некоторые считают что сомнения основа логики
4 закона логики, которые помогут определить ложные суждения
В жизни мы часто слышим фразы «это не поддается логике» или «это нелогично». В целом мы понимаем, что речь идет про неверное суждение, ошибочные выводы. Но в чем конкретно нарушена логика — сказать трудно. Существуют 4 закона логики, с помощью которых можно легко отделить ложь от правды. Логика — это древняя наука, появившаяся в 4 веке до н.э., ее основателями были Аристотель, Сократ, Платон и многие другие известные философы, которые усердно изучали законы и формы правильного логического мышления. Давайте разберем на простых примерах значения основных четырех законов логики и как их применить в жизни.
Закон тождества
Любая мысль должна соответствовать самой себе, то есть иметь конкретное значение и быть точной и понятной. Самый известный пример: «ученики прослушали урок». Термин «прослушали» в этом предложение может иметь два определения: то ли ученики ничего не слушали на уроке, то ли, наоборот, внимательно изучали новую тему. Главное, на что необходимо обращать внимание, так это на неоднозначные слова, которые могут иметь несколько значений. Сложнее всего распознать нарушение тождества в сложных утверждениях:
В примере понятие «ничто» в первом варианте означало «отказ от выбора варианта», во втором, как отсутствие чего-либо.
Закон противоречия
Две отрицающих друг друга мысли не могут быть одинаково верными. Например, когда говорят «черный пес» и «белый пес», имея в виду одного и того же пса в одном промежутке времени, то правильным может быть только одно утверждение. В жизни важно выявлять противоречия, отделять игру слов от лжи.
Закон исключенного третьего
Два противоречащих утверждения не должны быть одинаково ложными. Тут важно отличать противоречащие от противоположных утверждений. Первые суждения не имеют третьего варианта, например, большая квартира и небольшая квартира. Противоположные суждения допускают, что возможен и другой вариант, например, «маленькая квартира» и «большая квартира», другой вариант — «средняя квартира». На простых примерах принцип понятен, а вот в жизни противоречащие суждения обычно разделены длинным предисловием, который сбивает с мысли.
Закон достаточного основания
Истинная мысль должна быть основана на аргументах, чтобы быть истинной. Важно, что само утверждение должно следовать из этих фактов. Например, «я готовился к экзамену, поэтому я не заслужил двойку». Один факт не подтверждает утверждение, студент мог просто прочесть лекции и не заучивать нужный материал. Данный закон помогает не делать преждевременных выводов и не верить, например, разной желтой прессе.
Проверьте себя прямо сейчас, как хорошо вы разбираетесь в логике, пройдите бесплатный онлайн-тест на логику.
Логика: предикатная, формальная и сентенциальная. Кванторы и возникновение информатики
1 | Введение
Логика, как эпистемологический инструмент, — исследующий знание как таковое, — изобретена независимо в трёх отдельных государствах: Греции (Аристотелем), Китае (до правления Цинь Шихуанди) и Индии. В последних двух государствах логика не распространилась настолько, чтобы получить полноценное развитие. В античной же Греции логика сформировалась в своих основах столь определённо, что дополнилась только через 2 тысячелетия.
Значительные изменения в греческую логику, помимо Буля, Моргана и Рассела, внёс Фреге — самая важная фигура основателей формальной семантики. Он разработал логику предикатов и 2 вида кванторов, попытавшись создать «логически совершенный язык» о котором мечтал Лейбниц. Значимой личностью является также Гёдель, который открыл знаменитые две теоремы о неполноте, описывающие невозможность объединения множества доказуемых утверждений со множеством истинных. Он утверждал, что доказательства математики зависят от начальных предположений, а не фундаментальной истины, из которой происходят ответы. Одна из главных идей его работ состоит в том, что ни один набор аксиом, — в том числе математических, — не способен доказать свою непротиворечивость.
