сколько может запомнить человеческий мозг информации

Можно ли переполнить мозг, если много учиться?

Наш мозг вмещает примерно от 3 000 000 000 000 000 до 8 000 000 000 000 000 байт. Или 3–8 петабайт.

Для сравнения, это примерно в тысячу раз меньше объема данных в интернете. Примерно столько же данных можно скачать при помощи торрента Rutracker.org. Короче, это много. Очень.

Как это измерили

Мозг человека (и других млекопитающих) устроен несколько сложнее, чем жесткий диск. Информация хранится и обрабатывается нейронами – нервными клетками мозга. Между ними проходят электрические и химические сигналы – можно сравнить их с проводами. В мозгу человека десятки миллиардов нейронов.

Чтобы измерить количество информации, которую они могут вместить, в 2016 году ученые из США создали компьютерную модель клетки того участка мозга, который отвечает за переработку памяти (он называется гиппокампом).

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информацииГиппокамп – отросток внизу, похожий на улитку

Выяснилось, что в каждой нервной клетке может храниться примерно 4,7 бита информации. Если перемножить как раз и получится несколько петабайт. Кстати, мозг человека – самое эффективное вычислительное устройства из существующих. На поддержание всей этой системы требуется всего 20 ватт в час.

Почему мозг заполняется так медленно

У человека есть специальные механизмы защиты мозга от перегрузки лишней информацией.

Причем, лишней мозг чаще всего считает ту информацию, которую мы наоборот пытаемся запомнить: цифры, даты, имена. А вот совершенно бесполезные для современного человека данные о вкусе, цвете и запахе предметов мозг отлично запоминает. Через много лет можно помнить, как пахли цветы, которые вы нюхали в детстве.

Это неприятные подарок от эволюции: нашим доисторическим предкам не приходилось запоминать имена и даты, важнее для них была дорога к ближайшему малиннику и внешний вид съедобных грибов.

Как информация хранится в мозге

Мы до конца не знаем. Самая популярная и всеобъемлющая теория называется коннекционизмом.

Если коротко, то в мозге нет участка, который хранит воспоминание о вашей собаке. Информация о ней распределена по множеству нейронов. При этом каждый нейрон может быть связан с сотнями воспоминаний: вы используете его же, когда думаете о собаке и когда пытаетесь прочитать и понять эту статью.

Поэтому сравнивать мозг с жестким диском, конечно, не совсем корректно. На жестком диске бит данных относится только к одному файлу. Но вот нейросети, о которых мы так много пишем, работают по тому же принципу.

Как воспоминания перемешиваются

Вы никогда не перепутаете море и слона. В том смысле, что море соленое, мокрое и без ушей, а слон большой, серый и с хоботом. Это пример радикально разной информации.

А вот цитаты имеют свойство легко смешиваться. Бывает, что вспомнишь сам текст, но не можешь назвать автора и источник. А вот это пример однотипной информации.

Чем сильнее информация отличается от того, что вы раньше знали, тем меньше места в памяти она занимает. Мозгу не нужно тратить место, чтобы запомнить, чем одни данные отличаются от других.

Поэтому, кстати, не рекомендуется изучать несколько языков одновременно – перепутаются.

Так можно ли переполнить мозг знаниями?

Нельзя. Дело в том, что информация имеет свойство еще и стираться, если ей не пользоваться.

Особенно быстро информация забывается на первоначальном этапе: в первый месяц после изучения. Но и потом она все равно теряется, хоть и не так быстро. Попробуйте вспомнить, чему вас учили в шестом классе на уроках географии.

Чтобы не забыть то, что вы изучили, придется постоянно повторять пройденное. В какой-то момент это займет абсолютно все ваше время. Поэтому, кстати, нельзя учить 100 иностранных слов в день. Так что единственное ограничение связано именно с этим. Ну или придется смириться с тем, что часть изученного забудется.

Мораль

Короче, учитесь спокойно. Мозг не закончится, не волнуйтесь.

У вас есть свой блог? Зарабатывайте с нами от 10 000 рублей на партнерской программе TeachLine.

Источник

Ученые: мозг человека может вместить в себя весь интернет

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

МОСКВА, 21 янв – РИА Новости. Человеческий мозг, по расчетам нейрофизиологов из института Салка, может вместить в себя примерно в 10 раз больше информации, чем считалось раньше, – несколько петабайт данных, чего должно хватить, чтобы вместить почти весь текущий контент интернета, говорится в статье, опубликованной в журнале eLife.

Как объясняет Седжновски, сегодня ученые считают, что наши воспоминания содержатся в обособленной части мозга, которую нейрофизиологи называют гиппокампом. Память в нем хранится как в виде электрических импульсов, передаваемых от одного нейрона к другому, так и в виде химических сигналов, которыми нервные клетки обмениваются друг с другом.

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

Авторы статьи решили выяснить, как происходят эти процессы, создав полноценную компьютерную модель кусочка гиппокампа размером с одну кровеносную клетку. Симуляция работы даже такой небольшой части мозга, как признают Седжновски и его коллеги, оказалась крайне сложной вычислительной задачей из-за огромного числа соединений между нервными клетками.

Наблюдая за работой синапсов – нервных окончаний – в этой модели, нейрофизиологи заметили нечто крайне необычное. Оказалось, что ряд нервных клеток был связан с одними и теми же «соседями» не одним, а несколькими синапсами с примерно одинаковыми размерами и объемом, что означает, что они передают в нее две копии одного и того же сигнала.

С другой стороны, синапсы, связывающие нейрон с другими клетками, обладали иными размерами, что позволило авторам статьи определить «емкость» единичного нейрона, подсчитав типичное число синапсов разных размеров на каждой нервной клетке в гиппокампе.

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

Как оказалось, нейроны содержат в себе неожиданно много синапсов разных размеров – 26 типов нервных окончаний, каждый из которых отличался по объему от ближайших к нему по размерам синапсов ровно на 8,3%. Подобная цифра означает в переводе на язык вычислительных устройств, что каждый нейрон может хранить в себе примерно 4,7 бита информации (26 = 2^4,7).

Как это все работает? Секрет заключается в том, что синапсы передают информацию не гарантированно, а с некоторым шансом, который ученые оценивают примерно в 60 процентов. Надежность доставки данных обеспечивается многократной передачей сигналов и особой системой «автокалибровки» синапсов – их размеры каждые две минуты меняются в большую или меньшую сторону в зависимости от запросов из других областей мозга и получаемых ими сигналов.

Благодаря столь неожиданно большому значению гиппокамп крыс, и, по всей видимости, человека, способен хранить в себе на порядок больше информации, чем считали ученые ранее, – около 5-20 петабайт данных, что сопоставимо с емкостью всей глобальной сети.

Подобные результаты, как отмечает Седжновски, упрочняют статус мозга как самого эффективного вычислительного устройства – потребляя всего 20 ватт энергии, наша нервная система оперирует массивами данных, недоступными для современных суперкомпьютеров. Это открытие, как надеются авторы статьи, должно вдохновить ученых на попытку воспроизвести эти свойства мозга в сверхэффективных вычислительных приборах.

Источник

Насколько безграничны возможности нашей памяти?

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

Автор фото, Thinkstock

Есть люди, которые обладают талантом запоминать огромные объемы информации. Их пример дает основания полагать, что каждый из нас способен удерживать в памяти куда больше, чем мы можем себе представить, утверждает корреспондент BBC Future.

В отличие от цифровых камер с заполненной до конца картой памяти, которые больше не могут сохранять новые снимки, наш мозг, похоже, никогда не испытывает недостатка в свободных объемах для хранения информации. И все же обыденная логика не может примириться с тем, что мозг взрослого человека, «пропитанная кровью губка», как выразился в свое время писатель Курт Воннегут, способен без ограничений сохранять новые факты и опыты.

Нейрофизиологи давно пытаются измерить максимальный объем нашей памяти. Однако все усилия, направленные на то, чтобы вычислить, какими возможностями обладает человеческая память, сводятся к неким когнитивным подвигам, совершаемым отдельными индивидами и людьми с атипичным мозгом.

Многие из нас прилагают нечеловеческие усилия, чтобы запомнить номер телефона. А если нужно запомнить 67980 цифр? Именно столько цифр числа «пи» после запятой сумел назвать Чао Лу из Китая в 2005 году, когда он был 24-летним студентом выпускного курса. Чао выдавал цифры в течение 24-часового марафона, не отрываясь даже на посещение туалета, и побил мировой рекорд.

Саванты, люди с необыкновенными способностями памяти, порой устраивали еще более впечатляющие представления, проявляя чудеса запоминания, начиная от имен и дат до воспроизведения сложных визуальных композиций. Так, например, художник-аутист Стивен Уилтшир в 2013 году в мельчайших подробностях изобразил вид Лондона со смотровой площадки, расположенной на высоте 224 м, чтобы можно было представить себе, как будет выглядеть окрестный пейзаж с верхних этажей небоскреба «Шард» (The Shard) – самого высокого здания британской столицы. В отдельных, довольно редких, случаях, травмы, перенесенные прежде вполне здоровыми людьми, давали толчок развитию приобретенного «синдрома саванта». Его носители, которые в иных областях могут отличаться отставанием в развитии, порой обладают феноменальными способностями в изобразительном искусстве, музыке, математических и календарных расчетах, картографии.

Автор фото, Thinkstock

Орландо Серреллу, например, было 10 лет, когда бейсбольный мяч попал ему в голову с левой стороны. После того происшествия он внезапно обнаружил, что помнит бесчисленное множество автомобильных номеров и способен производить сложные календарные исчисления. Так, он может вычислить, какой день недели приходился на тот или иной день много десятилетий назад.

Каким же образом варят «котелки» этих людей, что им удается посрамить возможности памяти среднестатистического индивида? И что говорят способности декламаторов числа пи и савантов об истинном потенциале человеческого мозга?

Байты мозга

На уровне, поддающемся исчислению, потенциал нашей памяти в определенной степени обоснован физиологией мозга. Если обратиться к базовым, но, пожалуй, полезным данным, касающимся этой темы, то мы вспомним, что наш мозг состоит примерно из 100 млрд нейронов. И только один миллиард из них имеет отношение к долговременному хранению информации в памяти. Эти клетки называются пирамидальными.

Автор фото, Thinkstock

Как именно работают шестеренки нашей памяти? Пока мы этого не знаем

Вместо этого, как полагают исследователи, воспоминания формируются путем соединений между нейронами и по нейронным сетям. Каждый нейрон имеет отростки, которые можно представить себе в виде линий пригородной железнодорожной сети. Они переплетаются примерно с одной тысячей других нервных клеток нейронов. Такая архитектура, как представляется, позволяет элементам памяти возникать и воспроизводиться по всей запутанной клеточной паутине мозга. Как таковая, например, концепция голубого неба может возникать в бесчисленных, отвлеченно дискретных воспоминаниях об эпизодах, связанных с пребыванием на открытом воздухе.

Ребер называет этот эффект «экспоненциальным хранением» данных, благодаря которому потенциал памяти мозга «перехлестывает через край».

И маленькая тележка?

Действительно ли те люди, которые наделены суперпамятью, имеют какой-то исключительный мозг?

Короткий ответ: нет. Рекордсмены по запоминанию цифр после запятой в числе пи, вроде Чао Лу, также как и большинство других победителей соревнований по запоминанию чего-либо, клянутся, что они – самые обычные люди, посвятившие себя тому, чтобы натренировать свой мозг на хранение и воспроизведение избранных фрагментов информации.

Автор фото, Thinkstock

С помощью давно известных трюков и упражнений можно довольно быстро натренировать свою память

Несколько лет назад, когда Деллис только начал тренировать мозг, ему требовалось 20 минут, чтобы запомнить порядок карт в колоде. Сегодня он способен сохранить в памяти все 52 карты менее чем за 30 секунд, другими словами он запоминает их за время одной раздачи. Деллис тренировался считать карты по пять часов день, когда готовился отстоять свой титул на чемпионате США 29 марта 2015 года.

Декламаторы числа пи часто пользуются «дворцом памяти» или другими похожими приемами. Например, они переводят большие объемы цифр в цепочки слов, образующие определенное повествование, напоминающие подсказки для угадывания слов в кроссвордах.

Включить внутреннего саванта

Широкомасштабный успех таких методик тренировки памяти дает основания полагать, что каждый может стать феноменом, если настроится на достижение такой цели. Но можно ли достичь тех же результатов без большого объема черновой работы? Именно эту цель ставит перед собой Аллен Снайдер, директор Центра по изучению разума при Университете Сиднея, Австралия. Он проповедует довольно спорную теорию о том, что каждый из нас носит в себе «внутреннего саванта», которого можно «включить» с помощью «правильных» технологий.

Автор фото, Thinkstock

Снайдер деликатно подавлял нейронную активность в этом участке мозга волонтеров-участников его экспериментов с помощью медицинского прибора, который он окрестил «мыслительным колпаком», генерирующим магнитные поля. Интригует то, что, как он утверждает, эти люди временно демонстрировали улучшение навыков рисования, проверки текстов на предмет ошибок, а также счета в уме.

Источник

В мозге помещается 1 петабайт информации

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информацииОбъём памяти в человеческом мозге оказался невероятно большим. Эту тему исследовали американские неврологи: авторы научной работы Терри Сейновски (Terry Sejnowski) из института биологических исследований Солка и Кристен Харрис (Kristen Harris) из университета Техаса в Остине, с коллегами. Их статья опубликована в журнале eLife.

Сейновски, очевидно, имеет в виду только текстовую информацию. Но даже в этом случае такая оценка очень впечатляет.

В своей работе исследователи построили 3D-модель ткани гиппокампа крысы, на основе фактических данных. И в этой модели обнаружилось кое-что странное. Синапсы — соединения между нейронами — оказались продублированы в 10% случаев. То есть там были не одиночные, а парные синапсы.

Чтобы замерить разницу между этими продублированными синапсами, группа Сейновского провела реконструкцию связности, форм и объёмов вещества мозга крысы на наномолекулярном уровне, используя современные микроскопы и вычислительные алгоритмы.

«Мы были поражены, когда обнаружили, что разница в размере синапсов из пар оказалась очень маленькой, всего лишь около 8%, — говорит Том Бартол (Tom Bartol), один из учёных. — Никто не думал, что разница окажется настолько маленькой. Это такой трюк от природы».

Открытие, что разница в размере синапсов может составлять всего 8%, означает возможность существования 26 категорий размеров синапсов (по силе синаптической связи), а не всего нескольких, как считалось раньше. Это значительно повышает «разрядность» системы, что означает существенное увеличение потенциального объёма хранимой информации (примерно 4,7 бита на синапс). Результаты исследования демонстрируются в видеоролике.

Как работают синапсы

«Грубо говоря, здесь на порядок более высокая точность, чем кто-либо мог представить, — объясняет Сейновски. — Последствия это открытия могут быть серьёзными. Под видимым хаосом и беспорядком вещества мозга находится высокая точность и аккуратный порядок, который раньше был скрыт от нас».

Расчёты учёных показывают, что синапсы изменяют свой размер и свойства, в зависимости от передаваемого сигнала. Примерно 1500 передач нейроимпульса вызывают изменения в маленьких синапсах (занимает около 20 минут), в то время как пару сотен передач (1-2 минуты) изменяют большие синапсы.

Другими словами, каждые 2-20 минут синапсы в мозге изменяют размер, настраиваясь на передаваемый сигнал.

Сделанные открытия в работе синапсов могут найти применение и в информатике, в разработке сверхточных и энергоэффективных систем, использующих техники глубинного обучения (deep learning) и нейросетей. «Этот трюк мозга определённо поможет проектировать лучшие компьютеры, — сказал Сейновски. — Использование вероятностной передачи оказалось не менее точным и намного более энергоэффективным как в компьютерах, так и в мозге».

Источник

Оперативная память мозга: что общего между компьютером и мозгом

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

У меня есть компьютер. Думаю, у вас тоже. Общий перечень наших с вами задач, решаемых с помощью компьютера, можно свести к двум основополагающим вещам: хранение и преобразование информации. Головной мозг выполняет схожие функции. Например, фоторецепторные клетки в глазах принимают электромагнитное излучение и преобразуют его в нервный импульс. Мозг обрабатывает эту информацию и на основе нее строит изображение. Помимо функционального сходства, мозг и компьютер имеют и общие структурные черты: у нас тоже есть некоторое подобие процессора и памяти. Причем наша память, как и память компьютера, бывает разных видов. В этой статье пойдет речь о нашем аналоге оперативной памяти и о том, как он работает.

Когнитивность

Как работает наш мозг? На столь обширный вопрос есть несколько философский ответ — недостаточно хорошо. Действительно, вы наверняка хотели бы не вспоминать перед сном все свои неудачи и просчеты или не забывать, куда положили ключи. Переформулируем и сузим вопрос: как человеческий мозг воспринимает и использует информацию?

Получение информации

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

Что дальше?

Попадая в мозг, нервные импульсы преобразуются в соответствующие образы и чувства. Но на данный момент эти образы всего лишь образы. Если человек не умеет читать, то для его мозга текст будет лишь набором закорючек. В психологии есть термин когнитивность. Он отражает способность человека к умственному восприятию и переработке внешней информацию сквозь собственную систему взглядов, зависящую от мышления, памяти, обучения и т. д. Коротко говоря, мозг в течение жизни обучается, получает новую информацию и, в зависимости от текущего типа мышления, багажа знаний и умений, обрабатывает получаемую информацию соответствующим образом.

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

Память мозга

Память можно определить как способность мозга сохранять и восстанавливать информацию. Очевидно, что работа мозга очень сильно зависит от памяти и ее роль сложно переоценить. Классифицировать память можно по разным критериям. Но нас будет интересовать конкретно разделение по времени хранения информации. Итак, память мозга условно можно разделить на следующие виды:

Кратковременная память

Изначально, информация от органов чувств попадает в кратковременную память. Как понятно из названия, она хранится там небольшой промежуток времени. При этом информация от органов чувств фильтруется. В кратковременную память попадает та информация, на которую мы обратили своё внимание. Причем как произвольно, так и под действием каких-либо факторов. Например, обычно мы не обращаем внимание на ощущения от надетой на нас одежды, но если она вызовет дискомфорт, то мы обратим внимание, и эта информация попадет к нам в кратковременную память. Помимо органов чувств, источником информации может являться и долговременная память как итог процесса вспоминания, как целенаправленного, так и спонтанного.

Модель Аткинсона-Шиффрина

В целом идеи о том, что человеческая память не является единой сущностью, возникли ещё в 19 веке. Более конкретная теория взаимодействия между кратковременной и долговременной памятью появилась в середине 20-го века в множественной модели Аткинсона-Шиффрина.

Согласно данной модели, наша память состоит из трех структур:

Механизм перехода из кратковременной памяти в долговременную точно не ясен. При этом, способность вспоминать события из прошлого зависят от гиппокампа. К этому выводу пришли Бренда Милнер и Уильям Сковилл, изучая пациента, которому для лечения эпилепсии был удален гиппокамп. Пациент не мог вспомнить, что с ним происходило в прошлом, но при этом другие структуры памяти сохранились. Он помнил факты об устройстве мира, но новые ему выучить было сложно. Также у него отлично работала кратковременная память.

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

Объем кратковременной памяти

Информация без повторения хранится в кратковременной памяти на протяжении примерно 20 секунд. При этом ее объем однозначно определить очень сложно. Американский психолог Джордж Миллер в своей работе «Магическое число семь плюс-минус два« определил, что человек, как правило, не может запомнить и воспроизвести больше 7±2 объектов (данная характеристика является усредненной и не отрицает существование уникумов, способных запоминать большое количество информации)

Но что такое объект? На основе своих исследований (проверка, сколько человек может запомнить), Миллер приводит следующую характеристику — человек в среднем способен запомнить девять двоичных чисел, восемь десятичных, семь букв алфавита и пять односложных слов. Информационная содержательность этих объектов не столь большая. В этом кроется и следующее различие между кратковременной и долговременной памятью — объем информации. Объектом может являться как слово, так и изображение — например, пейзаж. Но степень его детализации будет определяться объемом кратковременной памяти и вряд ли вы запомните его в деталях без повторения.

Рабочая память

Рабочая память (РП) — это тип памяти, с помощью которого человек способен сохранять в уме информацию, с которой работает. РП также позволяет комбинировать информацию, полученную от органов восприятия, с долговременной и кратковременной памятью.

Термин «Рабочая память» был введен Джорджем Миллером, Евгением Галантером и Карлом Прибрамом в контексте теории, в которой человеческий ум сравнивался с компьютером. Изначально понятие рабочей памяти не было конкретизировано, поэтому его использовали Ричард Аткинсон и Ричард Шиффрин в своей модели кратковременной памяти. Однако они не сделали акцента на ее функциональной части, поэтому Алан Бэддели и Грэм Хитч переработали их модель. Главное отличие нового взгляда на РП заключалось в том, что кратковременная память может быть разделена на субкомпоненты и что такая система способна на сложные когнитивные действия. На данный момент многие ученые используют концепцию РП в качестве замены или расширения концепции краткосрочной памяти, делая акцент на манипулировании информацией, а не на ее простом хранении.

Модель рабочей памяти

В 1974 году Алан Бэддели и Грэм Хитч предложили многокомпонентную модель РП, переработав модель кратковременной памяти Аткинсона-Шиффрина. Изначально модель содержала три компонента. Первый компонент — это система контроля над вниманием, называемая центральным исполнителем (ЦИ). ЦИ направляет внимание на информацию, подавляя отвлечение (на нерелевантную информацию и неподходящие действия) и координируя когнитивные процессы при одновременном выполнении множества задач. У ЦИ «в подчинении» находятся две системы временного хранения: фонологическая петля и визуально-пространственный блокнот.

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

Фонологическая петля — это когнитивная система временного хранения, которая может хранить информацию, представленную в речевой и звуковой форме, с помощью проговаривания про себя (субвокальные повторения). Одним из доказательств этого служит эффект фонологического сходства: слова, со сходным звучанием, запоминаются труднее, чем слова, звучащие по-разному. Представим, что вы хотите запомнить набор терминов. Если слова схожи по звучанию, то это приведет к путанице и плохому результату. Попробуйте запомнить два ряда слов: «код», «год», «кот», «рот» и «солнце», «горячий», «корова», «день». Скорее всего, «производительность» запоминания в первом случае будет хуже. Фонологической петле совсем не важны значения, поэтому человек запоминает ряд из нескольких слов, обозначающих одно и тоже, так же, как и разные слова. В этом заключается отличие рабочей памяти от долговременной. Если увеличить количество слов в последовательности, например до 10, и дать людям запомнить их, то звучание уйдет на второй план, а значение станет намного важней. Таким образом у человека имеется система, которая может хранить информацию путем проговаривания про себя. Она не важна для понимания речи (если вы способны нормально говорить и слышать), однако играет существенную роль в пополнении словарного запаса на раннем этапе обучения чтению, когда нужно удержать в памяти последовательность звуков в точном порядке.

Визуально-пространственный блокнот — это когнитивная система, одновременно хранящая пространственную и визуальную информацию. Визуальная информация включает в себя такие вещи, как цвет и форма, а пространственная — данные о местоположении. Например, использование карты или проектирование здания включает пространственную информацию. Изучение иероглифов, запоминание цвета — это больше визуальное задание. Системы вербальной, пространственной и визуальной информации могут поддерживаться потоками информации, не охватываемыми подчиненными системами (например, тактильные ощущения, семантическая информация, музыкальная информация, эмоциональная составляющая и т. п.).

Так как речь идет о серии потоков восприятия, в 2000 году Бэддели расширил модель, добавив четвертую систему — эпизодический буфер, в котором потоки информации объединяются. У буфера есть несколько измерений: визуальное, пространственное семантическое и перцептивное. Он объединяет их вместе и делает доступными сознанию, связывая всю информацию РП в единое эпизодическое представление. Таким образом эпизодический буфер — это связующие звено между рабочей и долговременной памятью. Если проводить аналогии, то эпизодический буфер чем-то напоминает экран, на который проецируются события.

Где и как мозг хранит информацию

РП располагается в нескольких частях мозга. С появлением методов визуализации мозга (ПЭТ и фМРТ) определение локализации функций в головном мозге людей значительно упростилось. Обзор многочисленных исследований показывает, что области активации во время задач рабочей памяти, разбросаны по большой части коры. Определение Фонологическая петля расположена главным образом в области между височной и теменной долями левого полушария. Процесс повторения информации по большей части включает лобную область, известную как центр Брока.

Визуально-пространственная система вовлекает в основном правое полушарие, однако она может простираться и до затылочных долей, в направлении к задней части мозга. Эта область задействуется в визуальных изображениях. Более центральные теменные области ответственны за пространственную информацию.

сколько может запомнить человеческий мозг информации. Смотреть фото сколько может запомнить человеческий мозг информации. Смотреть картинку сколько может запомнить человеческий мозг информации. Картинка про сколько может запомнить человеческий мозг информации. Фото сколько может запомнить человеческий мозг информации

Сам факт активации каких-то областей мозга вовсе не означает, что именно там хранится информация. В этом заключается одна из проблем использования функциональной визуализации для понимания работы памяти. При изучении какой-либо когнитивной задачи ученые наблюдают активность области, но не знают, действительно ли она необходима для нее. Представьте, что вы обращается к информации в памяти компьютера и получаете её на экране. Вы узнаете, что было в хранилище и какие подсистемы были задействованы для отображения информации. Но где конкретно хранилась информация и как она была извлечена вам не известно. Пока что в научном сообществе нет консенсуса о том, как точно устроена и функционирует память.

Что влияет на рабочую память

РП страдает от интенсивного стресса. Это было обнаружено в исследованиях Арнстена и его коллег на разных видах животных. Например, в одном из исследований Арнстен исследует влияние стресса, вызванного шумом, на когнитивные функции префронтальной коры у резус-макак. Экспериментаторы заполняли едой одну из лунок, а затем накрывали их непрозрачным экраном. Через определенные промежутки времени экран убирали, и макаки выбирали одну из лунок (задача с отложенным ответом). После некоторой серии экспериментов подопытных подвергали воздействию непрерывным громким шумом (100-110 Дб) в течении 30 минут перед тестированием. Испытав стресс, животные хуже справлялись с заданием: чаще забывали, в какой лунке находятся лакомства. В ходе исследований выяснилось, что высвобождение физиологически активных веществ, катехоламинов, в префронтальную кору, вызванное стрессом, снижает срабатывание нейронов и емкость памяти. Воздействие хронического стресса может привести к глубоким нарушениями РП. Чем больше стресса в жизни, тем ниже эффективность РП при выполнении простых познавательных задач. Злоупотребление алкоголем также может вызывать нарушения РП из-за повреждения мозга.

Индивидуальные различия в объеме РП в некоторой степени наследуемы. Пока что мало известно о том, какие гены связаны с функционированием РП. В рамках многокомпонентной модели был предложен один ген-кандидат, ROBO1 для гипотетической фонологической петли рабочей памяти. Генетический компонент РП в значительной степени разделяется с таковым для подвижного интеллекта, поэтому исследования связи памяти и генетики возможно поможет также лучше понять работу интеллекта.

Существует несколько гипотез о том, что РП может быть натренирована, например при помощи специальных компьютерных программ или таких задач, как n-назад. Но при этом люди не демонстрируют значительных улучшений в таких активностях, как обучение математике, чтение или выполнение тестов на уровень интеллекта. Если тренировка рабочей памятью интеллекта работает, то скорее всего эффект будет незначительным.

Компьютер как мозг

Текущие развитие процессоров во многом основывается на уменьшении техпроцесса. Время идет и эффективность такого подхода снижается. Возможно ли замена нынешней архитектуры на архитектуру, схожую с мозгом человека? Конечно, в реалиях недостатка знаний о мозге данное сравнение некорректно, но давайте пофантазируем. В чем преимущества мозга перед компьютером? Первое, что приходит на ум — это наличие сознания и способность к творческой деятельности. Но не совсем понятно, в чем разница между ними и их компьютерной симуляцией? Проблему квалиа и подобные вопросы лучше оставить философам и сконцентрироваться на более практических аспектах. Понятно, что в некоторых задачах, зависящих от скорости обработки информации мы проигрываем. Но при этом у мозга множество преимуществ перед современными компьютерами:

Практика показывает, что лучше заимствовать лучшее, но, как упоминалось выше, недостаток знаний о мозге не позволяет сделать этого.

Облачные серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *