неверно что существует структура алгоритма
Кто же ты такой, алгоритм?
Сегодня довольно легко столкнуться с недобросовестными школьными учебниками, в частности с учебниками по информатике. В главах, посвященных алгоритмам, вы можете найти непосредственно определение алгоритма. Не пояснение, о чем идет речь, не рассказ о предмете, а именно определение. Причем выделенное жирным шрифтом, старательно обведенное в рамку и помеченное какой-нибудь заметной пиктограммой в виде восклицательного знака. Обычно приправлено всё это соусом из кучи обязательных и необязательных свойств, образуя в итоге феерический кавардак. Давайте попытаемся понять, что же такое алгоритм, почему мы не может дать ему конкретного определения и выясним, какие свойства являются обязательными, а какие нет.
Составителей учебников легко понять, ведь на самом деле строгого определения алгоритма не существует, и более того, такого определения быть не может. Но вместо попыток объяснить, что к чему, авторы подсовывают бедным ученикам еще одно задание по зубрежке бесполезных и неправильных терминов. Чтобы не быть голословным, приведу выдержку из одного весьма распространенного учебника:
В университетах дела обстоят получше, однако автору этих строк на курсе по математической логике и теории алгоритмов пришлось столкнуться все с тем же винегретом из определения алгоритма и его свойств. Разберемся, что тут не так.
Бесконечность не предел
Такой же трюк с нумерацией не пройдет для бесконечных непериодических дробей (иррациональных чисел). Допустим такое множество счетное, то есть элементы этого множества можно пронумеровать натуральными числами. Тогда рассмотрим бесконечную десятичную дробь с нулевой целой частью, у которой первая цифра после запятой не равняется цифре на той же позиции у дроби с номером 1, вторая цифра не равняется цифре на второй позиции у дроби с номером 2 и т.д. Тогда полученная дробь будет заведомо отличаться от всех дробей хотя бы одной цифрой. Получается для нее не нашлось номера в нашей бесконечной нумерации! Примененная схема доказательства называется канторовским диагональным методом в честь придумавшего ее математика Георга Кантора.
Про бесконечные дроби
Не стоит делать ошибку, записывая в иррациональные числа все бесконечные дроби. Иррациональными являются только те числа, которые нельзя представить в виде несократимой дроби вида m/n. В десятичной системе счисления дроби 1/3 и 2/7 тоже окажутся бесконечными, однако их «бесконечность« обусловлена выбранной системой счисления. В системе счисления по основанию 21 эти дроби будут иметь конечное представление, а вот, например, дробь 1/2 окажется бесконечной (периодической).
Говорят, что множество бесконечных десятичных дробей имеет мощность континуум, которая обозначается символом ℵ1 (алеф-один). В дальнейшем нам понадобится следующее множество. Рассмотрим некоторый алфавит (конечное множество символов). Теперь представим множество всех конечных цепочек символов алфавита A*. Коль скоро алфавит конечен, и каждая цепочка конечна, то множество таких цепочек счетно (их можно пронумеровать натуральными числами).
На сколько велика бесконечность?
Допустим в наш алфавит вошли все придуманные на земле символы: русский алфавит, японские иероглифы, шумерская клинопись и т.д. Тогда в наше множество войдут все написанные когда-либо книги, все книги, которые будут написаны и все книги, которые никто не стал бы писать (например, хаотичные последовательности символов). Кроме того, представим книгу, толщиной в Солнечную систему и диагональю листа равной диаметру Млечного Пути, набранную 12-м шрифтом. В наше придуманное множество войдут все такие книги, отличающиеся хотя бы одним символов, и не только они, ведь вселенная бесконечна! Кто мешает представить себе книгу, размером в миллиарды световых лет? А все такие книги? Уже на этом этапе воображение может давать сбои, а ведь наше множество всего лишь счетное. Чтобы дополнить множество до континуума, нужно рассмотреть бесконечную книгу, по сравнению с которой, предыдущие книги — детские игрушки. Но и одной бесконечной книги нам не хватит, нужно рассмотреть все бесконечные книги.
Конструктивно оперировать континуальными бесконечностями невозможно. Даже работая со счетными множествами, мы не рассматриваем сами множества, а только говорим, что какой бы не был элемент N, всегда найдется элемент N+1. Если мы ставим себе прикладную задачу, появление в наших рассуждениях континуальной бесконечности должно служить нам «тревожной лампочкой»: осторожно, выход за пределы конструктивного.
Алгоритмы и вычислимость
Компьютер проводит свои вычисления, подчиняясь некоторой программе, которая воплощает собой конструктивную процедуру, или алгоритм. Не сложно догадаться, что алгоритм как раз и есть то правило, по которому вычисляется функция. Можно сказать, функция считается вычислимой, если для нее существует некоторый алгоритм.
Понятия алгоритм и вычислимая функция оказываются настолько заковыристыми, что некоторые составители учебной литературы не утруждают себя попытками разъяснить их суть. Дело в том, что определения алгоритма не существует, и кроме того, существовать не может, иначе пришлось бы выбросить на свалку целый раздел математики — теорию вычислимости. Попробуем разобраться более подробнее.
Частично-рекурсивные функции и тезис Черча
Все началось с того, что математик Давид Гильберт в 1900 году предложил список нерешенных на тот момент математических проблем. Позже выяснилось, что десятая проблема (проблема решения произвольного диофантового уравнения) оказалось неразрешимой, но для доказательства этого факта пришлось составить целую новую математическую теорию. Вопросами того, какие задачи можно конструктивно решить, и что такое конструктивное решение, занялись математики Курт Гедель, Стивен Клини, Алонсо Черч и Алан Тьюринг.
Курт Гедель наиболее известен тем, что сформулировал и доказал 2 теоремы о неполноте. Между прочим, сделал он это в возрасте всего лишь 24 лет.
Как выяснилось выше, континуальные бесконечности не всегда подходят под конструктивные рассуждения, поэтому Гедель и Клини предложили рассматривать только функции натурального аргумента (при необходимости любые функции над счетными множествами можно привести к «натуральным функция» путем замены элементов множеств их номерами). Изучая вычислимость таких функций, Гедель, Клини, Аккерман и другие математики пришли к так называемому классу частично-рекурсивных функций. В качестве определения этого класса рассматривается набор базовых, очень простых функций (константа, увеличение на единицу и проекция, которая сопоставляет функции многих аргументов один из ее аргументов) и операторов, позволяющих из функций строить новые функции (операторы композиции, примитивной рекурсии и минимизации). Слово «частичные» показывает, что эти функции определены лишь на некоторых числах. На остальных они не могут быть вычислены. Попытки расширить класс частично-рекурсивных функций ни к чему не привели, так как введение новых операций приводило к тому, что получалось множество функций, совпадающее с классом частично-рекурсивных. В дальнейшем Алонсо Черч отказался от попыток расширения этого класса, заявив, что, видимо:
Частично-рекурсивные функции соответствуют вычислимым функциям в любом разумном понимании вычислимости.
Это утверждение называют тезисом Черча. Стоит отметить, что тезис Черча не является теоремой или доказанным утверждением. Во-первых, не понятно, что такое «разумное понимание», во-вторых, превратив тезис Черча в доказанный факт, мы лишаем себя перспектив дальнейшего исследования вычислимости и механизмов вычислений. Никто, впрочем, не мешает попробовать определить такой набор операций, который был бы мощнее базиса для частично-рекурсивных функций. Только вот, до сих пор это никому не удавалось сделать.
Ученые долго не могли привести пример частично-рекурсивной функции, не являющейся примитивно-рекурсивной (без оператора минимизации). Наконец это удалось Вильгельму Аккерману. Предложенная функция Аккермана растет так быстро, что количество цифр в десятичной записи числа A(4,4) превосходит количество атомов во Вселенной.
Формальная теория алгоритмов во многом построена аналогично теории вычислимости. Считается, что алгоритм есть некое конструктивное преобразование входного слова (цепочки символов некоторого алфавита) в некоторое выходное слово. Опять же, здесь мы имеем с функциями вида A*->A*. Конечно, предложенное описание не подходит под определение алгоритма, так как неясно, что же такое «конструктивное преобразование». Хоть понятия алгоритма и вычислимой функции близки, не стоит их смешивать. Для одного и того же алгоритма может быть предъявлено сколько угодно его записей на каком-нибудь формальном языке, но соответствующая вычислимая функция всегда одна. Один из основателей формальной теории алгоритмов, Алан Тьюринг, предложил формальную модель автомата, известного как машина Тьюринга. Тезис Тьюринга гласит:
Каково бы не было разумное понимание алгоритма, любой алгоритм, соответствующий такому пониманию, может быть реализован на машине Тьюринга.
Любые попытки построить более мощные автомат заканчивались неудачей: для каждого такого автомата (машина Поста, нормальные алгоритмы Маркова, автоматы с регистрами и несколькими лентами) удавалось построить аналогичную машину Тьюринга. Некоторые ученые объединяют тезис Черча и тезис Тьюринга в тезис Черча-Тьюринга, так как они весьма близки по духу.
С помощью такого незамысловатого автомата можно формализовать любой алгоритм.
Таким образом, определив понятие алгоритма, мы будем вынуждены забыть о тезисе Черча-Тьюринга, и отказаться от целой математической теории, богатой содержанием и подарившую нам множество практических результатов.
Свойства алгоритмов
Мы выяснили, почему у алгоритма не может быть конкретного определения. Однако можно определить свойства, которыми должен обладать каждый алгоритм. К сожалению, в литературе часто смешивают обязательные и необязательный свойств. Разберемся подробнее.
Обязательные свойства
Начнем с обязательных свойств. Алгоритм можно записать в виде конечного текста из символов конечного алфавита. Действительно, бесконечный текст мы не можем записать чисто технически, а раз алгоритмы имеют отношение к конструктивной деятельности, бесконечными они быть не могут. Возможность представить алгоритм в виде конечного текста можно назвать свойством объективности и конечности.
Еще одно достаточно очевидное свойство любого алгоритма — его дискретность. Независимо от исполнителя, исполнение алгоритма представляет собой дискретный процесс, при рассмотрение распадающийся на элементарные действия. Понимать дискретность можно и в том смысле, что любая информация, над которой работает алгоритм может быть представлена в виде текста.
Третье фундаментальное свойство алгоритмов называется детерминированностью. Оно заключается в том, что следовать предписанной процедуре можно только одним способом. Единственное, что может повлиять на ход выполнения — это исходные данные, однако при одних и тех же исходных данных, алгоритм всегда выдает один и тот же результат.
Эти три свойства присущи всем алгоритмам. Если нарушено хотя бы одно из них, перед нами уже не алгоритм. С натяжкой к обязательным свойствам можно добавить понятность для исполнителя, хотя это уже на грани фола. По большей части. это относится не к самому алгоритму, а к его записи.
«Винегрет» из свойств из того же учебника по информатике.
Необязательные свойства
Наряду с обязательными свойствами, алгоритм может обладать некоторыми частными свойствами, которые вовсе не обязательны. Начнем с массовости. Конечно, хочется, чтобы алгоритмы решали классы задач в зависимости от входных данных. Однако существуют алгоритмы, которые вообще не зависят от входных данных, например всем известный вывод на экран «Hello world». Как среди вычислимых функций существуют константные, так и среди алгоритмов существуют генераторы единственного результата.
Теперь рассмотрим широко распространенное убеждение, что алгоритмы должны обладать свойством правильности и завершаемости. Начнем с правильности. Такое свойство попросту невозможно формализовать, так как отсутствуют критерии этой правильности. Наверняка, многие из вас сталкивались с ситуацией, когда программист считает программу правильной, а заказчик нет. С завершаемостью дела обстоят интереснее. Рассмотрим термин «применимость« — алгоритм называется применимым к слову, если, получив на вход это слово, он завершается за конечное число шагов. Самое интересное то, что проблема применимости является алгоритмически неразрешимой, то есть невозможно составить алгоритм, которые определял бы по записи алгоритма и входному слову, завершится ли он за конечное число шагов. Никто не мешает вам составить программу, состоящую только из одного бесконечного цикла. И эта программа все еще будет алгоритмом.
Про зависающие программы
Программы, которые не могут зациклиться, на самом деле входят в класс примитивно-рекурсивных — подмножество частично-рекурсивного класса. Отличает их отсутствия оператора минимизации. Он то и вносит пикантности. Если вы используете «неарифметический цикл» while или рекурсию, для которых нельзя заранее определить, сколько раз они выполняться, то ваша программа сразу переходит из класса примитивно-рекурсивных в класс частично-рекурсивных.
Теперь перейдем к пресловутой последовательности шагов. Дело в том, что алгоритм может быть представлен в любой из имеющихся формальных систем (частично-рекурсивные функции, машина Тьюринга, лямбда-исчисление и т.д.). Воплощение алгоритма в виде компьютерной программы далеко не всегда будет описанием последовательности шагов. Здесь все зависит от парадигмы программирования. В императивной парадигме программисты действительно оперируют последовательностью действий. Однако существуют и другие парадигмы, такие как функциональная (привет Haskell программистам), где нету никаких действий, а лишь функции в сугубо математическом смысле, или чистая объектно-ориентированная, которая основана не на «последовательности действий», а на обмене сообщениями между абстрактными объектами.
Заключение
Иногда мир устроен несколько сложнее, чем хотелось бы. Существующие формализмы в теории алгоритмов не более чем абстрактные математические системы, наподобие геометрии Евклида или теории вероятности, тогда как понятие вычислимости, возможно, находится вне математики и является свойством нашей Вселенной наряду со скоростью света и законом всемирного тяготения. И хотя, скорее всего, нам так и не удастся ответить на вопрос, что такое алгоритмы и вычислимость, попытки найти ответ на этот вопрос оказались более ценными, чем возможный однозначный ответ.
Материал данной статьи во многом опирается на 1-ый том «Программирование: введение в профессию» А. В. Столярова. Тем, кто хочет подробнее изучить вопросы, связанные с алгоритмами и теорией вычислимости, кроме этой книги, советую Босс В «От Диофанта до Тьюринга» и трехтомник А. Шеня по математической логике и теории алгоритмов.
Дата-центр ITSOFT — размещение и аренда серверов и стоек в двух дата-центрах в Москве. За последние годы UPTIME 100%. Размещение GPU-ферм и ASIC-майнеров, аренда GPU-серверов, лицензии связи, SSL-сертификаты, администрирование серверов и поддержка сайтов.
Информационные технологии копия 2
Основы алгоритмизации и технологии программирования
Понятие алгоритма и его свойства
Каждый из нас постоянно решает множество задач: как быстрее обраться на работу, как лучше спланировать дела текущего дня и многие другие. Некоторые задачи мы решаем автоматически, так как на протяжении многих лет привыкли к их выполнению, другие требуют длительного размышления над решением, но в любом случае, решение каждой задачи всегда делится на простые действия.
Любой алгоритм существует не сам по себе, а предназначен для определенного исполнителя (человека, робота, компьютера, языка программирования и т.д.). Свойством, характеризующим любого исполнителя, является то, что он умеет выполнять некоторые команды. Совокупность команд, которые данный исполнитель умеет выполнять, называется системой команд исполнителя. Алгоритм описывается в командах исполнителя, который будет его реализовывать. Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя. Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.
Значение слова «алгоритм» очень схоже со значениями слов «рецепт», «метод», «процесс». Однако, в отличие от рецепта или процесса, алгоритм характеризуется следующими свойствами: дискретностью, массовостью, определенностью, результативностью, формальностью.
Дискретность (разрывность – противоположно непрерывности) – это свойство алгоритма, характеризующее его структуру: каждый алгоритм состоит из отдельных законченных действий, говорят: «Делится на шаги».
Массовость – применимость алгоритма ко всем задачам рассматриваемого типа, при любых исходных данных. Например, алгоритм решения квадратного уравнения в области действительных чисел должен содержать все возможные исходы решения, т.е., рассмотрев значения дискриминанта, алгоритм находит либо два различных корня уравнения, либо два равных, либо делает вывод о том, что действительных корней нет.
Определенность (детерминированность, точность) – свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определен и не допускать различных толкований; также строго должен быть определен порядок выполнения отдельных шагов. Помните сказку про Ивана-царевича? «Шел Иван-царевич по дороге, дошел до развилки. Видит большой камень, на нем надпись: «Прямо пойдешь – голову потеряешь, направо пойдешь – жену найдешь, налево пойдешь – разбогатеешь. Стоит Иван и думает, что дальше делать». Таких инструкций алгоритм содержать не может.
Результативность – свойство, состоящее в том, что любой алгоритм должен завершаться за конечное (может быть очень большое) число шагов. Вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов.
Формальность – это свойство указывает на то, что любой исполнитель, способный воспринимать и выполнять инструкции алгоритма, действует формально, т.е. отвлекается от содержания поставленной задачи и лишь строго выполняет инструкции. Рассуждать «что, как и почему» должен разработчик алгоритма, а исполнитель формально (не думая) поочередно исполняет предложенные команды и получает необходимый результат.
Способы описания алгоритмов
Рассмотрим следующие способы описания алгоритма: словесное описание, псевдокод, блок-схема, программа.
Словесное описание представляет структуру алгоритма на естественном языке. Например, любой прибор бытовой техники (утюг, электропила, дрель и т.п.) имеет инструкцию по эксплуатации, т.е. словесное описание алгоритма, в соответствии которому данный прибор должен использоваться.
Никаких правил составления словесного описания не существует. Запись алгоритма осуществляется в произвольной форме на естественном, например, русском языке. Этот способ описания не имеет широкого распространения, так как строго не формализуем (под «формальным» понимается то, что описание абсолютно полное и учитывает все возможные ситуации, которые могут возникнуть в ходе решения); допускает неоднозначность толкования при описании некоторых действий; страдает многословностью.
Псевдокод – описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основные этапы решения задачи, перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика.
Строгих синтаксических правил для записи псевдокода не существует. Это облегчает запись алгоритма при проектировании и позволяет описать алгоритм, используя любой набор команд. Однако в псевдокоде обычно используются некоторые конструкции, присущие формальным языкам, что облегчает переход от псевдокода к записи алгоритма на языке программирования. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.
Блок-схема – описание структуры алгоритма с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения отдельных инструкций. Этот способ имеет ряд преимуществ. Благодаря наглядности, он обеспечивает «читаемость» алгоритма и явно отображает порядок: выполнения отдельных команд. В блок-схеме каждой формальной конструкции соответствует определенная геометрическая фигура или связанная линиями совокупность фигур.
Рассмотрим некоторые основные конструкции, использующиеся для построения блок-схем (рис. 1).
(1) Блок, характеризующий начало/конец алгоритма (для подпрограмм – вызов/возврат);
(8) Блок – решение (проверка условия или условный блок);
(9) Блок, описывающий блок с параметром;
(10) Блок – границы цикла, описывающий циклические процессы типа: «цикл с предусловием», «цикл с постусловием»;
Описания алгоритма в словесной форме, на псевдокоде или в виде блок-схемы допускают некоторый произвол при изображении команд. Вместе с тем она настолько достаточна, что позволяет человеку понять суть дела и исполнить алгоритм. На практике исполнителями алгоритмов выступают компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на «понятном» ему языке, такой формализованный язык называют языком программирования.
Программа – описание структуры алгоритма на языке алгоритмического программирования. Программа на языке декларативного программирования представляет собой совокупность описанных знаний и не содержит явного алгоритма исполнения.
Основные алгоритмические конструкции
Элементарные шаги алгоритма можно объединить в следующие алгоритмические конструкции: линейные (последовательные), разветвляющиеся, циклические и рекурсивные.
Линейная алгоритмическая конструкция
Линейной называют алгоритмическую конструкцию, реализованную в виде последовательности действий (шагов), в которой каждое действие (шаг) алгоритма выполняется ровно один раз, причем после каждого i- гo действия (шага) выполняется (i+ 1)-е действие (шаг), если i-e действие – не конец алгоритма.
Опишем алгоритм сложения двух чисел на псевдокоде в виде блок-схемы (рис. 2).
Разветвляющаяся алгоритмическая конструкция
Разветвляющейся (или ветвящейся) называется алгоритмическая конструкция, обеспечивающая выбор между двумя альтернативами в зависимости от значения входных данных. При каждом конкретном наборе входных данных разветвляющийся алгоритм сводится к линейному. Различают неполное (если – то) и полное (если – то – иначе) ветвления. Полное ветвление позволяет организовать две ветви в алгоритме (то или иначе), каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран (рис. 3). Неполное ветвление предполагает наличие некоторых действий алгоритма только на одной ветви (то), вторая ветвь отсутствует, т.е. для одного из результатов проверки никаких действий выполнять не надо, управление сразу переходит к точке слияния (рис. 4).
Рассмотрим стандартный алгоритм поиска наибольшего (наименьшего) значения среди нескольких заданных. Основная идея алгоритма сводится к следующему: за наибольшее (наименьшее) принимаем значение любого из данных. Поочередно сравниваем оставшиеся данные с наибольшим (наименьшим). если окажется, что очередное значение входного данного больше (меньше) наибольшего (наименьшего), то наибольшему (наименьшему) присваиваем это значение. Таким образом, сравнив все входные данные, найдем наибольшее (наименьшее) среди них. Алгоритм использует неполное ветвление.
Заданы три числа. Найти значение наименьшего из них Заданные числа обозначим: а, b, с; результирующее наименьшее – min. На рис. 5 представлена блок-схема алгоритма решения данной задачи.
Алгоритмическая конструкция «Цикл»
Циклической (или циклом) называют алгоритмическую конструкцию, в кoтoрoй некая, идущая подряд группа действий (шагов) алгоритма может выполняться несколько раз, в зависимости от входных данных или условия задачи. Группа повторяющихся действий на каждом шагу цикла называется телом цикла. Любая циклическая конструкция содержит себе элементы ветвящейся алгоритмической конструкции.
Арифметический цикл
В арифметическом цикле число его шагов (повторений) однозначно определяется правилом изменения параметра, которое задается с помощью начального (N) и конечного (К) значений параметра и шагом (h) его изменения. Т.е., на первом шаге цикла значение параметра равно N, на втором – N + h, на третьем – N + 2h и т.д. На последнем шаге цикла значение параметра не больше К, но такое, что дальнейшее его изменение приведет к значению, большему, чем К.
Вывести 10 раз слово «Привет!».
Параметр цикла обозначим i, он будет отвечать за количество выведенных слов. При i=1 будет выведено первое слово, при i=2 будет выведено второе слова и т. д. Так как требуется вывести 10 слов, то последнее значение параметра i=10. В заданном примере требуется 10 раз повторить одно и то же действие: вывести слово «Привет!». Составим алгоритм, используя арифметический цикл, в котором правило изменения параметра i=1,10, 1. т. е. начальное значение параметра i=1; конечное значение i=10; шаг изменения h=1. На рис. 6 представлена блок-схема алгоритма решения данной задачи.
Цикл с предусловием
Количество шагов цикла заранее не определено и зависит от входных данных задачи. В данной циклической структуре сначала проверяется значение условного выражения (условие) перед выполнением очередного шага цикла. Если значение условного выражения истинно, исполняется тело цикла. После чего управление вновь передается проверке условия и т.д. Эти действия повторяются до тех пор, пока условное выражение не примет значение ложь. При первом же несоблюдении условия цикл завершается.
Блок-схема данной конструкции представлена на рис. 7 двумя способами: с помощью условного блока а и с помощью блока границы цикла б. Особенностью цикла с предусловием является то, что если изначально условное выражение ложно, то тело цикла не выполнится ни разу.
Цикл с постусловием
Как и в цикле с предусловием, в циклической конструкции с постусловием заранее не определено число повторений тела цикла, оно зависит от входных данных задачи. В отличие от цикла с предусловием, тело цикла с постусловием всегда будет выполнено хотя бы один раз, после чего проверяется условие. В этой конструкции тело цикла будет выполняться до тех пор, пока значение условного выражения ложно. Как только оно становится истинным, выполнение команды прекращается. Блок-схема данной конструкции представлена на рис. 8 двумя способами: с помощью условного блока а и с помощью блока управления б.
Рекурсивный алгоритм
Рекурсивным называется алгоритм, организованный таким образом, что в процессе выполнения команд на каком-либо шаге он прямо или косвенно обращается сам к себе.
Простые типы данных: переменные и константы
Переменная – есть именованный объект (ячейка памяти), который может изменять свое значение. Имя переменной указывает на зн ачение, а способ ее хранения и адрес остаются скрытыми от программиста. Кроме имени и значения, переменная имеет тип, определяющий, какая информация находится в памяти. Тип переменной задает:
Объем памяти для каждого типа определяется таким образом, чтобы в него можно было поместить любое значение из допустимого диапазона значений данного типа. Например, тип «байт» может принимать значения от О до 255, что в двоичном коде (255(10)=11111111(2)) соответствует ячейке памяти длиной в 8 бит (или 1 байт).
В описанных выше алгоритмах (примеры 1-3) все данные хранятся в виде переменных. Например, инструкция «Ввод двух чисел а, b » означает введение пользователем значений двух переменных, а инструкция «К=К + 1» означает увеличение значения переменной К на единицу.
Если переменные присутствуют в программе, на протяжении всего времени ее работы – их называют статическими. Переменные, создающиеся и уничтожающиеся на разных этапах выполнения программы, называют динамическими.
Все остальные данные в программе, значения которых не изменяются на протяжении ее работы, называют константами или постоянными. Константы, как и переменные, имеют тип. Их можно указывать явно, например, в инструкции «К=К+1» 1 есть константа, или для удобства обозначать идентификаторами: pi=3,1415926536. Только значение pi нельзя изменить, так как это константа, а не переменная.
Структурированные данные и алгоритмы их обработки
Одномерный массив (шкаф ящиков в один ряд) предполагает наличие у каждого элемента только одного индекса. Примерами одномерных массивов служат арифметическая (аi) и геометрическая (bi) последовательности, определяющие конечные ряды чисел. Количество элементов массива называют размерностью. При определении одномерного массива его размерность записывается в круглых скобках, рядом с его именем. Например, если сказано: «задан массив A (10)», это означает, что даны элементы: a 1 , a 2 , …, a 10 . Рассмотрим алгоритмы обработки элементов одномерных массивов.
Ввод элементов одномерного массива осуществляется поэлементно, в порядке, необходимом для решения конкретной задачи. Обычно, когда требуется ввести весь массив, порядок ввода элементов не важен, и элементы вводятся в порядке возрастания их индексов. Алгоритм ввода элементов массива А(10) представлен на рис.9.
В заданном числовом массиве A(l0) найти наибольший элемент и его индекс, при условии, что такой элемент в массиве существует, и единственный.
Обозначим индекс наибольшего элемента т. Будем считать, что первый элемент массива является наибольшим (т = 1). Сравним поочередно наибольший с остальными элементами массива. Если оказывается, что текущий элемент массива а i (тот, c которым идет сравнение) больше выбранного нами наибольшего ат, то считаем его наибольшим (т=i) (рис.10).
Рассмотрим двумерный массив (шкаф с множеством ящиков, положение которых определяется двумя координатами – по горизонтали и по вертикали). В математике двумерный массив (таблица чисел) называется матрицей. Каждый ее элемент имеет два индекса а ij , первый индекс i определяет номер строки, в которой находится элемент (координата по горизонтали), а второй j – номер столбца (координата по вертикали). Двумерный массив характеризуется двумя размерностями N и М, определяющими число строк и столбцов соответственно (рис. 11).
Задана матрица символов (100х100), представляющая собой карту ночного неба; звездам на карте соответствует символы «*». Определить: сколько звезд на карте?
Алгоритм решения задачи достаточно прост, необходимо перебрать все элементы матрицы и посчитать, сколько среди них символов «*». Обозначим К переменную – счетчик. На рис 13. представлена блок-схема решения этой задачи.