розовые мышечные волокна миф или реальность

Быстрые мышечные волокна

Содержание

Быстрые мышечные волокна [ править | править код ]

розовые мышечные волокна миф или реальность. Смотреть фото розовые мышечные волокна миф или реальность. Смотреть картинку розовые мышечные волокна миф или реальность. Картинка про розовые мышечные волокна миф или реальность. Фото розовые мышечные волокна миф или реальность

Данный тип волокон важен в видах спорта, где развивается максимальная сила, скорость и мощность мышц:

Скелетные мышцы состоят из двух типов миоцитов (мышечных симпластов):

Соотношение количества клеток скелетной мускулатуры определяется главным образом генетикой, и от этого во многом зависит атлетический потенциал каждого человека.

Каждая клетка мышцы состоит из множества миофибрилл — это тонкие нити белка (актина и миозина), которые способны сокращаться. За счет массового сокращения миофибрилл происходит сокращение всей мышцы.

Тип волоконСкорость сокращенияСпособность к (росту) гипертрофииСкорость утомленияИспользуется дляСилаКоличество митохондрийКровоснабжениеОкислительная способностьГликолитическая способностьИсточник энергии
Тип I
(медленные)
МедленнаяНебольшаяНизкаяАэробной активности (бег, велоспорт)НизкаяМногоБогатоеВысокаяНизкаяЖиры
Тип IIа
(переходные)
ВысокаяНебольшаяУмереннаяПродолжительной анаэробной нагрузкиВысокаяМногоУмеренноеВысокаяВысокаяКреатинфосфат, гликоген
Тип IIб
(быстрые)
Очень высокаяБольшаяВысокаяКоротких анаэробных нагрузок (силовой тренинг)Очень высокаяМалоСкудноеНизкаяВысокаяКреатинфосфат, гликоген

Быстрые, или белые, мышечные волокна используют анаэробный (бескислородный) метаболизм при производстве энергии для сокращения. Они выполняют высокоскоростные движения, которые характеризуются большой или взрывной силой, однако утомляются они значительно раньше, чем медленные. И те и другие типы клеток производят примерно одинаковое количество работы за одно сокращение, но белые клетки делают это значительно быстрее.

розовые мышечные волокна миф или реальность. Смотреть фото розовые мышечные волокна миф или реальность. Смотреть картинку розовые мышечные волокна миф или реальность. Картинка про розовые мышечные волокна миф или реальность. Фото розовые мышечные волокна миф или реальность

Тип IIа: быстрые, устойчивые к утомлению, окислительно-гликолитические

Клетки подтипа IIа также известны как промежуточные или переходные. Они могут использовать как окислительный (аэробный, т.е. сопровождающийся потреблением кислорода), так и гликолитический (анаэробный, т.е. бескислородный) метаболизм для продукции энергии сокращения в равной степени. Эти волокна представляют собой нечто среднее между быстрыми и медленными.

Частота нервных импульсов составляет 25-50 имп/с.

У разных людей соотношение числа медленных и быстрых волокон в одной и той же мышце определено генетически и может отличаться весьма значительно. Так, например, в четырехглавой мышце бедра человека процент медленных волокон может варьировать от 40 до 98%. Чем больше в мышце процент медленных волокон, тем более она приспособлена к работе на выносливость. И наоборот, лица с высоким процентом быстрых сильных волокон в большей мере способны к работе, требующей большой силы и скорости сокращения мышц.

Тип IIб: быстрые, легко утомляемые, гликолитические

Это истинные быстрые мышечные волокна. Они используют только анаэробный метаболизм, обладают максимальной силой и скоростью сокращений. Именно эти клетки играют первостепенную роль при наборе массы в бодибилдинге, поэтому практически все тренировочные программы рассчитаны на развитие данного типа волокон.

Из всех типов волокон мотонейроны этого типа наиболее крупные, имеют толстый аксон, разветвляющийся на большое число концевых веточек и иннервирующий соответственно большую группу мышечных волокон. По сравнению с другими эти мотонейроны обладают наиболее высоким порогом возбуждения, а их аксоны — большей скоростью проведения нервных импульсов.

Частота импульсации мотонейронов возрастает с ростом силы сокращения, достигая при максимальных напряжениях мышцы 50-100 имп/с. Эти мотонейроны не способны в течение длительного времени поддерживать устойчивую частоту разрядов, то есть быстро утомляются.

Мышечные волокна быстрых волокон, в отличие от медленных, содержат большее число сократительных элементов — миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности миозиновой АТФ-азы у них выше скорость сокращения. Волокна этого типа содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, окружены меньшим, по срав­нению с медленными ДЕ, количеством капилляров. Эти волокна быстро утомляются. Более всего они приспособлены для выполнения кратковременной, но мощной работы.

Белые волокна IIб могут гипертрофироваться в гораздо большей степени, чем медленные.

В каких видах спорта важны быстрые волокна? [ править | править код ]

Именно этот тип клеток вносит основной вклад в достижение спортивных целей в тех видах спорта, где требуется взрывная сила:

Тренировки на быстрые мышечные волокна [ править | править код ]

Генетика и бодибилдинг [ править | править код ]

Учёные установили, что соотношение медленных и быстрых мышечных волокон генетически детерминировано. У среднестатистического человека их примерно поровну. В бодибилдинге лучших результатов добиваются те атлеты, мышцы которых содержат в большей степени белые волокна.

Белые мышечные волокна также важны для спринтеров. У выдающихся спортсменов-спринтеров быстрые мышечные волокна всегда преобладают: их около 80%.

Есть данные, что особенность тренировок может влиять на это соотношение. Силовой тренинг в бодибилдинге может увеличить количество клеток II(а/б) типа, а при аэробных тренировках увеличивается содержание медленных клеток I типа. Однако эти изменения довольно ограничены. В исследованиях переход одного типа в другой, как правило, не превышает 3%. По этой причине одни люди набирают мышечную массу с большим трудом, а другие, наоборот, очень быстро.

Источник

Розовые мышечные волокна миф или реальность

розовые мышечные волокна миф или реальность. Смотреть фото розовые мышечные волокна миф или реальность. Смотреть картинку розовые мышечные волокна миф или реальность. Картинка про розовые мышечные волокна миф или реальность. Фото розовые мышечные волокна миф или реальностьВсем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах. Вот только классификаций этих типов волокон несколько и они не всегда совпадают. Какие же классификации сейчас приняты?
Мышечные волокна делятся:

1. На белые и красные

2. На быстрые и медленные

3. На гликолитические, промежуточные и окислительные

4. На высокопороговые и низкопороговые

Разберем все подробно.

Белые и красные. На поперечном сечении мышечное волокно может иметь различный цвет. Он зависит от количества мышечного пигмента миоглобина в саркоплазме мышечного волокна. Если содержание миоглобина в мышечном волокне большое, то волокно имеет красно-бурый цвет. Если миоглобина мало, то бледно-розовый. У человека почти в каждой мышце содержатся белые и красные волокна, а так же волокна слабо пигментированные. Миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям, соответственно его количество определяется количеством митохондрий. Увеличивая количество митохондрий в клетке специальными тренировками, мы увеличиваем количество миоглобина и изменяем цвет волокна.

Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии заключенной в АТФ, осуществляется благодаря АТФ-аза. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.

Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые необходимы для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.

По этому признаку мышечные волокна подразделяются на 3 группы:

1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.

2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.

3. Гликолитические мышечные волокна. В них очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты и АТФ; аэробный гликолиз, или окисление – расщепление глюкозы в митохондриях с участием кислорода до углекислого газа, воды и АТФ.)

У не тренирующихся людей обычно быстрые волокна – гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости промежуточные и часть гликолитических волокон можно сделать окислительными, и тогда они, не теряя в силе, перестанут утомляться.

Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервного импульса, который имеет электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервный импульс, посылаемый мозгом, имеет величину ниже этого порога, ДЕ пассивна. Если нервный импульс имеет пороговую для этой ДЕ величину или превышает ее, мышечные волокна сокращаются. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствии двигательного режима, например в коме, или долгом нахождении в гипсе даже медленные мышечные волокна теряют свои митохондрии и соответственно миоглобин и становятся белыми и гликолитическими.

Поэтому в настоящее в спортивной науке считается неправильно говорить: «тренировки направленные на гипертрофию быстрых мышечных волокон», или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще 10 лет назад это считалось допустимо даже в специализированных научных изданиях. Сейчас если мы говорим о тренировочном воздействии на МВ, то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель поднять максимальный вес в единичном повторении. В видах спорта требующих проявления выносливости классификации совпадать не будут.

Для наглядности приведу несколько утрированный, хотя теоритически вполне возможный пример. Сразу оговорюсь, что все цифры условные, и их не надо воспринимать буквально. Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок. Соотношение волокон, предположим, следующее: 90% быстрые, 10% медленные. По окислительному потенциалу 75% гликолитические, 15% промежуточные и 10% окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по 6 повторений. Вес штанги достаточно большой чтобы рекрутировать 75% гликолитических волокон, а окислительный потенциал их настолько низок, что и 6-и повторений достаточно для необходимого закисления мышцы.

Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ. Подробно об этой методике вы можете прочитать в 5-м номере «ЖМ», в моей статье «Тренировка выносливости». Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторениям с околомаксимальным весом раз в 7-10 дней. Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5% гликолитических волокон, 70% промежуточных и 25% окислительных. То есть гликолитические стали промежуточными, кроме 5% самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение естественно не изменилось, так же 90% быстрые и 10% медленные. 200 кг он выжал на 1 раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал, используя в тренировках ММУ. 180 кг он выжал на 8 раз, а 150 кг на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту не давая мышцам закислиться, что значительно увеличило их функциональность.
Теперь нашему атлету для увеличения мышечной массы работа на 6 повторений практически ничего не даст. Она задействует в нужном режиме только 5% оставшихся гликолитических волокон.

Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И, дополнительно, включить в тренировку стато-динамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25%, и игнорировать их уже нецелесообразно.

Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала! Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-зы, считается некорректным. Только классификация по окислительным способностям мышц!

Источник

10 ошибок, которые совершают люди при приеме витаминов, микроэлементов и БАДов

Как принимать витамин Д, Омегу-3 и железо, чтобы извлечь из них пользу, а не вред? Почему стоит внимательно изучать состав спортивных БАДов? Что еще кроме гиалуроновой кислоты и коллагена полезно для нашей кожи? Врач высшей категории, эндокринолог Либеранская Наталья Сергеевна делится полезными рекомендациями, которые помогут справиться с сезонным авитаминозом и сохранить здоровье.

Ошибка №1. Не контролировать уровень витамина Д

Витамин Д положительно влияет на инсулинорезистентность и обмен веществ, способность организма противостоять ОРВИ и окислительному стрессу, снижает риск развития онкологических заболеваний и отклонений в развитии плода во время беременности. Более того, «солнечный» витамин Д помогает не хандрить и снижает болевые ощущения во время родов.

В регионах с низким уровнем инсоляции (к ним относится Санкт-Петербург) дефицит витамина Д крайне распространен. Однако принимать его в профилактических целях не стоит, поскольку витамин Д – это все-таки стероидный гормон. Только после специального лабораторного анализа крови на Д-гормон можно узнать его уровень в организме, после чего корректировать дефицит.

Ошибка №2. Принимать кальций без нормализации витамина Д и магния

Кальций — важный минерал, который поддерживает хорошее состояние костей и зубов, отвечает за свертываемость крови и рост, поддерживает тонус мышц и нервной системы. Достаточное поступление кальция необходимо для профилактики и лечения остеопороза, а также артериальной гипертензии.

Но кальций не усваивается, если в организме есть дефицит витамина Д и магния. Принимать кальций в этом случае просто бессмысленно.

Ошибка №3. Не знать, какой витамин Д принимать

Холекальциферол — неактивная форма витамина Д, именно она нужна для коррекции его дефицита, чтобы все системы организма работали исправно, и вы чувствовали себя хорошо. Препарат холекальциферола безопасен — вероятность передозировки мала. Но есть другая, активная форма витамина Д — кальцитриол. Его можно принимать только под контролем врача и по медицинским показаниям.

Ошибка №4. Принимать витамин D — не всегда значит нормализовать его уровень

Витамин D плохо усваивается в следующих ситуациях:

Ошибка №5. Игнорировать Омега-3

Для чего принимают Омега-3 полиненасыщенную кислоту? Она сохраняет остроту зрения, красоту и защищает эндотелий сосудов от повреждений. головной мозг на 30% состоит именно из Омега-3 жирных кислот. Вещество не синтезируется в организме самостоятельно. К сожалению, даже приверженцы Средиземноморской диеты не всегда получают достаточное количество Омега-3. Жирная кислота содержится в жирной рыбе, льняном, облепиховом и горчичном маслах.

Взрослым ежедневно следует принимать 2 г Омега-3 — и даже больше.
Точная дозировка может быть подобрана после анализа, который называется Омега-3 индекс.

Преимущество Омега-3 в капсулах перед той же красной рыбой заключается в хорошей очистке жирных кислот от вредных примесей, которые мы можем получать вместе с рыбой, пойманной в водоеме.

Ошибка №6. Не различать Омега-3 и Омега-6

Омега-3 и Омега-6 относятся к полезным и важным для организма ненасыщенным жирным кислотам. Однако принимать Омега-6 дополнительно нет необходимости — этот компонент мы в достаточном количестве получаем из пищи из растительных масел, мяса птицы, овсянки и др. Избыток Омега-6 может сыграть на руку воспалительным процессам в организме.

Ошибка №7. Игнорировать железо (ферритин)

Дефицит железа приводит к анемии, быстрой утомляемости, мышечной слабости, сухости кожи, выпадению волос. Женщины находятся в группе риска по потере железа из-за менструации, не получают нужное количество этого микроэлемента и вегетарианцы.

Ошибка №8. Принимать железо вслепую

В плане усвоения железо — особенно капризный микроэлемент. Принимать его следует особенно осторожно. Дело даже не в том, что препарат в каплях окрашивает зубную эмаль. Избыток железа откладывается во внутренних органах (печень, поджелудочная, щитовидная железа), приводя к серьезным нарушениям: гемохроматозу, циррозу, гепатиту, меланодермии (пыльно-бронзовый цвет кожи).

Железо плохо усваивается с молочными продуктами и кофе.

Напротив, витамин С, В12, фолиевая кислота способствуют благоприятному усвоению железа.

Если железо усваивается плохо, врач назначает специальные комплексы.

Ошибка №9. Спортивные БАДы — доверять и не проверять

Некоторые спортсмены для ускорения роста мышц и «сушки» принимают протеины. Одним из самых популярных сегодня является казеин, который изготавливается из обыкновенного коровьего молока. Протеин казеин — дешевый в производстве, однако подходит он далеко не всем. Чем вреден казеин? Попадая в организм, он превращается в казоморфин, который вызывает привыкание, может провоцировать воспаления слизистой кишечника, аутоиммунные заболевания, отечность и заторможенность.

Протеин казеин не следует принимать тем, у кого есть проблемы с ЖКТ, а также индивидуальная непереносимость лактозы и казеина.

Ошибка №10. Для кожи полезны не только коллаген и гиалуроновая кислота

После 35-40 лет кожа стареет. У многих женщин наблюдается недостаток пептидов коллагена и гиалуроновой кислоты: в этом случае на помощь приходит инъекционная косметология и капсулы — в качестве вспомогательного метода борьбы с признаками возрастных изменений.

Однако для кожи полезны и другие компоненты:

Консультация эндокринолога — вектор вашего внутреннего баланса!

Либеранская Наталья Сергеевна — эндокринолог, врач высшей категории с опытом работы более 10 лет. Наталья Сергеевна принимает пациентов с самыми разными проблемами и вопросами в рамках своей специализации — избыточный вес, сахарный диабет, проблемы с щитовидной железой, повышенная утомляемость и сонливость, беременность, менопауза, нарушение обмена веществ и работы эндокринных желез.

Наталья Сергеевна — автор популярного блога @doctor_liberanskaya, в котором регулярно дает подписчикам советы по поддержанию здоровья и терапии. Все рекомендации основаны на принципах научно-доказательной медицины и собственного профессионального опыта.

С 2017 года доктор Либеранская Наталья Сергеевна принимает пациентов в клинике Пирогова — вы тоже можете пройти консультацию эндокринолога высшей категории.

Пройти обследование быстро, без очередей и в удобное для вас время можно и в нашей клинике. Благодаря новейшему диагностическому оборудованию и команде квалифицированных специалистов лаборатории клиники Пирогова, вы можете быть уверены в объективных и достоверных результатах.

Источник

Виды окислительных мышечных волокон и миф об их гипертрофии

Об окислительных мышечных волокнах (ММВ и БоМВ) и их гипертрофии

Окислительные, или оксидативные, мышечные волокна – это МВ, обладающие оксидативным типом обмена и, соответственно, в их структуре энергетические митохондриальные составляющие доминируют над пластическими миофибриллярными; данные МВ – красного цвета, от чего часто именуются красными мышечными волокнами.

К этому типу МВ относятся:

1) медленные мышечные волокна (ММВ) – тип 1А
2) быстрые окислительные мышечные волокна (БоМВ) – тип 2А.

Принято утверждать, что ММВ и БоМВ увеличиваются в объеме по типу саркоплазматической гипертрофии, когда рост мышечных клеток осуществляется за счет саркоплазматических компонентов, среди которых наибольшее значение имеют митохондрии, гликоген, креатинфосфат и миоглобин. В данной статье (см. ниже) приведены аргументы, развенчивающие этот миф.

Что обычно рекомендуют для увеличения окислительных мышечных волокон

В последнее время принято считать, что саркоплазматическая гипертрофия достигается специализированным тренингом, то есть тренингом, имеющим особые отличия по сравнению с традиционным. В этом направлении появились даже авторитетные авторские методики (напр., профессора В.Н. Селуянова). Но в целом особенностями данного тренинга являются:

Научные факты и домыслы

Многими предполагается, что по принципам, изложенным выше, реально гипертрофировать ММВ и БоМВ. Однако, научные данные (Хоппелер Г. Ультраструктурные изменения в скелетной мышце под воздействием физической нагрузки // Физкультура и спорт. 1987. Вып. 6. С. 3-48) свидетельствуют о следующем: при тренинге, направленном исключительно на развитие ММВ, БоМВ, объемная плотность митохондрий возрастает не более чем на 3-5%, количество гликогена – 1%. Не находит экспериментального подтверждения и гипотеза об увеличении воды, связанной с гликогеном.

С другой стороны, те же ученые подтверждают факт увеличения ММВ, а особенно БоМВ, на 50-100% в следствии атлетических занятий. О чем это говорит? По мнению проф. Е.Б.Мякинченко (см.: Мякинченко Е.Б. Сила медленных мышечных волокон как основной фактор локальной выносливости в циклических видах спорта // Юбилейный сборник трудов ученых РГАФК, посвященный 80-летию академии. М., 1997. Т. 1. С. 3-8), гипертрофия ММВ, БоМВ, равно как и быстрых гликолитических МВ (белых, тип 2В), обусловлена увеличением сократительных структур мышечной клетки – МИОФИБРИЛЛ. Как известно, миофибриллярная гипертрофия достигается «традиционными» принципами тренинга – ударными (тяжелые веса, высокая интенивность, базовые упражнения, средний темп выполнения упражнений и др.) и силовыми (максимальные и субмаксимальные веса, базовые упражнения, взрывной стиль выполнения упражнений и др.). Проф. Е.Б.Мякинченко предполагает, что стратегическим путем роста окислительных МВ является миофибриллярный тип их гипертрофии.

Получается, что работа на выносливость и пампинг без ударно-силовой составляющей, а это, например, исключительно выполнение упражнений в медленном темпе с небольшими весами, МАЛОПЕРСПЕКТИВНА. Именно поэтому не так давно модные системы тренинга (см., напр., источник 1, источник 2 источник 3 и т.д.), направленные на гипертрофию ММБ, на практике не одного десятка атлетов были подвергнуты сомнению в их пригодности.

Как же в действительности увеличить в объеме ММВ и БоМВ?

Способом реализации указанного пути ученый Е.Б.Мякинченко предлагает оптимальное сочетание принципов тренинга окислительных МВ и гликолитических МВ. Таким образом, получается, что рост ММВ, БоМВ в первую очередь связан не столько с увеличением их основных доминирующих составляющих – саркоплазматических компонентов, сколько с миофибриллами как сократительным элементом мышечной клетки.

На самом деле, результативность такого сочетания проверена вековой практикой бодибилдеров, удачно совмещающих относительно легкие, средние, тяжелые и сверхтяжелые отягощения, тренинг на выносливость, массу и силу. А новомодные методики, якобы базирующиеся на научных теориях, зачастую не эффективны.

Практические советы о гипертрофии ММВ и БоМВ

Совет 1. Выполнение упражнения по принципу постепенного изменения веса отягощения в широком диапазоне, из-за чего в работу вовлекаются все типы МВ:

а) постепенное увеличение веса (прием «пирамида»), когда упражнение (например, из трех подходов) выполняется так: 1-й подход – на 15 раз, 2-й подход – на 10 раз, 3-й подход – на 5 раз;

б) постепенное уменьшение веса (прием «обратная пирамида»), когда упражнение (например, всё из тех же трех подходов) выполняется в обратном порядке: 1-й подход – на 5 раз, 2-й подход – на 10 раз, 3-й подход – на 15 раз.

Остается открытым вопрос, какая схема («а» или «б») более эффективна. Скорее всего, ответ зависит от того, какие МВ доминируют в той или иной мышечной группе, поскольку из-за утомляемости мускул мышечные волокна, их типы по-разному вовлечены в работу в зависимости от того, первый сейчас подход или последний.

Совет 2. Прокачка мышечных групп в нескольких упражнениях (например, двух), одно из которых выполняется в ударно-силовом стиле, когда используют большие веса при неизменяющемся на одном занятии количестве повторений в диапазоне от 1 до 8-10. Второе упражнение выполняется со значительно меньшей интенсивностью со средним числом повторений – 15. Очевидно, этот совет больше всего подходит для быстро растущих мезоморфов, тогда как для эктоморфов хардгейнеров может обернуться перетренированностью.

На сегодняшний день, повторюсь, нет достоверных ответов на вопросы о том, упражнение какой интенсивности должно следовать первым, а какой следующим, так же как и четкого утверждения о зависимости варьирования интенсивности с доминирующими МВ в работающей мышечной группе.

Совет 3. Использование метода периодизации. Периодизация – это чередование периодов времени с противоположными (непохожими) тренировочными схемами. В данном случае имеет смысл чередовать периоды ударно-силовых занятий с занятиями, направленными на развитие оксидативных мышечных волокон, причем период последних должен быть менее длительным (оптимальное соотношение длительности периодов – 3:1).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *