сколько отделов в головном мозге у птиц
Птицы (Aves)
Автор
Редактор
Птицы представляют собой один из наиболее многочисленных в видовом отношении классов высших позвоночных животных (около 9000 видов), объединенных в 35-40 отрядов. Птицы — это гомойотермные (теплокровные) амниотные организмы, получившие в результате преобразования передних конечностей в крылья способность к полету. Появившись, как полагают, в триасе от мелких хищных динозавров, птицы развили в себе ряд специфических черт строения, затронувших практически все системы и органы. Появление полета привело к существенным изменениям в скелете, мышечной и дыхательной системах. Полное разделение малого и большого круга кровообращения, особое строение дыхательной системы (развитие воздушных мешков и системы двойного дыхания) и окончательное формирование четырехкамерного сердца способствовало лучшему снабжению организма кислородом и питательными веществами, что в свою очередь интенсифицировало биохимические процессы и обмен веществ. Изменения в пищеварительной системе привели к преобразование челюстей в клюв к утрате зубов, появлению мускульного желудка и удлинению кишечника (Наумов, Карташов, 1979; Никитенко, 1969).
Особо следует отметить изменения в организации центральной нервной системы и поведении птиц. По сравнению с рептилиями головной мозг птиц увеличился в размерах (особенно конечный и средний мозг), что обеспечило птицам высокий уровень нервной деятельности и поведения. У птиц хорошо развиты все органы чувств. Наиболее отчетливо это проявляется в отношении так называемых «дистантных органов чувств» — зрения и слуха и соответствующих центров в головном мозге. Сложный характер полета связан с значительным развитием мозжечка, как центра координации двигательной деятельности птиц. Произошло резкое усложнение всей внутренней организации ЦНС (Андреева, Обухов, 1999). Высокий уровень развития ЦНС послужил основой формирования сложных форм поведения птиц. У ряда групп птиц (врановые, попугаи) установлено наличие элементов рассудочной деятельности, по уровню которой они приближаются к хищным млекопитающим и приматам (Крушинский, 1986). Все эти эволюционные преобразования обеспечили птицам процветание и распространение по Земле.
Живя долгое время вместе с людьми, птицы вступают с ними в сложные взаимодействия, имеют и важное хозяйственное значение, являются важнейшим звеном экосистем и всей биосферы Земли. Поэтому изучение птиц во всех аспектах их эволюции и организации является важной задачей биологии.
Содержание
Общий обзор строения нервной системы Птиц
Как уже отмечалось, нервная система позвоночных построена по единому для всех позвоночных животных типу и состоит из Центральной нервной системы (спинной и головной мозг) и Периферической нервной системы (соматические и вегетативные нервы, ганглии, нервные сплетения).
Спинной мозг
Спинной мозг (Medulla spinalis) имеет сходное строение со всеми позвоночными. Основным принципом организации спинного мозга является его сегментарное строение и внутреннее разделение на серое и белое вещество. Он располагается в позвоночном канале от первого шейного позвонка до крестца, где переходит в краевую нить. По ходу спинного мозга имеется два утолщения: шейное, сегменты которого управляют крыльями и пояснично-крестцовое, связанное с иннервацией задних конечностей. Разделение серого вещества на передние (вентральные) и задние (дорсальные) рога у птиц выражено слабо. Боковые рога практически отсутствуют, в связи с чем, нейроны, связанные с вегетативной нервной системой, располагаются ближе к центральному району серого вещества (рис. 1).
Спинномозговые нервы
Все спинномозговые нервы относятся к компоненту периферической нервной (ПНС) системы и являются смешанными, так как они состоят из чувствительных и двигательных нервных волокон. В составе их имеются отростки нейронов вегетативного отдела нервной системы, которые иннервируют кровеносные сосуды и копчиковую железу.
