неверно что в электроустановках используются трансформаторы напряжения
Трансформаторы напряжения. Всё, что о них нужно знать
Что необходимо о них знать? Расскажем об этом в предлагаемой статье.
Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.
Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.
От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.
По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.
Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.
По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.
Устройство трансформатора напряжения
ТН состоят из двух главных элементов:
Обособленных друг от друга, изолированных обмоток (первичной и вторичной).
На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.
Принцип работы
В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:
Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.
Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.
К вторичной обмотке поступает ток, возникший под действием ЭДС.
Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.
Виды трансформаторов напряжения
Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.
Все ТН условно делятся на виды по определенным критериям:
Число фаз: одно- и трехфазные.
Количество обмоток – две или три.
Класс точности – диапазон допустимых параметров погрешности.
Тип охлаждения – масляные и сухие (воздушное охлаждение).
Способ размещения – внутренние или внешние.
ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:
Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.
Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.
Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.
Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.
Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.
Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.
Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:
Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.
Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.
Принцип работы ТН
Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.
Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.
Классификация трансформаторов напряжения
ТНы классифицируются по следующим параметрам:
На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.
электромагнитные и емкостные
Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.
Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.
А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.
Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.
Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.
Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.
Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.
Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.
Что такое трансформатор напряжения
Трансформатор напряжения — это одна из разновидностей трансформаторов, который нужен для:
Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.
Трансформатор напряжения принцип работы
Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.
Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.
Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.
Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.
В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.
измерительный трансформатор напряжения
Принципы работы трансформатора напряжения
Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:
Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.
Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.
Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.
Устройство однофазного трансформатора напряжения
Устройство однофазного трансформатора напряжения:
Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.
Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.
Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).
Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.
У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).
Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ
Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.
Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.
Схемы включения трансформаторов напряжения
Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:
Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.
На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.
Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.
Трансформатор напряжения при напряжении до 35 кВ
Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.
рис. 2.1 Схема включения однофазного трансформатора напряжения
Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.
В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные трансформаторы напряжения (ТН). Выбор того или иного типа трансформатора напряжения зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).
Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.
По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.
Обозначение трансформатора напряжения на схеме
Предохранители трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.
Трёхфазный трансформатор
Среди электромагнитных устройств данного типа выделяется трёхфазный трансформатор. Он имеет магнитную и гальваническую связи фаз. Наличие схемы первого типа обусловлено соединением магнитопроводов в одну систему. При этом потоки магнитного воздействия расположены относительно друг друга под углом 120 °. Стержень в данной системе не нужен, так как при объединении центров трёх фаз сумма электромагнитных русел равняется нулю вне зависимости от времени. Благодаря этому схема с шестью стержнями преобразуется в трёхстержневую.
В соединении обмоток устройства можно использовать схемы трёх типов:
Применение трёхфазного трансформатора является более экономичным, чем использование соединённых однофазных конструкций.
Нагрузка трансформаторов напряжения
Вторичная нагрузка трансформатора напряжения—это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.
Конструкции трансформаторов напряжения
В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях — только однофазные.
Измерительные трансформаторы напряжения
Измерительные трансформаторы напряжения предназначены для уменьшения первичных напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.
Видео: Трансформаторы напряжения
Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.
Для чего нужны трансформаторы тока и чем они отличаются от трансформаторов напряжения
Говоря о трансформаторе напряжения, мы имеем ввиду электромагнитное устройство, предназначенное для преобразования переменного напряжения определенной частоты: из высокого — в пониженное, или из низкого — в более высокое, в зависимости от назначения трансформатора, и в конечном счете — от коэффициента трансформации данного экземпляра. При помощи трансформатора напряжения электрическая мощность с достаточно высоким КПД передается из первичной цепи — во вторичную, к которой обычно и подключается нагрузка, то есть потребитель.
Потребитель должен соответствовать трансформатору напряжения по мощности: он может быть меньшей мощности, чем трансформатор в состоянии передать, но никогда не должен быть большей мощности, чем та, на которую спроектирован данный трансформатор, иначе напряжение на вторичной обмотке данного трансформатора начнет уменьшаться, сердечник станет постоянно входить в насыщение, и как обмотки так и сердечник будут перегреваться, КПД трансформатора упадет.
Тем не менее, напряжение на вторичной обмотке трансформатора напряжения, работающего под нагрузкой в штатном режиме или на холостом ходу, всегда остается почти неизменным, по крайней мере с высокой точностью близким к номинальному напряжению вторичной обмотки трансформатора, то есть будет лежать в определенном известном, довольно узком диапазоне. Но при этом ток нагрузки может быть очень разным — варьироваться от нуля до максимально допустимого, в зависимости от импеданса и характера нагрузки, которую трансформатор питает в данный момент.
Трансформатор тока существенно отличается от трансформатора напряжения, как конструктивно, так и по назначению, и по особенностям применения. В то время как первичная и вторичная (или вторичные, если их несколько) обмотки трансформатора напряжения зачастую имеют немалое количество витков, отвечающее коэффициенту трансформации и параметрам сердечника, то первичная обмотка трансформатора тока — это всего один виток, проходящий через окно магнитопровода. Вторичная же обмотка трансформатора тока имеет множество витков, и всегда соединена с активной нагрузкой строго определенного номинала, например с резистором.
Теперь если через первичную обмотку потечет переменный ток определенной величины, то вторичная обмотка, будучи нагружена на постоянную активную нагрузку в виде резистора, создаст на нем падение напряжения, пропорциональное току первичной обмотки (через коэффициент трансформации) и сопротивлению нагрузки. То есть, в зависимости от тока первичной цепи, напряжение вторичной обмотки трансформатора тока может изменяться в широких пределах — от нуля до максимально допустимого.
Очевидно, такой режим отличается от режима работы трансформатора напряжения. Здесь (у трансформатора тока) как правило нет узкого диапазона номинальных напряжений вторичной обмотки, характерного для трансформаторов напряжения. Типичное применение трансформатора тока — измерение тока в цепях, к которым уже подключена нагрузка.
Трансформаторы тока, кроме расширения пределов измерения, изолируют измерительные приборы от высокого напряжения и делают возможным измерение тока в сетях с напряжением выше 1000 В.
Первичная обмотка трансформатора тока имеет изоляцию, рассчитанную на полное рабочее напряжение сети. Для обеспечения безопасности работы обслуживающего персонала (в случае пробоя изоляции) один из зажимов вторичной обмотки и сердечник трансформатора должны быть заземлены.
В отличие от силовых трансформаторов ток вторичной обмотки в трансформаторе тока зависит от тока первичной обмотки (измеряемого тока). Поэтому при работе с трансформатором тока необходимо особенно внимательно следить за тем, чтобы вторичная обмотка была замкнута. Для этого они имеют приспособление для замыкания вторичной обмотки при отключении измерительного прибора.
В тех случаях, когда проводник с током нельзя разъединить, для подключения трансформатора тока применяются трансформаторы в виде токовых клещей. Сердечник таких трансформаторов состоит из двух половин, скрепленных шарниром, что позволяет охватить проводник с током, не разрывая его. Вторичная обмотка замкнута на амперметр, который обычно укрепляется на самом сердечнике.
Итак, трансформатор напряжения предназначен для преобразования электрической мощности переменного тока с целью питания нагрузок различного номинала, рассчитанных на напряжение вторичной обмотки трансформатора.
К трансформаторам напряжения относятся мощные промышленные трансформаторы, трансформаторы подстанций, сетевые трансформаторы, сварочные трансформаторы, трансформаторы в блоках питания некоторых бытовых приборов и т. д. эти трансформаторы могут быть как повышающими, так и понижающими.
Измерительные трансформаторы напряжения предназначены для преобразования высокого напряжения сети в напряжение, доступное для измерения обычными приборами, т. е. для расширения пределов измерения приборов на переменном токе по напряжению.
Трансформаторы тока используются в измерительных целях — там, где необходимо узнать величину переменного тока, текущего по проводу. Трансформатор тока включается в разрыв этого провода, а к его вторичной обмотке подсоединяется амперметр или вольтметр, соединенный с резистором известного номинала. Путем несложных вычислений легко найти величину тока первичной обмотки. Вычисления может производить как человек, так и электроника.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!