На этом этапе некоторые заметят влияние платонизма на австрийского логика. Совершенно верно, ведь Гёдель не раз заявлял о влиянии метафизики Платона на собственную деятельность. Но сам Платон развитию формальной логики способствовал лишь косвенно: в истории он вносит вклад в развитие другого направления — философской логики. Платоном созданы вопросы, на которых основывается вся западная академическая философия вплоть до наших дней. Философия, в том виде, котором она известна, возникла только благодаря учителю Аристотеля.
Платон — учитель Аристотеля
В другие периоды в логику также вносили дополнения:
античной школой стоицизма введены термины «модальности», «материальной импликации», «оценки смысла и истины», которые являются задатками логики высказываний;
также средневековыми схоластами введены несколько понятий;
Но главное, что сами логические операции не изменились. «Органон» Аристотеля, как сборник из 6 книг — первоисточник, где подробно описаны главные логические законы. «Органон» (с древнегреческого ὄργανον), означает — инструмент. Аристотель считал, что логика является инструментом к познанию. Он объединяет методом получения информации такие науки:
Физика — наука о природе;
Метафизика — наука о природе природы;
Биология — раздел физики, наука о жизни;
Психология — раздел физики, наука о душе;
Кинематика — раздел физики, наука о движении;
2 | Терминология
У каждой из наук должен быть идентичный фундамент в способе получения гнозисов (знаний), который позволит упорядочить информацию и вывести новые силлогизмы (умозаключения). Только таким образом получится прогресс в познании истины. Без логики наука была бы похожа на коллекционирование фактов, ибо информация бы не поддавалась анализу.
Сам Аристотель находит логике как средству убеждения иное применение: в риторике, спорах, дебатах, выступлениях и т.д., описывая это в труде «Риторика». В западной философии принято давать чёткие определения перед рассуждениями, поэтому определимся с терминами. Логика — наука о правильном мышлении.
В языковой зависимости возникают трудности трактовки термина «наука», но даже в оригинальном названии труда Фридриха Гегеля «Наука логики» — «Wissenschaft der Logik», употребляется слово «наука» (Wissenschaft). Поэтому придём к консенсусу и будем считать, что научной можно назвать ту дисциплину, в которой возможны открытия, исследование и анализ. Логика в таком случае — наука, ибо внутри неё возможно совершать открытия. Яркий пример — комбинаторика Лейбница.
Слово «правильный» веет нормативными коннотациями: правильное поведение, правильное выражение лица, и т.д. Перечисленное соответствует некоторым критериям и логика выставляет их (критерии) для правильного мышления.
Слово «мышление» понимается на интуитивном уровне, но чёткое объяснение затруднительно, обширно и иногда не объективно.
Бюст Аристотеля
3 | Формальная и неформальная логика
Первоначально, деление логики происходит на формальную и неформальную. Формальная логика отличается тем, что, в отличие от неформальной, записывается уравнениями. Неформальная же логика пишется выражениями в форме языка, поэтому она подходит для риторики, а формальная логика для абстрактных наук.
Формальная логика равным образом делится на дедуктивную и индуктивную. Они различаются тем, что в дедуктивном аргументе истинность условий гарантирует истинность умозаключения или вывода. В индукции же, при истинности условий одинаково возможен ложный и истинный вывод.
Законы формальной логики:
1. Закон тождества (А = А): эквивокация или двусмысленность недопустимы. Нельзя подменять одно понятие, другим.
2. Закон непротиворечия (А ∧ ¬А = 0): одно и то же утверждение не может быть истинным и ложным одновременно.
3. Закон исключения третьего или бивалентности (А ∨ ¬А = 1): утверждение может быть либо истинным, либо ложным — третьего не дано.
Принципы формальной логики:
1. Принцип достаточного обоснования: достаточными являются такие фактические и теоретические обоснования, из которых данное суждение следует с логической необходимостью.
4 | Сентенциальная логика (алгебра высказываний)
Базовые операции сентенциальной логики — логики высказываний, где заглавная буква означает предложение:
Отрицание (Утверждение ¬A истинно тогда и только тогда, когда A ложно): если имеем утверждение «А» и имеем утверждение «не А», то, когда утверждение «А» будет истинным — утверждение «не А» будет ложным. Также и когда утверждение «А» будет ложным — утверждение «не А» будет истинным.
Конъюнкция (Утверждение A ∧ B истинно, если и A, и B — истинны. Ложно в противном случае): в английском языке — союз «and/&»; в русском — «и». В утверждении «А и В», между «А» с «В» стоит знак конъюнкции — «∧». Утверждение «А и В» является истинным, если «А» с «В» являются истинными одновременно. Если хоть один элемент ложен, то всё утверждение ложно. «А и В» подразумевает, во-первых: истинность «А», во-вторых: истинность «В».
Дизъюнкция (Утверждение A ∨ B верно, если A или B (или оба) верны. Если оба не верны — утверждение ложно): в английском языке — союз «or»; в русском — «или». Существует два типа дизъюнкции — включающая и исключающая (в логике используется включающее «или»). Условия таковы, что утверждение «А или В» будет истинным, когда один или оба элемента истинны, но никогда — когда оба элемента ложны. Это противоречит нашему обыденному мышлению, т.к. когда спрашивают: «Чай или кофе?» мы выбираем один элемент, но в логике подразумевается выбор не только одного, а нескольких возможных.
Импликация (Утверждение A ⇒ B ложно, только когда A истинно, а B ложно): в английском языке — «therefore»; в русском языке — «следовательно». Подразумевает истинность одного элемента при истинности другого. Потому что условия истинности соблюдаются всегда, кроме случая, когда «А» истинно, а «B» ложно. Поэтому утверждение: «А» ложно, следовательно «B» ложно — истинно. Покажется, что когда «А» ложно, а «В» истинно — не соблюдаются условия, но это не так. Если вы скажете, что после дождя промокните — это утверждение будет истинным вне зависимости от того, пошёл дождь или нет.
Эквивалентность (Утверждение A ⇔ B истинно, только если оба значения A и B ложны, либо оба истинны): если истинно утверждение «А, следовательно В» и истинно утверждение «В, следовательно А», то истинными являются выражения «А эквивалентно В» и соответственно «В эквивалентно А». Условия истинности соблюдаются в случаях, когда оба элемента истинны или оба ложны.
Значение переменных
5 | Предикатная логика первого порядка
В XX веке, после добавлений в область логики работ Лейбница и Фреге, на основе этой дисциплины создаётся новая — информатика. Программирование сохраняет преемственность с видоизменённой логикой Аристотеля — предикатной логикой, описательная способность которой выше, чем у логики высказываний (сентенциальной).
Прежде чем разобрать этот новый тип логики, поговорим об её отличии от сентенциальной. Главная особенность предикатной логики, что заглавными буквами обозначаются предикаты, а не целые высказывания. Можно сказать, что предикат — это математическая функция, которая «накладывает» множество субъектов на множество утверждений.
Высказывание «Я пошёл в зоопарк» — состоит из субъекта и предиката. В нём субъект — «Я», а предикат — то, что остаётся кроме субъекта («пошёл в зоопарк»). Субъект — тот, кто совершает действие в предложении или имеет выраженное свойство; предикат — всё оставшееся. Таким образом, если в сентенциальной логике высказывание «Я пошёл в зоопарк» выражалось бы одной заглавной буквой, то в логике предикатов использовались бы две буквы (заглавная и подстрочная): «P» — для предиката; «x» — для субъекта. Субъекты обозначаются переменной («x»), потому что в предикатной логике появляются две относительно новые операции: универсальный и экзистенциальный кванторы. Особенность кванторов заключается в том, что ими возможно записать выражение истинное при всех возможных переменных «х» или хотя бы при одном.
Универсальный квантор (квантор всеобщности) обозначается символом — «∀», с указанием переменной под ним. Возьмём утверждение «Все пингвины чёрно-белые». В логике высказываний оно бы выражалось как «X ⇒ P», где «X» — нечто являющееся пингвином, а «P» — нечто являющееся чёрно-белым. В предикатной логике же используются субъекты и предикаты, поэтому нечто являющееся пингвином (субъект), обозначалось бы переменной «х» снизу под предикатом. «»х» — является пингвином, следовательно, является чёрно-белым». Записывается так: P(х) ⇒ B(х), где P(х): х — пингвин; B(х): x — чёрно-белый.
Однако этого недостаточно, ведь непонятно, один субъект «х» чёрно-белый или больше одного, а может вообще все. Поэтому утверждение «»х» — является пингвином, следовательно, является чёрно-белым», берётся в скобки и перед скобками используется символ «∀» с переменной «х» под ним — которые вместе и будут универсальным квантором.
Универсальный квантор переводится как: «Для всех «х» истинно, что …». Теперь утверждение «х — является пингвином, следовательно, является чёрно-белым» с универсальным квантором перед ним, расшифровывается так: «Для всех «х» истинно, что «х» — является пингвином, следовательно, является чёрно-белым». Это означает, что чем бы ни был объект во вселенной, если этот объект пингвин — он является чёрно-белым. Полная запись будет выглядеть так:
Экзистенциальный квантор (квантор существования) обозначается символом — «∃» с указанием переменной под ним. Возьмём утверждение «Некоторые пингвины серые». Как и в прошлый раз, выражение «»x» — является пингвином и «х» — является серым» возносим в скобки и ставим перед ними квантор, в этом случае экзистенциальный с указанной переменной. «»x» — является пингвином и «х» — является серым» записывается так: P(х) ∧ C(х), где P(х): х — пингвин; C(х): x — серый.
Экзистенциальный квантор можно перевести так: «Есть такой «х», для которого будет истинно, что …». Подразумевается, что есть как минимум один «х», для которого выполняются условия выражения. Если вам говорят, что ДНК не существует, достаточно показать одну молекулу дезоксирибонуклеиновой кислоты для опровержения этого утверждения. Также и с кванторами, если существует хотя бы один серый пингвин, то утверждение об отсутствии серых пингвинов будет ложно. Полная запись экзистенциального квантора для выражения «Есть такой «х», для которого будет истинно, что «x» — является пингвином и «х» — является серым», будет выглядеть так:
6 | Заключение
Примечательно, что есть возможность перевода одного вида квантора в другой. Возьмём утверждение «Все пингвины не являются серыми». Для универсального квантора текстовая запись будет такая: «Для всех «х», будет истинным утверждение о том, что если «х» — является пингвином, то «х» — не является серым объектом». Но утверждение изменяется и для экзистенциального квантора, используя знак отрицания: «Нет такого «х», для которого бы было истинным утверждение о том, что «x»— является пингвином и «х»— является серым».
В середине XIX века, Готлоб Фреге дополнил логику Аристотеля двумя этими операциями, которые позже сформировались в отдельную дисциплину — предикатную логику. С введением в логику экзистенциального квантора (после универсального) — предикатная логика, в основе своей, завершилась как система…
Источники:
1 — Аристотель: «Органон» — «Первая аналитика» и «Вторая аналитика»;
2 — Аристотель: «Риторика»;
3 — Готлоб Фреге: «Исчисление понятий»;
4 — «Monatshefte für Mathematik und Physik» 1931 г.: Курт Гёдель «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах»;
5 — The Early Mathematical Manuscripts of Leibniz;
6 — Мельников Сергей: «Введение в философию Аристотеля»;
7 — Гильмутдинова Нина: «Логика и теория аргументации»;
Некоторые считают что сомнения основа логики
В системе гуманитарных наук логике принадлежит особое место. Интерес к ней в настоящее время вызван многими обстоятельствами, и в первую очередь значительным расширением сферы логического знания. Специфической областью его применения является право.
Высокие требования к законотворчеству, правоприменительной практике и правовой теории распространяются также на профессиональное мышление юриста. Поскольку юридическая практика опирается на четкое знание и единообразное применение законов, поскольку она строго регламентирована, постольку необычайную значимость в правовом мышлении приобретает рациональный стиль, правильная оформленность его содержания. Изучение логики способствует достижению этих целей.
Знание логики позволяет юристу точно и аргументированно строить свою речь, видеть несогласованность в показаниях потерпевших, свидетелей, подозреваемых, а также в имеющихся письменных источниках, помогает убедительно опровергать ошибочные доводы оппонентов, правильно составлять план работы, служебные документы, выстраивать следственные версии и т. п.
Главная дидактическая цель пособия состоит в том, чтобы вооружить будущих юристов теоретическими знаниями о формах абстрактного мышления, формально-логических законах, вопросно-ответном комплексе, основах теории аргументации. Учебное пособие включает все основные разделы курса классической логики, определяемые требованиями Государственного образовательного стандарта для юристов.
Очевидно, что изучение логики юристом не может заменить специальных правовых знаний. Однако оно способствует тому, чтобы каждый будущий правовед стал хорошим специалистом в своей области. Недаром известный русский юрист А.Ф. Кони считал, что образованный юрист должен быть человеком, в котором общее образование идет впереди специального. А в системе общего образования одно из ведущих мест принадлежит формально-логической подготовке. Вот почему, по мнению выдающегося отечественного педагога К.Д. Ушинского, логика должна стоять в преддверии всех наук. Развивая способность правильно мыслить, логика дает знания, необходимые для основательного, глубокого усвоения студентами профилирующих юридических учебных дисциплин.
Логика, обладая прикладным характером, позволяет обучаемым освоить теоретически и научиться применять практически логику научного исследования, логику принятия решения (в условиях определенности, неопределенности и риска), логику спора, логику общения, логику конфликтов (межличностных, политических, экономических) и т.д.
При изучении проблем логики важно иметь в виду, что усвоение теоретических вопросов не является самоцелью. Теория — лишь исходное условие и средство, помогающее приобрести навыки правильного рассуждения. Главное — научиться применять приобретенные теоретические знания на практике, в процессе рассуждения. Важную роль в приобретении этих навыков играют специально подобранные практические упражнения. Однако перед выполнением этих упражнений студентам рекомендуется проверить глубину усвоения теоретических проблем, ответив на контрольные вопросы. Определения основных логических терминов, которые даны в словаре, могут быть дополнительно использованы при изучении конкретных вопросов, при решении задач и выполнении упражнений или для предварительного ознакомления при самостоятельной работе.
Проблемы, возникшие в ходе изучения теоретических положений, не поддающиеся решению с помощью средств, изложенных в данном пособии, необходимо решать, обращаясь к рекомендуемой дополнительной литературе. Затем следует перейти к выполнению практических упражнений и тестовых заданий, решению занимательных логических задач. В пособии содержится необходимый минимум для активного усвоения теории конкретного вопроса.
Изучение формально-логических проблем требует серьезной и вдумчивой работы. Поэтому глубина проникновения в содержание проблем, последовательность в изучении материала, связь с практикой мышления, решение логических задач, выполнение упражнений и тестовых заданий — непременные условия, которые нужно выполнять не формально, а с пользой для дела.
Учебное пособие предназначено для студентов юридических факультетов вузов. Оно может быть полезно также преподавателям, аспирантам и соискателям юридических кафедр, занимающимся исследованием теоретических проблем права и решением практических юридических вопросов.
Глава 1. ЛОГИКА КАК НАУКА
Освоение проблем формальной логики требует глубокого понимания, в первую очередь, ее объекта и предмета как науки, уяснения методологической роли для конкретного вида деятельности. При этом решаются не только теоретические задачи. Познание предмета логики, истории ее возникновения и развития имеет большое практическое значение, поскольку означает освоение прикладного характера логики, ее нормативных требований, а также превращение их в норму собственной мыслительной деятельности будущих юристов.
§ 1. Мышление как объект логики
Человек, обладая сознанием, отражает действительность, приобретает, знания о природе, обществе и самом себе. Полученные знания сами по себе не имеют самостоятельной ценности. Знание в основном тогда ценно, когда оно позволяет человеку правильно ориентироваться в мире, осуществляя свою жизнедеятельность в нем. Поэтому цель познания заключается в получении не любых знаний, а истинных, использование которых, при соблюдении ряда условий, приводит к верным результатам. Под истиной понимается такое знание, которое адекватно отражает в сознании человека явления и процессы действительности.
Есть знания, истинность которых видна непосредственно. Таковыми, например, являются факты сознания, прямо отражающие последствия совершенного общественно опасного деяния: телесные повреждения потерпевшего, следы действия орудия преступления (царапины на замке, оставленные отмычкой), следы ног или рук преступника, вещественные доказательства (предметы, документы) и т. п. Такого рода факты познаются в процессе непосредственного физического взаимодействия с объектом познания при помощи органов чувств. Эти факты принято называть очевидными, потому что они не нуждаются в доказательстве: их истинность самоочевидна. К числу непосредственно очевидных знаний относятся, прежде всего, те, которые являются результатом чувственного познания. Чувственное познание осуществляется и закрепляется в сознании в трех основных формах: ощущение, восприятие, представление.
Кроме непосредственных знаний, есть знания, истинность которых достигается опосредованно, то есть с помощью других знаний, не всегда обращаясь к показаниям органов чувств. Эти знания являются результатом логического познания, мышления.
10. Краткий курс логики. Умозаключение
Умозаключение – это форма мышления, в которой из двух суждений, называемых посылками, вытекает третье – вывод.
1. Посылка: «Все люди – смертны».
2. Посылка: «Сократ – человек»
Ввод: «Сократ – смертный».
Умозаключения бывают непосредственные и опосредованные. Непосредственные умозаключения делаются из одной посылки, и являют собой уже известные нам действия над суждениями (обращения, превращения, противоставления предикату), а так же преобразование суждений по логическому квадрату. Опосредованные умозаключения делаются из нескольких посылок, о них мы и будем говорить в данной главе.
Существуют такие виды опосредованных умозаключений, их еще называют методами мышления:
Дедуктивный метод (Силлогизм) – метод при котором вывод о частном делается из общей совокупности вещей, о которых говориться в посылках. Проще говоря – вывод от общего к частному. К примеру:
1 посылка: «В группе 311 все студенты отличники».
2 посылка: «Этот ученик из 311 группы»
Вывод: «Этот ученик – отличник».
Еще пример:
1 посылка: «В этом ящике все шарики красные»
2 посылка: «Этот шарик их этого ящика»
Вывод: «Этот шарик красный».
Преимущество дедуктивного метода заключается в том, что при правильном использовании всегда дает точные выводы. Важно понимать, что все посылки входящие в силлогизм должны быть истинными, ложность хотя бы одной из них, ведет к ложности вывода. В принципе кто знаком с произведениями Артура Конана Дойля, должен был слышать о дедуктивном способе мышления. Его использовал Шерлок Холмс, в одном из произведений он приводит пример своего дедуктивного умозаключения Ватсону. Около жертвы преступления было найдена выкуренная сигарета, все решили, что сигарету выкурил полковник перед смертью. Однако у покойного были большие пышные усы, а сигарета была докуренная полностью. Шерлок Холм берется доказывать, что полковник не мог курить эту сигарету, так как он непременно бы подпалил бы себе усы. Вывод дедуктивный и верный, так как из общего правила вытекает частное.
Общее правило и первая посылка, выглядит так: «Все люди, которые носят большие, пышные усы не могут выкурить сигарету до конца»
Событие или вторая посылка выглядит так: «Полковник носил большие, пышные усы».
Вывод: «Полковник не мог выкурить сигарету до конца»
Индукция – метод, при котором вывод об общем делается из совокупности частных случаев. Проще говоря – это вывод от частного к общему. И пример тому:
1 посылка: «Первый, второй и третий студент – отличники».
2 посылка: «Эти студенты из 311 группы».
Вывод: «Все студенты в 311 группе – отличники».
1 посылка: ««Этот шарик красный».
2 посылка: «Этот шарик их этого ящика».
Вывод: «В этом ящике все шарики красные»
Некоторые учебники различают полную и не полную индукцию, полная индукция это когда перечисляются все элементы конечного множества вещей, о котором рассуждают. В нашем примере берутся все ученики и проверяют отличники они все или нет, а уже потом заключают обо всей группе. Не полная или частичная индукция – это наши примеры, в которых берутся только некоторые элементы конечного множества вещей. Само собой разумеется, не полное индуктивное заключения, на отмену от дедуктивного носит вероятностный, а не достоверный характер. Тем не менее, это не мешает пользоваться этим методом умозаключения в повседневной жизни. К примеру, мы, я уверен, слышали такое высказывание из уст женщины «Все мужчины – козлы», а ведь вывод об общем сделан из частного, по всем правилам индуктивного мышления.
1 посылка: «Первый человек – козел»
2 посылка: «Второй человек – козел».
3 посылка: «Эти люди – мужчины»
Вывод: «Все мужчины – козлы».
Чаще всего не полные индуктивные выводы – неверные. Их преимущество состоит в том, что они направленны на расширения знаний о предмете, могут указать на новые их свойства, в то время как индуктивный метод чаще всего направлен на выяснения уже известных фактов.
Я с некоторыми другими логиками выделяю еще такой вид умозаключения как Абдукция. Абдукция – это вид умозаключения, при котором на основе общего, делается вывод о причине частного, проще говоря – это вывод от общего к причине частного.
Я считаю, на отмену от общепринятого мнения, что именно этот вид умозаключений использовал на самом деле Шерлок Холмс, а так же другие реальные и не реальные детективы.
Чтобы понять, в чем заключается суть Абдукции, ее лучше рассматривать в сравнении с другими видами умозаключения.
А: «В этом ящике все шарики красные»
Б: «Этот шарик их этого ящика»
В: «Этот шарик красный».
Как видим с помощью дедукции – мы узнали результат, теперь переделаем рассуждения под индукцию:
Б: «Этот шарик их этого ящика»
В: «Этот шарик красный».
А: «В этом ящике все шарики красные»
Индукция, вывод от частного к общему открыл нам правило. Не трудно догадаться, что должен быть еще один вид умозаключений, который открывал бы нам случай, причину, ним и является Абдукция. Такой вид умозаключений будет выглядит так:
Существует, еще такой вид умозаключений как «вывод по аналогии». Это когда на основе свойств, признаков одного предмета делается вывод о свойствах другого. Формально это выглядит так:
Предмет А имеет свойство а, б, с, д.
Предмет В имеет свойсво а, б, с.
Вероятно В имеет и свойство д.
Так же как и неполная индукция умозаключения по аналогии носит вероятностный характер, но, не смотря на это, он широко используется, как в повседневной жизни, так и в науке.
Вернемся к дедукции. Мы предположили, что дедуктивный вид умозаключения имеет достоверный характер. Но, тем не менее, надо выделить некоторые правила простого силлогизм, чтобы это было действительно так. Итак, рассмотрим общие правила силлогизма.
1. В силлогизме должно быть только три термина или не должно быть термина, который употребляется в двух значениях. Если такой есть считается, что в силлогизме больше трех терминов, так как четвертый подразумевается. К примеру:
Движение – вечно.
Хождение в университет – это движение.
Хождение в университет – вечно.
Термин «Движение» употреблено в двух смыслах, в первом суждении, первой посылке оно обозначает всеобщее мировое изменения. А во второй механическое передвижение из одной точки в другую.
2. Средний термин должен быть распределён хотя бы в одной из посылок. Средний термин – это термин, который является базисом рассуждения и находиться в каждой из посылок.
Все хищные животные (+) – живые существа (-)
Все хомяки (+) – живые существа (-).
Все хомяки – хищные животные.
Средним термином является «живые существа». В обоих посылках его объем не распределён. В первой посылке оно не распределено, потому, что живые существа – это не только хищные животные. А во втором, потому, что живые существа – это не только все хомяки. Соответственно вывод в данном суждении не верный.
Еще один пример, который недавно прочел в одном журнале:
Все старые фильмы (+) – черно белые (-)
Все пингвины (+) – черно белые (-).
Пингвины – это старые фильмы.
Средний термин, то есть термин, который встречается в двух посылках – «черно белый». Как в первом, так и во втором суждении он не распределён, ведь черно белыми могут быть не только все старые фильмы или все пингвины.
4. Посылки силлогизма не могут быть только отрицательными. Вывод в таком силлогизме в лучшем случае будет вероятностным, но чаще всего его либо вообще невозможно сделать, либо он ложен.
5.Посылки силлогизма не могут быть только частными. Хотя бы одна посылка из силлогизма должна быть общая. В силлогизме, в котором две посылки частные сделать вывод не возможно.
6.Если в силлогизме одна посылка отрицательная, то и вывод будет отрицательным.
7.Если в силлогизме одна посылка частная, вывод из него следует так же только частный.
Силлогизм – самый распространённый вид умозаключений, потому, мы часто используем его в повседневной жизни и науке. Однако мы редко соблюдаем его логическую форму, и пользуемся сокращенными силлогизмами. К примеру: «Сократ смертный, потому, что все люди смертные». «Этот шарик красный, потому, что его взяли из ящика, в котором все шарики красные». «Железо – электропроводно, так как все металлы электропроводны» и т.д.
Различают такие виды сокращенного силлогизма:
Энтимема – это сокращенный силлогизм, в котором пропущена одна из посылок или вывод. Понятно, что из простого силлогизма можно вывести три энтимемы. К примеру, из простого силлогизма:
Все металлы – электропроводные.
Железо – это метал.
Железо – электропроводно.
Можно вывести три энтимемы:
1. «Железо – электропроводно так как оно является металлом». (пропущена первая посылка)
2. «Железо – электропроводно потому, что все металлы электропроводны». (пропущена вторая посылка)
3. «Все металлы электропроводны, а железо тоже метал». (пропущен вывод)
Следующий вид сокращенного умозаключения – Эпихейрема. Оно являет собой простой силлогизм, в которой две посылки – энтимемы.
Сначала сделаем из двух силлогизмов энтимемы:
Силлогизм №1.
Все то, что ограничивает человеческую свободу, делает его рабом.
Социальная необходимость ограничивает человеческую свободу
Социальная необходимость делает человека рабом.
Первая энтимема, если пропустить первую посылку будет выгладить так:
«Социальная необходимость делает человека рабом, потому, что ограничивает человеческую свободу.
Силлогизм №2.
Все действия, которые дают возможность существовать в социуме – являются социальной необходимостью.
Работа – это действие, которое дает возможность существовать в социуме.
Работа – это социальная необходимость.
Вторая энтимема, если пропустить первую посылку: «Работа – это социальная необходимость, так как является действием, которое дает возможность существовать в социуме».
Теперь сделаем силлогизм из двух энтимем, который и будет нашей эпихейремой:
Социальная необходимость делает человека рабом, потому, что ограничивает человеческую свободу.
Работа – это социальная необходимость, так как является действием, которое дает возможность существовать в социуме.
Работа – делает человека рабом.
Не исключено, что именно в таком порядке рассуждал Ницше говоря: «Мы видим, к чему сводится жизнь в обществе — каждый отдельный индивид приносится в жертву и служит орудием. Пройдите по улице, и вы увидите только «рабов». Куда? Зачем?»
Сорит – полисиллогизм, в котором пропущено суждение, связывающее два простых силлогизма, то есть вывод первого силлогизма, который стал первой посылкой второго, попросту упускается.
Все что развивает память и мышления – полезно.
Изучения наук – развивает память и мышления.
Логика – это наука.
Изучения логики – полезно.
Как видим суть силлогизма от того, что оно из полисиллогизма превратилось в сорит, не поменялась.