В пределах спинного мозга находятся отделы, связанные с вегетативной нервной системой. Вегетативные нервы отличаются от соматических тем, что они выходят из различных отделов центральной нервной системы, а именно от среднего и продолговатого мозга и от грудного и пояснично-крестцового отделов спинного мозга. Соматические нервы отходят от каждого сегмента спинного мозга. Парасимпатические нервы отходят от среднего и продолговатого мозга, а также от крестцового отдела спинного мозга, где заложены парасимпатические центры. Симпатические нервы образованы нейронами из центров, которые заложены в грудном и поясничном отделах спинного мозга.
Головной мозг
Головной мозг птиц разделяется на пять отделов: продолговатый, задний, средний, промежуточный и конечный (рис. 2).
Продолговатый мозг (Myelencephalon, Medulla oblongata). По гистологическому строению продолговатый мозг отличен от других отделов головного мозга тем, что серое вещество его разбросано среди белого в виде скоплений (ядер). Белое вещество состоит из мякотных волокон. Продолговатый мозг является основным проводником импульсов, идущих от вышележащих отделов мозга к спинному мозгу и в обратном направлении. В его отдельных ядрах заложены центры дыхания, секреции пищеварительных желез, сердечной деятельности, регуляции обмена веществ, защитных рефлексов. От продолговатого мозга отходят 8 пар (V-XII) черепно-мозговых нервов.
Задний мозг (Metencephalon). Мозжечок (Cerebellum) имеет у птиц относительно большой объем. Мозжечок разделяется на тело (corpus cerebelli) и ушки мозжечка (auricle). Тело мозжечка поделено бороздами на десять долек, объединенных в три доли: переднюю (IV), среднюю (VI-VIII) и заднюю (IX,X). Этот отдел мозжечка птиц гомологичен червяку (vermis) мозжечка млекопитающих. Ушки мозжечка птиц связаны с вестибулярной системой и гомологичны клочку (flocculus) млекопитающих. Полушарий мозжечка (neocerebellum) у птиц еще нет. Для птиц, как и для других высших позвоночных характерно хорошее развитие коры мозжечка с четко выделенными слоями: молекулярный, ганглионарный (с клетками Пуркинье) и гранулярный. Клеточный состав слоев и система проводящих трактов очень сложная и сходна с таковой у млекопитающих. Хорошо развиты ядра мозжечка, расположенные в глубине белого вещества. У птиц их два: медиальное и латеральное. Мозжечок своими афферентными и эфферентными путями связан со всеми отделами центральной нервной системы. Он является органом координации движений и связан с большинством сенсорных систем, особенно со слуховой, вестибулярной и соматосенсорной.
Средний мозг связан сложной системой двусторонних проекций с большинством отделов головного мозга (особенно с конечным). В вентральной части (ножки мозга) проходят проводящие тракты разного предназначения. Полостью среднего мозга является так называемый Сильвиев водопровод (у птиц, в отличие от млекопитающих, он широкий).
Промежуточный мозг (Diencephalon) у птиц небольшой и почти полностью закрыт с дорсальной стороны полушариями конечного мозга. Однако это важнейший отдел головного мозга. Он состоит из дорсального (таламус) и вентрального (гипоталамус) отделов, включающих в себя большое количество ядер (более полутора десятков). Выделяют еще надталамическую – эпиталамус и заталамическую (метаталамус) области. Основные функции промежуточного мозга связаны с проведением информации от нижележащих отделов ЦНС в полушария, координацию работы вегетативной и эндокринной систем. Существует проблема гомологии отдельных образований таламуса птиц и млекопитающих.
Структура головного мозга птиц. Конечный мозг — telencephalon
Конечный мозг птиц (telencephalon), как и мозг млекопитающих, относится к инвертированному типу и состоит из двух крупных полушарий (hemispheria cerebri), разделенных глубокой продольной щелью. У птиц поверхность полушарий, как правило, ровная и не имеет извилин, характерных для мозга большинства млекопитающих.
Полушария конечного мозга являются самыми крупными из всех отделов мозга и достигают максимальных размеров у врановых, чайковых и певчих воробьиных (рис. 4). Ведущим анализатором у большинства птиц данной группы является зрительный, в связи с чем глаза у некоторых видов по своим размерам превышают весь головной мозг. Длительное пребывание в полете обусловило мощное развитие вестибулярной системы и мозжечка. Продолговатый мозг хорошо развит и дифференцирован у многих воробьиных и врановых птиц, что указывает на усиление функций органов слуха, осязания и вкуса.
Головной мозг птиц по сравнению с другими позвоночными характеризуется очень высокими показателями относительных размеров и веса (так называемыми индексами энцефализации) (рис. 5).
Номенклатура
мозга птиц
У некоторых птиц на поверхности полушария имеется небольшая складка, называемая валлекулой (vallecula). Расположение и ход валлекул послужили основой классификации конечного мозга птиц, поскольку она отграничивает от основной части мозга особую структуру полушарий — дорсальное возвышение (Wulst).
Первый тип мозга отличается высокой степенью развития Wulst и смещением его в ростральные отделы полушарий; Он встречается у представителей следующих групп птиц: воробьиные (в том числе в семействе Врановых — Corvidae), куриные, чайковые, дневные хищники, совиные, голубиные.
Второй тип мозга характеризуется относительно слабым развитием Wulst и смещением в теменно-затылочную область. Этот тип мозга встречается в семействах: ржанковых, пастушковых, голенастых, веслоногих, дятлов и попугаев.
У большинства птиц дорсальные отделы полушарий (включая Wulst) представлены структурами Гиперстриатума, состоящего из трех мозговых отделов Hyperstriatum acessorium, Hyperstriatum intercalates superior, Hyperstriatum dorsale (рис. 6).
Исследования мозга различных видов птиц показали, что наиболее развитым гиперстриатумом обладают виды, считающиеся самыми «интеллектуальными». Например, у вороны, попугая и канарейки указанная структура более объемна, чем у курицы, перепела или голубя.
Hyperstriatum acessorium — самый дорсальный отдел гиперстриатума. У большинства видов он разделяется на две части: дорсальную, тесно связанную с кортикоидной пластинкой и имеющую слоистое строение, и вентральную, ядерного типа. Наиболее значительно hyperstriatum acessorium развит у пингвинов.
Hyperstriatum intercalates superior — наиболее вариабельный по размеру и степени дифференцировки отдел гиперстриатума. У некоторых видов он не обнаруживается.
Hyperstriatum dorsalе — отдел хорошо изученный у всех видов птиц, хотя и не занимает большого объема гиперстриатума. От соседних долей он отделен полоской белого вещества lamina frontalis superior.
Более вентрально располагаются крупные отделы полушарий — Нyperstriatum ventrale и Neostriatum, не входящие в состав Wulst. Они являются самыми крупными отделами конечного мозга.
Нyperstriatum ventrale у разных видов варьируют. Границей этого отдела является lamina frontalis superior, ниже которой лежит Neostriatum.
Neostriatum — отдел, простирающийся до самых каудальных отделов полушария. Обычно выделяют три его отдела: передний, промежуточный и каудальный.
Данная классификация сложилась на основании представлений о том, что большая часть полушарий конечного мозга птиц представлена подкорковыми — стриатарными формациями.
Однако, в настоящее время стало ясно, что большая часть дорсальных отделов полушарий представляют собой структуры, гомологичные неокортикальным формациям конечного мозга млекопитающих.
В 2005 году на специальной Международной конференции была предложена новая классификация отделов полушарий конечного мозга птиц, в которой приставка striatum в большинстве отделов полушарий была заменена на pallium (Reiner et al., 2005) (Табл. 1).
Нейроморфологические исследования показали, что дорсальные, стриатарные по старой классификации, отделы полушария птиц имеют чрезвычайно сложную цитоархитектоническую и нейронную структуру (рис. 7). Их основу составляют мультиклеточные нейро-глиальные комплексы различного вида. В состав комплексов входит несколько типов клеток, среди которых особо следует выделить короткоаксонные бесшипиковые нейроны, сходные со звездчатыми короткоаксонными нейронами, характерными для неокортикальных структур мозга высших млекопитающих (Андреева, Обухов, 1999; Константинов, Обухов, 1999; Обухов, 2005; Обухов, Обухова, 2011). Наиболее сложные комплексы были отмечены в зонах «гипер» и «неостриатума» врановых птиц, причем степень сложности этих комплексов коррелировала с уровнем рассудочной деятельности врановых, которые по этим показателям не уступают высшим приматам (Зорина, Полетаева, 2002). Данные комплексы можно рассматривать как один из вариантов пространственной организации модульной структуры высших интегративных центров головного мозга амниот. У млекопитающих корковые модули имеют вертикальную ориентацию, а у птиц модули имеют преимущественно шаровидную (или схожую с ней) конфигурацию.
Важным доказательством сходства кортикальных структур полушарий мозга амниот стали нейроэмбриологические и нейрогенетические исследования последних лет. Показано, что развитие двух основных частей полушарий: паллиума и субпаллиума у всех позвоночных находятся под контролем группы транскрипционных факторов. Паллиум – под контролем факторов Emx 1/2, Pax 6, а также фактора Tbr1, контролирующего дифференцировку глутаматэргических нейронов, являющихся типичными для паллиума всех позвоночных. Субпаллум развивается под контролем фактора Dlx и ряда других транскрипционных факторов (Dlx 5, Nkx2, Lhx6, Lhx7/8). Фактор Dlx связан с дифференцировкой ГАМК-эргических нейронов, являющихся типичными нейронами субпаллума (Medina, 2009). Оказалось что развитие «гиперстиатума» и «неостриатума» мозга птиц и корковых формаций у млекопитающих контролируются сходными транскрипционными факторами. Экспрессия мозгового нейротрофического фактора (BDNF) и выявление маркеров глутаматных рецепторов mGluR2 в структурах архистриатума мозга птиц и в развивающемся паллиуме у млекопитающих показали, что и эти отделы конечного мозга амниот гомологичны.
В результате этих исследований по структуре, системе связей и развитию конечного мозга птиц и млекопитающих сформирована новая концепция гомологии основных районов полушарий и предложена новая номенклатура структуры мозга птиц (Табл. 1).
Старая терминология | Новая терминология |
Дорсальные (паллиальные) отделы полушарий | |
Hyperstriatum accessoprium (HA) | Hyperpallium apicale (HA) |
Hyperstriatum intercalates superior (HIS) | Hyperpallium intercalatum (HI) |
Hyperstriatum dorsale (HD) | Hyperpallium dorsocellulare (HD) |
Hyperstriatum ventrale (HV) | Mesopallium (MS) |
Neostriatum (NS) | Nidopallium (N) |
Archistriatum dorsale (AD) | Arcopallium dorsale (AD) |
Archistriatum intermedium (AI) | Arcopallium intermedium (AI) |
Archistriatum mediale (AM) | Arcopallium mediale (AM) |
Archistriatum posterior (AP) | Amigdala posterior (PoA) |
Nucleus taeniae (Tn) | Nucleus taeniae amigdala (TnA) |
Вентральные (субпаллиальные) отделы полушарий | |
Lobus parolfactorius (LPO) | Medial striatum (MSt) |
Paleostriatum augmentatum (PA) | Lateral striatum |
Paleostriatum primitivum (PP) | Globus pallidus (GP) |
Nucleus accumbens (Acc) | Lateral bed nucleus stria terminalis (BSTL) |
Rostromedial lobus parolfactorius (LPOrm) | Nucleus accumbens (Acc) |
Ventral haleostriatum (VP) | Ventral pallidum (VP) |
Medial et lateral septal nucleus (Spt med (lat)) | Medial et lateral septal nucleus (Spt med (lat)) |
Относительно субпаллуима также были получены новые данные. Как известно, для неостриатума млекопитающих характерна высокая активность холинэргической системы, а также высокая плотность допаминэргических аксонных терминалей восходящих проекций от нейронов катехоаминэргической системы ствола мозга. У птиц подобные картины наблюдались в районе «палеостриатума» (paleostriatum augmentatum) и парольфакторной доли (LPO). Типы клеток, выявляемые в районе палеостриатума птиц и стриатуме млекопитающих также сходны. Сходство подкорковых структур мозга птиц и млекопитающих подтверждается и результатами нейроэмбриологических исследований. На ранних этапах эмбриогенеза в районе субпаллума птиц и млекопитающих выделяется две гистогенетические зоны: латеральная (LGE) и медиальная (MGE), экспрессирующие различные транскрипционные факторы. У млекопитающих LGE зона экспрессирует факторы Dlx1 и Dlx2 и формирует дорсальный стриатум (неостриатум) и часть вентрального стриатума (n. accumbens и olfactory tuberculum). MGE зона экспрессирует факторы Dlx1, Dlx2 и Nkx2,1, формируя большую часть вентрального стриатума (pallidum и часть амигдалы). Оказалось, что у птиц аналогичные факторы экспрессируются в отделах полушария, ранее рассматриваемые как структуры вентрального стриатума (paleostriatum augmentatun и paleostriatum primitivum).
К истинно базальным, подкорковым центрам конечного мозга птиц относят участки полушарий, расположенные вентральнее линии LMD (lamina medialis dorsalis). Они включают: РР — paleostriatum primitivum, РА — paleostriatum acessorium и область LPO — lobus parolfactorius. Также к подкорковым центрам традиционно относят септальные ядра — septum и ряд мелких ядер в вентральных и вентро-медиальных участках полушарий (Табл. 1).
Таким образом, современные данные по структурно-функциональной организации и развитию конечного мозга птиц и млекопитающих привели к полному пересмотру прежних представлений о путях эволюционного развития этого важнейшего отдела головного мозга амниот.
§ 43. Нервная система и органы чувств птиц
§ 43. Нервная система и органы чувств птиц
Нервная система птиц состоит из центрального и периферического отделов. Головной мозг птиц крупнее, чем у любых современных представителей рептилий. Он заполняет полость черепа и имеет округлую форму при небольшой длине (см. рис. III-12). Самый крупный отдел — передний мозг. Он состоит из двух полушарий с гладкой поверхностью или слабо обозначенными продольными углублениями. Эти углубления не являются истинными бороздами, а отражают границы слоёв внутренних ядер (рис. III-13, а, в). Только у попугаев можно заметить небольшое морфологическое обособление височной доли полушарий. Основной объём полушарий занимают подкорковые ядра, кора имеет рудиментарное строение и занимает небольшую часть верхней стенки мозга. Полушария переднего мозга простираются назад до контакта с мозжечком. Следствием разрастания переднего мозга назад, а мозжечка — вперёд является то, что промежуточного мозга снаружи совсем не видно, хотя его можно определить по выросту эпифиза. Эпифиз у птиц развит незначительно, а гипофиз достаточно крупный. Средний мозг сильно развит, но из-за бокового расположения имеет нехарактерную внешнюю морфологию. Передние выпячивания крыши среднего мозга сдвинуты латерально. Их часто называют зрительными долями (Lobi optici). Мозжечок состоит из массивной средней части (червя), пересекаемой обычно 9 извилинами, и двух небольших боковых долей, которые гомологичны клочку мозжечка млекопитающих. Задний и продолговатый мозг имеет два резких изгиба, обусловленных ориентацией и подвижностью головы птиц.
Гистологическое строение головного мозга птиц существенно отличается от такового у других групп позвоночных. Уже у амфибий можно выявить старый и древний стриатум, септум и в зачаточном виде базальные ядра переднего мозга. У рептилий появляется новый стриатум, который становится доминирующей структурой переднего мозга (см. рис. III-12; III-13, а).
Важно подчеркнуть, что новый стриатум возникает у птиц вопреки развитию зачаточного неокортекса рептилий. Иначе говоря, у рептилий получили значительное развитие структуры стриатума и септума переднего мозга. Они расположены в базальных частях переднего мозга птиц и развиты намного лучше, чем у рептилий (см. рис. III-13, а). Однако рептилии приобрели и зачаточные корковые структуры переднего мозга, которые сформировались в результате развития дополнительной (половой) обонятельной системы. Эти структуры стали выполнять у рептилий функции нового интегративного мозгового центра на базе переднего мозга. Казалось бы, дальнейшее развитие корковой системы переднего мозга гарантировало бы птицам необходимые поведенческие преимущества. Тем не менее этого не произошло. У птиц корковые структуры, впервые появившиеся в переднем мозге рептилий, носят откровенно рудиментарный характер.
Эволюция корковых структур переднего мозга рептилий полностью остановилась у птиц. Зачатки палео-, архи- и неокортекса практически не играют роли в контроле поведения, поскольку обоняние у птиц развито намного меньше, чем у рептилий. У большинства современных птиц нет развитого обоняния, а вомероназальная система полового обоняния у них вообще отсутствует. По-видимому, в период отделения предков птиц из общего рептилийного ствола обоняние перестало играть для них какую-либо роль. Крупный передний мозг остался функционально невостребован и стал морфологическим субстратом для возникновения ассоциативных центров. Зачаточные корковые структуры не могли играть существенной роли на фоне «освободившихся» от своих функций огромных ядер стриатума и септума. Невостребованная нейронная система этих структур надолго обеспечила мозг птиц резервами памяти и возможностями развития сложного адаптивного поведения.
Следы кортикальных структур переднего мозга птиц расположены только в дорсальной зоне полушария, а большую часть мозга занимают стриатум, септум и неостриатум. Функции ассоциативного центра в переднем мозге птиц выполняют чрезвычайно развитые структуры стриатума (рис. III-14, а). Однако историческое название «гиперстриатум» не отражает реального происхождения этого центра птиц. Ранее считалось, что гиперстриатум возник из стриатума и является его гомологом. Специальные исследования кинетики пролиферации и миграции нейробластов у птиц позволили установить, что гиперстриатум состоит из нейронов различного происхождения.
Они по большей части мигрируют из латеральной (paleopallium) и новой коры (neopallium). Особенностью развития стриатума стало формирование структур ядерного типа, а не стратифицированных корковых образований. У птиц и рептилий разрастание стриатума приводит к экспансии дорсального внутрижелудочкового бугорка, который практически полностью занимает полость латеральных желудочков (см. рис. III-14, а). Гиперстриатум птиц (рептилии имеют его признаки) выполняет функции новой коры. Он представляет собой высший ассоциативный центр, который определяет принятие решений и является основной зоной хранения индивидуального опыта. Через стриатум осуществляются контроль за двигательными функциями и связь с лимбической системой (Northcutt, 1981).
Спинной мозг птиц развит очень хорошо. Он образует большие утолщения в плечевой и поясничной области, откуда отходят нервы передних и задних конечностей (см. рис. III-12, а). В поясничном утолщении верхняя стенка спинного мозга расходится, и центральный канал расширяется в ромбовидный синус, покрытый сверху только мозговыми оболочками. Спинномозговые нервы соединяются у птиц корешками ещё в канале позвоночного столба и выходят между дугами или через отверстия слившихся позвонков. В плечевом сплетении обычно участвуют 4 нерва, реже 3, а у страусов — только 1 нерв. Для управления задними конечностями у птиц существует два сплетения: поясничное и седалищное, или крестцовое. Поясничное сплетение обычно состоит из 3, но у страусов может включать и 5 нервов. Седалищное сплетение у всех птиц состоит из 4 крестцовых нервов.
Черепно-мозговые нервы у птиц представлены 12 парами, которые начинаются по отдельности.
Обонятельный нерв (I) идет от нижней поверхности обонятельной доли, которая спереди и снизу примыкает к полушариям переднего мозга. Зрительные нервы (II) после хиазмы плавно переходят в средний мозг, а блуждающий нерв, как и у рептилий, идёт из черепа далеко назад, иннервируя сердце, лёгкие, пищевод и желудок. В отличие от рептилий, добавочный нерв (XI) представлен тонкой веточкой блуждающего нерва, а подъязычный (XII) нерв имеет корешки, отходящие как от продолговатого, так и от спинного мозга (Савельев, 2001).
Симпатическая нервная система птиц построена по общему для всех позвоночных принципу. Однако у птиц в шейной части расположен большой симпатический нерв, часто называемый пограничным стволом. Он лежит в канале, образованном двукорневыми началами поперечных отростков позвонков. Участок этого нерва прилежит к сонным артериям, а далее кзади симпатический нерв находится в канале, образуемом головками и бугорками рёбер, и только в поясничной области он лежит свободно.
По строению органов чувств птицы имеют несколько отличий от остальных животных. Осязание многих птиц (кулики, утки) сосредоточено в челюстном аппарате, где расположены специализированные механорецепторы (тельца Гранди и Хербста). Осязательные тельца расположены в коже у основания крупных перьев и сконцентрированы в восковице, покрывающей основание клюва. Совы обладают особыми осязательными перьями, расположенными вокруг клюва. У дятлов, дроздов, попугаев и глухарей осязательные функции выполняет язык, весьма богатый нервными окончаниями; в нём присутствуют преимущественно различные типы механорецепторов, а не вкусовые сосочки. Птицы пользуются языком как органом осязания. Вкусовые рецепторы у большинства птиц развиты плохо, поскольку птицы обычно заглатывают пищу, не измельчая её в клюве.
Зрение птиц чрезвычайно острое. Глаз способен к аккомодации и обладает рядом морфологических особенностей, позволяющих эффективно ориентироваться, успешно охотиться и издалека определять качество пищи. В сетчатке глаза птиц плотность фоторецепторов намного больше, чем у других позвоночных. В центральной части глаза расположен наклонный гребень, где сосредоточены светочувствительные клетки. Поскольку оптическая проекция растягивается на наклонной плоскости гребня, птицы видят эту часть изображения увеличенной в 0,25-1,2 раза. Дополнительным приспособлением, улучшающим цветовосприятие, являются масляные капли в колбочках сетчатки. Они функционируют, как цветовые фильтры, что позволяет различать больше оттенков в световом диапазоне электромагнитных волн. Зрительная система птиц позволяет воспринимать объекты, излучающие в ультрафиолетовом диапазоне, и поляризованный свет. Некоторые перелётные птицы могут непосредственно воспринимать направление электромагнитных полей, что позволяет им ориентироваться в любой точке на поверхности Земли.
У птиц отлично развит слух. Орган слуха состоит из внутреннего, среднего и зачатков наружного уха. Птицы воспринимают звуковые сигналы очень широкого диапазона. В этом отношении они могут намного превосходить многих млекопитающих как по диапазону, так и по чувствительности к слабым звукам. У птиц хорошо развит вестибулярный аппарат. Он состоит из полукружных каналов, отвечающих за рецепцию, связанную с угловым ускорением, и гравитационного рецептора (рецептора линейного ускорения). Все эти компоненты есть и у рептилий. Однако у птиц появился совершенный мозговой центр анализа вестибулярных и кинестетических сигналов — мозжечок.
Читайте также
Органы чувств у рыб
Органы чувств у рыб Нельзя допустить, что рыбы не наделены зрением, что они не слышат, не имеют обоняния и осязания, не ощущают вкуса. Рыбам присущи все перечисленные пять чувств, у них имеются и соответствующие органы этих чувств. Кроме того, считается, что у рыб есть и
§ 13. Рецепторы и органы чувств
§ 13. Рецепторы и органы чувств Органы чувств по источникам воздействий можно разделить на эндогенные и экзогенные. Первые специализируются на рецепции внутренней среды и органов животного, а вторые информируют о внешней среде. Оба источника информации крайне важны для
§ 23. Нервная система моллюсков
§ 23. Нервная система моллюсков Наибольший морфофункциональный контраст представляют собой организация нервной системы головоногих и двустворчатых моллюсков (рис. II-9; II-10, а). У двустворчатых моллюсков есть парные головные, висцеральные и педальные ганглии, соединённые
§ 48. Органы чувств млекопитающих
§ 48. Органы чувств млекопитающих Органы чувств млекопитающих имеют ряд особенностей, которых нет у позвоночных других групп. У млекопитающих хорошо развит орган обоняния. В отличие от птиц он состоит из основного органа обоняния и вомероназальной системы. Основной
Глава 10 Нервная система
Глава 10 Нервная система ГипнотизмДругая разновидность заболеваний, которые не подпадают под теорию Пастера, — это заболевания нервной системы. Такие заболевания смущали и пугали человечество испокон веков. Гиппократ подходил к ним рационалистично, однако большинство
Глава 13 ВЫСШАЯ НЕРВНАЯ ДЕЯТЕЛЬНОСТЬ ЗЕМНОВОДНЫХ, ПРЕСМЫКАЮЩИХСЯ И ПТИЦ
Глава 13 ВЫСШАЯ НЕРВНАЯ ДЕЯТЕЛЬНОСТЬ ЗЕМНОВОДНЫХ, ПРЕСМЫКАЮЩИХСЯ И ПТИЦ Современные потомки первых обитателей суши сохранили в своей организации и поведении многие следы той ломки, которая сопровождала выход животных из водной стихии. Это видно, например, при
3.2. НЕРВНАЯ СИСТЕМА И ПОВЕДЕНИЕ
3.2. НЕРВНАЯ СИСТЕМА И ПОВЕДЕНИЕ В поведенческом акте участвуют многие системы организма. Он реализуется с помощью аппарата движений, деятельность которого тесно связана с различными функциями организма (дыханием, кровообращением, терморегуляцией и др.). Управление
ОРГАНЫ ЧУВСТВ
ОРГАНЫ ЧУВСТВ Говоря об органах чувств, для собак наиболее важным следует признать хорошее зрение, особенно для рабочих пород. Глаз представляет собой сложный орган, в нем может развиться множество дефектов, и он легко доступен для подробного исследования. Возможно, по
Нервная система
Нервная система Как известно, нервная система впервые появляется у низших многоклеточных беспозвоночных. Возникновение нервной системы — важнейшая веха в эволюции животного мира, и в этом отношении даже примитивные многоклеточные беспозвоночные качественно
Органы чувств и сенсорные способности
Органы чувств и сенсорные способности Большой интерес для познания психической деятельности низших многоклеточных беспозвоночных представляет устройство и функционирование их органов чувств, представленных также весьма различными образованиями в соответствии с
Центральная нервная система
Центральная нервная система В соответствии со сложной и высокодифференцированной организацией двигательного аппарата находится и сложное строение центральной нервной системы насекомых, которую, однако, мы можем здесь охарактеризовать лишь в самых общих чертах.Как и у
Вегетативная нервная система
Вегетативная нервная система Некоторые общие принципы организации сенсорных и двигательных систем весьма пригодятся нам при изучении систем внутренней регуляции. Все три отдела вегетативной (автономной) нервной системы имеют «сенсорные» и «двигательные» компоненты.
9. Нервная система
9. Нервная система Общие понятия. Нервная система является очень сложной и своеобразной по своему строению и функциям системой организма. Ее назначение — устанавливать и регулировать взаимоотношение органов и систем в организме, связывать все функции организма в
10. Органы чувств
10. Органы чувств Организм живет в постоянно изменяющихся условиях внешней среды с бесчисленным количеством всевозможных раздражителей. Одни из них не имеют никакого отношения к организму и не являются для него сигналами для соответствующего поведения. Другие же