентом, напрямую зависящим от опорной частоты BCLK, является блок Uncore, объединяющий в себе кольцевую шину и кэш-память последнего уровня процессора. В микроархитектуре Intel Haswell их пропускная способность существенно увеличена (примерно в 2 раза), поэтому нет больше необходимости использовать модуль Uncore на высоких частотах. Кроме того, разработчики добавили возможность управлять его работой независимо от процессорных ядер. То есть эти два структурных блока (стек физических ядер и кэш-память) могут функционировать на разных частотах. Большинство оверклокеров сходятся во мнении, что при сильном разгоне процессора, скорость Uncore лучше устанавливать примерно на 300 − 500 МГц меньше частоты самого процессора. Хотя в некоторых синтетических бенчмарках синхронизация этих показателей, наоборот, позволяет добиться более высоких результатов. Как бы там ни было, нужно помнить, что оптимизация на уровне скорости блока Uncore осуществляется не для достижения стабильности работы системы после разгона процессора, а для увеличения показателей производительности.

Расчет частоты кольцевой шины и скорости кэш-памяти осуществляется по следующей формуле:

Uncore Freq = Uncore Ratio × BCLK Freq

Особенности регулятора питания современных процессоров Intel. Анализ напряжений, которые используются во время процедуры разгона

Изменение схемы работы структурных узлов процессора, как правило, требует корректировки их рабочих напряжений. То же самое касается остальных комплектующих, находящихся в тесной связи с процессором (оперативная память и чипсет). Можно, конечно, положиться на материнскую плату и предоставить ей возможность в автоматическом режиме подобрать необходимые значения. Но, опять же, такая оптимизация будет далека от оптимальной и не позволит добиться максимальных результатов разгона.

Поэтому рекомендуем запастись терпением и разобраться в электротехнической части процессоров, основанных на микроархитектуре Intel Haswell.

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Как видно из представленной выше схемы, их ключевой особенностью является отказ от полностью внешнего регулятора питания, ведь часть его перекочевала внутрь процессора (iVR). Теперь на входе процессора модуль VRM (расположен на материнской плате) формирует одно напряжение Vccin, которое в дальнейшем превращается в номиналы, необходимые для питания конкретных узлов. Такое техническое решение позволило увеличить качество выходных напряжений (в частности, уменьшить пульсации) и повысить эффективность самого преобразователя. С другой стороны, iVR занимает часть полезного пространства на кристалле и продуцирует дополнительное тепло. Но это уже особенности микроархитектуры Intel Haswell, которые не имеют прямого отношения к процедуре разгона процессора.

Итак, какие же нам напряжения пригодятся во время оптимизации параметров современных решений от Intel? Для лучшей наглядности приведем их в виде списка:

Разбираемся с настройками меню BIOS

На наш взгляд, наиболее удобным и универсальным инструментом для разгона процессора является меню BIOS, поскольку программное обеспечение, работающее в среде операционной системы, имеет сравнительно ограниченный функционал.

В данном разделе мы постараемся по максимуму осветить настройки BIOS, которые могут пригодиться во время оверклокинга, а также дать конкретные рекомендации по выбору значений для тех или иных параметров. Хотим обратить ваше внимание, что основной акцент сделан на разгоне процессора, а процедуре оптимизации параметров той же самой подсистемы оперативной памяти будет посвящена отдельная статья. Ну и напоследок хочется сказать, что приведенные ниже рекомендации в основном касаются неэкстремального оверклокинга с применением традиционных систем охлаждения (воздушный кулер, СВО).

Настройки, касающиеся частоты работы структурных узлов процессора и сопутствующих комплектующих

Если после входа в BIOS загрузилось упрощенное меню, советуем сразу же переключиться в расширенный режим. Это сделает доступными все настройки, касающиеся разгона комплектующих и мониторинга основных показателей состояния системы. Как правило, интересующие нас опции группируются на отдельных вкладках, носящих характерные названия: «OC Tweaker» (ASRock), «Extreme Tweaker» (ASUS), «M.I.T.» (GIGABYTE), «OC» (MSI).

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Здесь и далее в таблице приводятся названия настроек, которые наиболее часто встречаются в меню BIOS материнских плат. Для более детального ознакомления с возможностями каждой опции предлагаем посетить наш справочник по настройкам BIOS.

Рекомендации по использованию

BCLK Frequency (ASUS), BCLK/PCIE Frequency (ASRock), Host/PCIe Clock Frequency (GIGABYTE), CPU Base Clock (MSI)

Задает базовую (опорную) частоту BCLK

Подобрать такое значение, при котором система сохраняет стабильность своей работы и показывает максимальную производительность.

CPU Core Ratio (ASUS / GIGABYTE), CPU Ratio (ASRock), Adjust CPU Ratio (MSI)

Задает процессорный множитель

Подобрать такое значение, при котором система сохраняет стабильность своей работы и показывает максимальную производительность.

Если материнская плата позволяет задать максимальный множитель для каждого ядра отдельно, рекомендуем во всех случаях устанавливать одинаковые значения (синхронизировать скорость всех ядер).

CPU Strap (ASUS), Processor Base Clock / Gear Ratio (GIGABYTE), Adjust CPU Base Clock Strap

Задает делитель между опорной частотой BCLK и базовой частотой процессорных ядер

Для неэкстремального разгона, как правило, можно ограничиться значениями [1,00] и [1,25]. Поскольку, чем больше значение базовой частоты процессорных ядер, тем меньший процессорный множитель удастся выставить до появления проблем со стабильностью работы системы.

CPU Base Clock (GIGABYTE)

Изменяет опорную частоту процессорных ядер

Данная настройка доступна не на всех платах. Суть ее заключается в том, что вы изначально меняете только опорную частоту процессорных ядер, а такие параметры как скорость BCLK и делитель CPU Strap подбираются автоматически. Такой способ является более удобным и простым, поэтому если в меню BIOS присутствует соответствующая опция, рекомендуем ею воспользоваться.

Max. CPU Cache Ratio (ASUS), CPU Cache Ratio (ASRock), Uncore Ratio (GIGABYTE), Adjust Ring Ratio (MSI)

Устанавливает множитель частоты модуля Uncore (кольцевой шины и кэш-памяти последнего уровня)

Значение стоит подбирать так, чтобы в случае незначительного разгона процессора частота работы модуля Uncore была примерно на 0 − 300 МГц меньше скорости процессорных ядер, а при сильном разгоне − меньше на 300 − 500 МГц.

DRAM Frequency (ASRock / ASUS, MSI)

Задает скорость работы оперативной памяти

Подобрать такое значение, при котором система сохраняет стабильность своей работы и показывает максимальную производительность. Обращаем ваше внимание, что список значений формируется автоматически на основе множителей, которые используются при расчете скорости оперативной памяти. Причем последние не всегда доступны для регулировки.

System Memory Multiplier (GIGABYTE)

Задает множитель базовой частоты оперативной памяти

По сути, то же самое, что и настройка DRAM Frequency, только в этом случае скорость оперативной памяти задается не простым выбором частоты, а путем установки необходимого множителя. При этом материнская плата сразу же показывает расчетную скорость модулей.

BCLK Frequency: DRAM Frequency Ratio (ASUS), DRAM Reference Clock (MSI)

Задает делитель между опорной частотой BCLK и базовой частотой оперативной памяти

Используется для точной настройки частоты оперативной памяти во время разгона. Также может пригодиться для достижения рекордных результатов в специфических синтетических тестах.

В обычной же ситуации рекомендуем использовать значение

Max. CPU Graphics Ratio (ASUS), Adjust GT Ratio (MSI)

Задает множитель базовой частоты встроенного графического ядра

Подобрать такое значение, при котором система сохраняет стабильность своей работы и показывает максимальную производительность. Если использование встроенной графики не планируется, лучше оставить значение

GT Frequency (ASRock), Processor Graphics Clock (GIGABYTE)

Задает частоту встроенного графического ядра

Используется для тех же целей, что и опции Max. CPU Graphics Ratio (ASUS), Adjust GT Ratio (MSI). Разница кроется лишь в том, что здесь частота задается не через множитель, а явно.

Если использование встроенной графики не планируется, лучше оставить значение

Настройки, касающиеся напряжений, которые используются для корректной работы структурных узлов процессора и сопутствующих комплектующих

Перед тем, как перейти к непосредственному анализу настроек, стоит отметить, что напряжения питания на большинстве материнских плат могут задаваться несколькими способами:

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

Для некоторых напряжений питания доступен только один способ их регулировки, для других − сразу все четыре. Какой из них использовать, зависит только от ваших личных предпочтений и возможностей материнской платы. Мы же для упрощения в таблице укажем названия лишь для ручного способа (исключением являются те опции, для которых предусмотрен только offset-режим) установки значений напряжения питания.

Рекомендации по использованию

CPU Input Voltage (ASRock / ASUS), CPU VRIN External Override (GIGABYTE), VCCIN Voltage (MSI)

Задает входное напряжение питание процессора (Vccin / VRIN)

Данное значение всегда должно быть выше остальных напряжений питания, использующихся узлами процессора. В большинстве случаев для неэкстремального оверклокинга достаточно значения, лежащего в пределах 1,7 − 2,0 В. Для использования разогнанного процессора на постоянной основе рекомендуем не превышать отметки 2,2 В.

CPU Core Voltage Override (ASUS), Vcore Override Voltage (ASRock), CPU Vcore Voltage (GIGABYTE), CPU Core Voltage (MSI)

Задает напряжение питания на процессорных ядрах (Vcore)

В большинстве случаев для неэкстремального оверклокинга достаточно значения, лежащего в пределах 1,10 − 1,35 В. Для использования разогнанного процессора на постоянной основе рекомендуем не превышать отметки 1,38 В.

CPU Cache Voltage Override (ASUS), CPU Cache Override Voltage (ASRock), CPU RING Voltage (GIGABYTE, MSI)

Задает напряжение питания на модуле Uncore: кольцевой шине и кэш-памяти последнего уровня (Vring / Vuncore / Vcache)

Поднятие этого напряжения питания даже без увеличения частоты Uncore часто помогает достигнуть стабильной работы процессора при разгоне. В большинстве случаев для неэкстремального оверклокинга достаточно значения, лежащего в пределах 1,10 − 1,25 В. Для использования разогнанного процессора на постоянной основе рекомендуем не превышать отметки 1,30 В.

CPU Graphics Voltage Override (ASUS), GT Voltage Offset (ASRock), CPU Graphics Voltage (GIGABYTE), CPU GT Voltage (MSI)

Задает напряжение питания на встроенном в процессор графическом ядре (Vigpu / Vgfx)

Следует изменять только в случае разгона встроенного в процессор графического ядра. Как правило, достаточно значения, лежащего в пределах 0,90 − 1,35 В. Дальнейшее увеличение напряжения не оправдано, поскольку практически не влияет на стабильность работы iGPU на высоких частотах.

CPU System Agent Voltage Offset (ASUS / GIGABYTE), System Agent Voltage Offset (ASRock), CPU SA Voltage Offset (MSI)

Задает напряжение питания на системном агенте, которое, по сути, является напряжением питания на контроллере памяти (Vsa / VCCSA)

Используется при увеличении скорости работы подсистемы оперативной памяти. Если акцент делается на разгоне процессора, то рекомендуем устанавливать значение

CPU Analog I/O Voltage Offset (ASRock / ASUS / GIGABYTE / MSI)

Задает напряжения питания на узлах, связанных с работой встроенного контроллера памяти (Vioa / Viod)

Используется при увеличении скорости работы подсистемы оперативной памяти. Как показывает практика, в обоих случаях лучше оставлять значение

CPU Digital I/O Voltage Offset (ASRock / ASUS / GIGABYTE / MSI)

DRAM Voltage (ASRock / ASUS / GIGABYTE / MSI)

Задает напряжение питания на модулях оперативной памяти

Используется при увеличении скорости работы подсистемы оперативной памяти. Если акцент делается на разгоне процессора, то рекомендуем выбирать параметр

PCH Core Voltage (ASUS), PCH 1.05V Voltage (ASRock / MSI), PCH Core (GIGABYTE)

Задает напряжение питания на чипсете

Изменение этого напряжения питания позволяет улучшить стабильность работы системы при увеличении опорной частоты BCLK. Как правило, достаточно выставить значение в пределах 1,05 − 1,15 В.

PCH VLX Voltage (ASUS), PCH 1.5V Voltage (ASRock / MSI), PCH IO (GIGABYTE)

Задает напряжение питания на модуле в чипсете, отвечающего за обмен данными между процессором и чипсетом посредством шины DMI

С помощью данного параметра можно улучшить стабильность работы системы при изменении частоты шины DMI (а иногда и опорной частоты BCLK). Экспериментальным путем установлено, что чем выше ее скорость, тем ниже должно быть значение этого напряжения и наоборот. К примеру, для частоты DMI свыше 120 МГц нужно выставлять значение близкое к 1,05 В, а для частоты меньше 90 МГц − около 1,70 В.

В оверклокерских материнских платах можно обнаружить массу дополнительных напряжений, которые имеет смысл изменять только при экстремальном разгоне. В повседневных же ситуациях эти опции окажутся маловостребованными. Если же вас все-таки заинтересует их предназначение, опять же, рекомендуем обратиться к нашему справочнику по настройкам BIOS.

Дополнительные настройки, позволяющие добиться стабильности работы процессора после его разгона

System agent voltage что это. Смотреть фото System agent voltage что это. Смотреть картинку System agent voltage что это. Картинка про System agent voltage что это. Фото System agent voltage что это

В современных материнских платах реализовано довольно много технологий, которые так или иначе влияют на работу системы, в том числе и процессора. Пока все компоненты ПК функционируют в «стоковых» режимах, это незаметно. Но вот в процессе оверклокинга их влияние становится более заметным, поэтому иногда оптимизацию полезно проводить и на этом уровне.

Рекомендации по использованию

Load Line Calibration (ASUS), CPU Load Line Calibration (ASRock), CPU VRIN Loadline Calibration (GIGABYTE), CPU Vdroop Offset Control (MSI)

Позволяет скомпенсировать просадки напряжения питания на компонентах процессора, возникающие при увеличении нагрузки на него

При стандартных параметрах или при их незначительной оптимизации стоит устанавливать значения [Medium], [Standart] или [High] (если значения в процентах, то [+25%] или [+50%]), а при экстремальном разгоне есть смысл использовать и более агрессивные настройки − [Ultra High] и [Extreme] (если значения в процентах, то [+75%] или [+100%]). Однако стоит учитывать тот факт, что чем выше значение, тем большим будет нагрев силовых элементов модуля VRM и самого процессора. К тому же выбор неправильного параметра может, наоборот, привести к слишком завышенному напряжению на процессоре, что, опять же, негативным образом скажется на его температуре. Корректность и точность работы технологии Load Line Calibration также зависит и от уровня материнской платы.

PLL Selection (ASUS), Filter PLL Frequency (ASRock), CPU PLL Selection (GIGABYTE), CPU PCIE PLL (MSI)

Отвечает за выбор метода фильтрации сигнала тактового генератора опорной частоты BCLK

При поднятии опорной частоты BCLK рекомендуется выбирать метод [SB PLL]

Filter PLL (ASUS / MSI), Filter PLL Level (GIGABYTE)

Позволяет активировать дополнительные методы фильтрации сигнала тактового генератора опорной частоты BCLK

При сильном поднятии опорной частоты BCLK (свыше 170 МГц) следует устанавливать параметр [High BCLK], в противном случае − оставлять значение по умолчанию (

BCLK Amplitude (ASUS / MSI)

Позволяет задать амплитуду сигнала тактового генератора опорной частоты BCLK

Увеличение этого значения рекомендуется при сильном поднятии опорной частоты BCLK.

CPU Spread Spectrum (ASUS), Spread Spectrum (ASRock, MSI, GIGABYTE)

Изменяет форму сигнала на системной шине (BCLK), благодаря чему уменьшается уровень электромагнитного излучения и наводок от компонентов системы

При любой, даже незначительной оптимизации параметров системы рекомендуется отключать эту опцию (значение [Disabled]).

EPU Power Saving Mode (ASUS), Power Saving Mode (ASRock), CPU Internal VR Efficiency Management, Intel Turbo Boost Technology, Intel SpeedStep Technology, EIST Technology (ASUS / ASRock / GIGABYTE / MSI) и другие

Отвечают за активацию разнообразных энергосберегающих технологий, как всего процессора, так и его отдельных узлов

Для достижения максимальных результатов во время разгона комплектующих рекомендуется выключать все эти функции (значение [Disabled]).

CPU Integrated VR Current Limit (ASUS), Primary Plane Current Limit (ASRock), Core Current Limit (GIGABYTE), CPU Current Limit (MSI)

Позволяет установить максимальную силу тока, проходящего через встроенный в процессор регулятор питания

В зависимости от степени разгона, следует устанавливать более высокие значения, что отодвинет порог срабатывания «троттлинга» (пропуск тактов) при достижении максимальной величины тока, проходящего через встроенный регулятор питания.

Long Duration Package Power Limit (ASUS / ASRock / GIGABYTE / MSI)

Задает значение максимальной мощности, потребляемой процессором

В зависимости от степени разгона следует устанавливать более высокие значения, что отодвинет порог срабатывания «троттлинга» (пропуск тактов) при достижении максимальной мощности, потребляемой процессором. По умолчанию этот показатель равен TDP процессора.

Short Duration Package Power Limit (ASUS / ASRock / GIGABYTE / MSI)

Задает значение максимально возможного энергопотребления процессора при очень кратковременных нагрузках (не более 10 мс)

Следует устанавливать такое значение, которое не превышает показатель Long Duration Package Power Limit больше, чем на 25%.

CPU Current Capability (ASUS), Thermal Feedback (ASUS), CPU Integrated VR Fault Management (ASUS), CPU Over Voltage Protection (MSI), CPU Over Current Protection (MSI), CPU VRM Over Temperature Protection (MSI), CPU VRIN Current Protection (GIGABYTE), CPU VRIN Thermal Protection (GIGABYTE), CPU VRIN Protection (GIGABYTE) и другие

Расширяет диапазон разнообразных параметров процессора и регуляторов питания (например, силы тока, входного напряжения, допустимых рабочих температур и т.д.)

Данные опции фактически являются защитами от повреждения процессора и других компонентов системы из-за подачи высокого напряжения. Во время оверклокинга допустимые значения стоит увеличивать (либо вовсе отключать некоторые опции), чтобы избежать ситуации, когда материнская плата будет ограничивать возможности разгона.

Intel Adaptive Thermal Monitor (ASUS / ASRock / GIGABYTE / MSI)

Позволяет управлять механизмом защиты процессоров Intel от перегрева

Во время разгона процессора данную опцию лучше отключать (значение [Disabled]), а его нагрев мониторить вручную.

От теории к практике. Разгон процессоров, основанных на микроархитектуре Intel Haswell, на примере модели Intel Core i7-4770K

А теперь пришло время показать, как использовать полученные теоретические знания на практике. Для этого был выбран процессор Intel Core i7-4770K с разблокированным множителем. Остальная конфигурация тестового стенда приведена в таблице:

ASRock Fatal1ty Z97X Killer (версия BIOS 2.00)

Intel Core i7-4770K

SilverStone Heligon SST-HE01 (максимальная скорость вращения вентилятора)

2 x DDR3-2400 TwinMOS TwiSTER 9DHCGN4B-HAWP

AMD Radeon HD 6970

Seagate Barracuda 7200.12 ST3500418AS

Чтобы показать зависимость между параметрами системы во время разгона процессора, были проведены три серии тестов для разных значений опорной частоты процессорных ядер (100, 125 и 166 МГц). В каждом случае мы постепенно увеличивали их множитель и искали минимально возможные показатели напряжения входного питания (VRIN) и напряжения на процессорных ядрах (Vcore), при которых ПК еще сохранял стабильность своей работы (проверка осуществлялась путем прогона стресс-теста). Для комплексного анализа эффективности оптимизации параметров параллельно осуществлялась фиксация нагрева процессора (выбиралась температура самого горячего ядра) и уровень входного энергопотребления (всей конфигурации от розетки). Естественно, все показания снимались под максимальной нагрузкой на CPU.

Опорная частота процессорных ядер − 100 МГц

Частота процессора, МГц

Входное напряжение питания на процессоре, В

Напряжение питания на процессорных ядрах, В

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *