система быстрого счета в уме

Эффективный счёт в уме или разминка для мозга

Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.
Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно. Для его учеников не было особой проблемой посчитать подобный пример в уме:

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Используем круглые числа

Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Т.к. на 10, 100, 1000 и др. круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.
Еще пример:

Упростим умножение делением

При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):

Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4. Например,

Теперь не кажется невозможным умножить в уме 625 на 53:

Возведение в квадрат двузначного числа

Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения. Остальные квадраты можно посмотреть в нижеприведённой таблице:

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Приём Рачинского заключается в следующем. Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,

В общем случае (M — двузначное число):

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые:

Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться.
И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.

Умножение двузначных чисел

Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.
Пусть даны два двузначных числа, у которых сумма единиц равна 10:

Составив их произведение, получим:

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к. 7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.
Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:

У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.
48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит,
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:

Тогда предыдущий пример можно вычислить немного проще:

Вместо заключения

Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать голосовую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.

Использованная литература:
«1001 задача для умственного счёта в школе С.А. Рачинского».

Источник

Методика быстрого счета в уме без калькулятора

Цифры окружают нас с детства. Еще до школы или в первом классе человек учится складывать и вычитать, решать простые примеры и задачи. Позже он осваивает таблицу умножения, переходя к более сложной части математических упражнений. Большинство людей может производить в уме только простые вычисления. А вот умножение и деление больших значений приходится выполнять на бумаге или с помощью калькулятора. Но можно ли как-то научиться хорошо считать без использования подручных средств?

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Быстрый счет без калькулятора

Жизнь любого современного человека неотрывно связана с числами. Без умения считать невозможно выполнять самые простые повседневные задачи. Конечно, сегодня у людей появились умные помощники – калькуляторы, смартфоны, компьютеры, но даже они могут иногда подвести – сломаться или не вовремя разрядиться. Да и не всегда можно полагаться на гаджеты, ведь на экзаменах в школе или в ВУЗе они не помогут. Именно поэтому многие люди стремятся научиться хорошо считать без помощи подручных средств. Особенно это актуально для школьников, ведь если с детства освоить техники быстрого устного счета, то и учеба в школе, и различные задачи во взрослой жизни будут даваться легче.

Есть еще одна серьезная причина для того, чтобы начать тренироваться хорошо считать в уме. Устный счет развивает человеческий мозг и способствует росту уровня интеллекта. Поэтому даже те студенты, которые обучаются на гуманитарных специальностях, все равно изучают такие точные науки, как высшая математика и математический анализ. Упражнения, направленные на устный счет больших чисел, являются отличной зарядкой для ума. Так развитие интеллекта и удобство в быту – это две самые главные причины научиться хорошо считать без калькулятора.

Человечество еще с древности стремилось найти такие способы быстрого счета. И речь не только о простых вычислениях, таких как сложение и вычитание, но и о более сложных – об умножении и делении. Пусть это и занимает много времени, но складывать и вычитать большие значения все же можно без предварительной подготовки, а вот такие действия, как умножение двузначных чисел, недоступны большинству людей.

Но, благодаря труду математиков со всего земного шара, сегодня появились некоторые математические хитрости, позволяющие считать в уме не только однозначные, но и двузначные числа. Чтобы понять принцип их работы, лучше рассмотреть каждый из этих приемов отдельно.

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Популярная система быстрого счета

Существует несколько видов основных математических операций – сложение, вычитание, умножение и деление. И если с нахождением суммы и разности все более или менее понятно, то другие вычисления производить намного сложнее. Рассмотрим самые популярные математические хитрости, направленные на удобное умножение и деление в уме.

Умножение любого числа на 9

Решать устно такие примеры очень легко. Для этого достаточно умножить нужное значение на 10 и вычесть из получившегося ответа это же число. Например, нам нужно найти результат умножения 19 и 9. Пример будет выглядеть так: 19*10-19= 190-19=171. Этот прием достаточно легко применять на практике.

Умножение любого числа на 11

Похожим образом выглядит умножение любого значения на 11: мы находим произведение нашего числа и 10, а затем прибавляем к получившемуся выражению наше число. Допустим, мы ищем сколько будет 67*11, так у нас получается следующий пример: 67*10+67=670+67=737.

Умножение двузначного числа на однозначное

Проще всего производить такую операцию методом разбора множителей на десятки и единицы. Допустим, нам требуется перемножить 56 и 8. Для этого мы разделяем 56 на составные части, получается 50 и 6. Теперь мы отдельно перемножаем наши десятки и единицы на однозначное число и ищем их сумму. Получается 50*8+6*8=400+48=448. Но чем больше знаков в каждом из перемножаемых значений, тем сложнее производить подобные операции в уме.

Умножение двузначного числа на двузначное

Нахождение результата умножения двузначных чисел похоже на предыдущий метод. К примеру, необходимо найти произведение 24 и 52. Для этого мы разбиваем одно из чисел на десятки и единицы и перемножаем их на наш множитель, а затем складываем полученные выражения: 20*52+4*52=1040+208=1248. Чем больше каждое из чисел, тем сложнее находить результат умножения.

Нахождение процента от числа

Чтобы найти процент от любого значения, нужно умножить данное число на размер искомого процента и разделить на сто. Лучше рассмотреть данный подход на примере. Допустим, требуется найти 12% от 74. Мы производим умножение 12 и 74, разбирая это выражение на составные части. Получается 10*74+2*74=740+148=888. Теперь мы делим наш результат на 100 и получаем ответ – 8,88%. Так удается легко находить процент от любого значения без помощи калькулятора.

Деление многозначного числа на однозначное

Чтобы найти ответ на такой пример, нужно вспомнить таблицу умножения. Допустим, нам требуется разделить число 138 на 6. Для этого мы разбиваем делимое на части, получается 13 десятков и 8 единиц. Делим 13 на 6, получаем 2 и 1 в остатке. Это значит, что десятком в нашем ответе будет число 2. Остаток, а это 1 десяток, мы складываем с единицей делимого, получается 18. Делим 18 на 6, получается 3. Теперь складываем получившиеся десятки и единицы: 20+3=23. Целое выражение будет выглядеть так: 120/6+(10+8)/6=20+18/6=23.

Существуют и другие, более сложные приемы устных математических вычислений, которые позволяют выполнять операции с многозначными числами. Но и освоить эти техники труднее, так как они требуют высокой концентрации и хорошо развитой памяти.

К плюсам всех подобных приемов можно отнести уже то, что такому счету можно научиться достаточно быстро. Перечисленные способы имеют множество вариаций от простых до более сложных, поэтому некоторые из них охотно используют даже дети. Но все эти методы имеют один существенный недостаток, который не позволяет им называться полноценной системой счета в уме.

Такие способы вычислений подразумевают соблюдение целого ряда условий. Например, правила для умножения трехзначных чисел отличаются от правил для двузначных. Поэтому приходится запоминать большое количество условий, чтобы можно было применять в быту такие способы счета. Все это делает подобные методы сложения, вычитания, умножения и деления скорее зарядкой для ума, чем продуктивным подходом к вычислениям.

Но существуют и кардинально иные техники, позволяющие развить навыки человека и научиться очень хорошо считать без подручных средств. Одной из самых популярных методик быстрого устного счета является ментальная арифметика. Рассмотрим ее преимущества подробнее.

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Как научить ребенка считать в уме

Ментальная арифметика – это далеко не новая система быстрого счета, ведь она зародилась еще в древности, около пяти тысяч лет назад. С тех пор данная методика не претерпела серьезных изменений и дошла до нас в практически первозданном виде. В ее основе лежат вычисления на абакусе – специальных счётах. Сначала человек учится решать простейшие примеры на них, а затем постепенно переходит к более сложному этапу обучения – учится представлять абакус в уме и производить вычисления на нем в своем воображении.

Лучше всего ментальная арифметика подходит именно детям. Нет, взрослые также могут ее освоить, но для этого им придется абстрагироваться от привычных методов операций с числами, а ребенок справляется с этим намного легче. Для него ментальная арифметика является не только помощником на уроках математики, но и способом развить свои интеллектуальные способности до очень высокого уровня.

Весь секрет этой методики в том, что она подразумевает разностороннее развитие человека. За логику и анализ отвечает правое полушарие мозга, именно оно задействуется на обычных уроках математики, когда мы решаем примеры или задачи. Правое полушарие, отвечающее за креативное мышление и фантазию, в этом случае к работе почти не подключается, а значит и не развивается должным образом. А ведь все области человеческого интеллекта необходимо тренировать.

Так как ментальная арифметика задействует и аналитическое мышление, и воображение, она является даже не столько способом быстро решать математические задачи, сколько средством для всестороннего развития. Другие методики чаще всего направлены на тренировку какой-то одной способности, а данная техника работает комплексно. Именно это выделяет ее среди прочих и делает одной из самых популярных систем развития интеллекта ребенка.

Обучение ментальной арифметике занимает достаточно много времени, но те преимущества, которые она дает, оправдывают затраченные усилия. Когда речь идет об обучении ребенка по данной методике, важно подобрать правильную программу тренировок. Ключевым фактором успеха является соблюдение плана занятий и контроль их регулярности. Несмотря на то, что в открытых источниках в интернете можно найти много информации по этому запросу, не всегда удается самостоятельно освоить ментальную арифметику. Поэтому большинство родителей предпочитают обучать ребенка этой технике в детских центрах дополнительного образования.

система быстрого счета в уме. Смотреть фото система быстрого счета в уме. Смотреть картинку система быстрого счета в уме. Картинка про система быстрого счета в уме. Фото система быстрого счета в уме

Как выбрать эффективную методику

Сегодня многие учебные заведения предлагают пройти курсы ментальной арифметики. Но детское образование – это очень сложный и многогранный процесс, поэтому родители должны походить к нему внимательно, и выбирать такие занятия, которые точно принесут пользу.

Выбирая школу ментальной арифметики, обращайте внимание на то, чтобы обучение велось по проверенной методике и учитывало возрастные особенности каждого ребенка. Нельзя, чтобы в одной группе обучались дети из начальной школы и старшеклассники, ведь в каждом возрасте своя скорость освоения, запоминания и закрепления материала.

К тому же, маленьким детям лучше всего преподавать любой предмет в игровой форме. Так они не будут уставать учиться и смогут сохранять концентрацию в течение всего урока. Внедрение игры в образовательный процесс способствует повышению интереса ребенка к математике.

Очень важно, чтобы тренер успевал уделить внимание каждому ученику в процессе занятия, но это возможно только в небольших группах. Поэтому стоит отдавать предпочтение тем детским центрам, где педагог обучает не более десяти детей единовременно. Только тогда удастся заниматься с максимальной продуктивностью.

Если учебный план организован правильно, то ребенку удастся приобрести полезные навыки, благодаря которым математика станет для него интересным и любимым предметом. Все это положительно скажется на успеваемости в школе, ведь, когда учеба дается легко, заниматься намного веселее.

Все это делает обучение ментальной арифметике самым продуктивным способом освоения быстрого устного счета.Ребенку больше не придется прибегать к различным математическим хитростям, чтобы легко справляться с задачами и примерами. Ученик приобретает навыки, которые сохраняются на всю жизнь, а значит они пригодятся ему не только в учебе, но и в карьерной деятельности. Все это делает обучение данной технике отличным вкладом в будущее своего ребенка.

Источник

Эффективные способы быстрого счета в уме

Многие спрашивают, как научиться быстро считать в уме, чтобы это выглядело незаметно и неглупо. Ведь современные технологии позволяют меньше пользоваться своей памятью и умственными способностями. Но иногда нет под рукой данных технологий и порой легче и быстрее посчитать что-то в уме. Многие люди начали считать на калькуляторе или телефоне даже элементарные вещи, что также не очень хорошо. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него. Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят научиться организовывать себя в различных жизненных ситуациях. Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

Способы быстрого счета

Существует определенный набор простейших арифметических правил и закономерностей, которые не только нужно знать для устного счета, но и постоянно держать в голове, чтобы в нужный момент оперативно применить самый эффективный алгоритм. Для этого необходимо довести их использование до автоматизма, закрепить в машинальной памяти, чтобы от решения самых простых примеров успешно перейти к более сложным арифметическим действиям. Вот основные алгоритмы, которые нужно знать, помнить и применять мгновенно, автоматически:

Вычитание 7, 8, 9

Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1. Чтобы вычесть 8 из любого числа, нужно вычесть из него 10 и прибавить 2. Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3. Если обычно вы считаете по-другому, то для лучшего результата вам нужно привыкнуть к этому новому способу.

Умножение на 9

Быстро умножить любое число на 9 можно при помощи пальцев рук.

Деление и умножение на 4 и 8

Деление (или умножение) на 4 и на 8 являются двукратным или трехкратным делением (или умножением) на 2. Производить эти операции удобно последовательно.

Например, 46*4=46*2*2 =92*2= 184.

Умножение на 5

Умножать на 5 очень просто. Умножение на 5, и деление на 2 – это практически одно и то же. Так 88*5=440, а 88/2=44, поэтому всегда умножайте на 5, поделив число на 2 и умножив его на 10.

Умножение на 25

Умножение на 25 соответствует делению на 4 (с последующим умножением на 100). Так 120*25 = 120/4*100=30*100=3000.

Умножение на однозначные числа

Чтобы быстро считать в уме, полезно уметь умножать двузначные и трехзначные числа на однозначные. Для этого нужно умножать двух- или трехзначное число поразрядно.

Например, умножим 83*7.

Для этого сначала умножим 8 на 7 (и допишем ноль, так как 8 — разряд десятков), и прибавим к этому числу произведение 3 и 7. Таким образом, 83*7=80*7 +3*7= 560+21=581.

Возьмем более сложный пример: 236*3.

Итак, умножаем сложное число на 3 по разрядно: 200*3+30*3+6*3=600+90+18=708.

Определение диапазонов

Чтобы не запутаться в алгоритмах и по ошибке не выдать совсем неверный ответ, важно уметь строить примерный диапазон ответов. Так умножение однозначных чисел друг на друга может дать результат не более 90 (9*9=81), двузначных — не более 10 000 (99*99=9801), трехзначных не более — 1 000 000 (999*999=998001).

Раскладка на десятки и единицы

Способ заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 +3*5=4800+300+240+15=5355

Проще такие примеры решаются в 3 действия:

1. Сначала умножаются десятки друг на друга.
2. Потом складываются 2 произведения единиц на десятки.
3. Затем прибавляется произведение единиц.

Схематично это можно описать так:

— Первое действие: 60*80 = 4800 — запоминаем
— Второе действие: 60*5+3*80 = 540 – запоминаем
— Третье действие: (4800+540)+3*5= 5355 – ответ

Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

Мысленная визуализация умножения в столбик

56*67 – посчитаем в столбик. Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа.

Но его можно упростить:
Первое действие: 56*7 = 350+42=392
Второе действие: 56*6=300+36=336 (ну или 392-56)
Третье действие: 336*10+392=3360+392=3 752

Частные методики умножения двузначных чисел до 30

Преимуществом трех способов умножения двузначных для устного счета состоит в том, что они универсальны для любых чисел и при хорошем навыке устного счета, они могут позволить вам достаточно быстро прийти к правильному ответу. Однако эффективность умножения некоторых двузначных чисел в уме может быть выше за счет меньшего количества действий при использовании специальных алгоритмов.

Умножение на 11

Чтобы умножить любое двузначное число на 11, нужно между первой и второй цифрой умножаемого числа вписать сумму первой и второй цифры.

Например: 23*11, пишем 2 и 3, а между ними ставим сумму (2+3). Или короче, что 23*11= 2 (2+3) 3 = 253.

Если сумма чисел в центре дает результат больше 10, тогда добавляем единицу к первой цифре, а вместо второй цифры пишем сумму цифр умножаемого числа минус 10.

Например: 29*11 = 2 (2+9) 9 = 2 (11) 9 = 319.
Быстро умножать на 11 устно можно не только двузначные числа, но и любые другие числа.

Например: 324 * 11=3(3+2)(2+4)4=3564

Квадрат суммы, квадрат разности

Для того чтобы возвести в квадрат двузначное число, можно воспользоваться формулами квадрата суммы или квадрата разности. Например:

23²= (20+3)2 = 202 + 2*3*20 + 32 = 400+120+9 = 529

69² = (70-1)2 = 702 – 70*2*1 + 12 = 4 900-140+1 = 4 761

Возведение в квадрат чисел, заканчивающихся на 5.Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу дописываем 25.

25² = (2*(2+1)) 25 = 625

85² = (8*(8+1)) 25 = 7 225

Это верно и для более сложных примеров:

155² = (15*(15+1)) 25 = (15*16)25 = 24 025

Методика умножения чисел до 20 очень проста:

16*18 = (16+8)*10+6*8 = 288

Опорное число

Посмотрите на суть этого метода на примере умножения 15 и 18. Здесь удобно использовать опорное число 10. 15 больше десяти на 5, а 18 больше десяти на 8.

Для того, чтобы узнать их произведение, нужно совершить следующие операции:

15*18

1. К любому из множителей прибавить число, на которое второй множитель больше опорного. То есть прибавить 8 к 15, или 5 к 18. В первом и втором случае получается одно и то же: 23.
2. Затем 23 умножаем на опорное число, то есть на 10. Ответ: 230
3. К 230 прибавляем произведение 5*8. Ответ: 270.

Опорное число при умножении чисел до 100.Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа
Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. При умножении чисел до 100 опорными числами удобно использовать все числа кратные 10, а особенно 10, 20, 50 и 100.
Методика использования опорного числа зависит от того, являются ли множители больше или меньше опорного числа. Тут возможны три случая. Покажем, все 3 методики на примерах.
Оба числа меньше опорного (под опорным). Допустим, мы хотим умножить 48 на 47.
Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа.
Чтобы умножить 48 на 47, используя опорное число 50, нужно:

47*48

1. Из 47 вычесть столько, сколько не хватает 48 до 50, то есть 2. Получается 45 (или
из 48 вычесть 3 – это всегда одно и то же)
2. Дальше 45 умножаем на 50 = 2250
3. Затем прибавляем 2*3 к этому результату – 2 256

Одно число под опорным, а другое над.Третий случай использования опорного числа – когда одно число больше опорного, а другое меньше. Такие примеры решаются не сложнее, чем предыдущие. Меньший множитель увеличиваем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей. Или больший множитель уменьшаем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей.

(52-5)*50-5*2=47*50-10=2340 или (45+2)*50-5*2=47*50-10=2340

27*89

Таким образом, с помощью использования одного опорного числа можно умножать большую комбинацию двузначных чисел. Описанные выше методики можно разделить на универсальные (подходящие для любых чисел) и частные (удобные для конкретных случаев).

В крайнем случае, можно воспользоваться «крестьянским» счетом. Чтобы умножить одно число на другое, допустим 21*75, нам нужно записать числа в две колонки. Первое число левой колонки 21, первое число правого столбика 75. Затем числа стоящие в левой колонке делить на 2 и отбрасывать остаток, пока не получим единицу, а числа в правой колонке умножаем на 2. Все строчки, имеющие четные числа в левой колонке вычеркиваем, а оставшиеся числа в правой колонке складываем, у нас получается точный результат.

21*75

Чтобы научиться быстро считать в уме, нужна практика, нет волшебных методик, чтобы с первого раза начать быстро считать в голове, необходимо постоянно тренировать свой мозг и заставлять его быстро работать и считать.

Заключение

Как и все способы вычислений, данные методы быстрого счета имеют свои достоинства и недостатки:

ПЛЮСЫ:

1.С помощью различных методов быстрых вычислений даже самый малообразованный человек может считать.
2. Способы быстрого счета могут помочь избавиться от сложного действия, путем замены его на несколько более простых.
3.Способы быстрого счета полезны в ситуациях, когда нельзя воспользоваться умножением в столбик.
4.Способы быстрого счета позволяют сократить время вычислений.
5.Устный счет развивает умственную деятельность, что помогает быстрее ориентироваться в сложных жизненных ситуациях.
6. Техника устного счета делает процесс вычислений более увлекательным и интересным.

МИНУСЫ:

Несомненно, практика играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые способны считать в уме сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать арифметические операции, которые не каждый человек и в столбик сможет посчитать. Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме.

Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета. Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете удивить даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *