наименьшее однозначное натуральное число что это
Числа. Натуральные числа.
Простейшее число — это натуральное число. Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.
Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.
В натуральном ряду каждое число больше предыдущего на единицу.
Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.
Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.
Для подсчета времени в градусной мере углов существует шестидесятеричная система счисления (основа число 60). В 1 часе — 60 минут, в 1 минуте — 60 секунд; в 1 угловом градусе — 60 минут, в 1 угловой минуте — 60 секунд.
Всякое натуральное число легко записать в виде разрядных слагаемых.
Числа 1, 10, 100, 1000. – это разрядные единицы. При их помощи натуральные числа записывают как разрядные слагаемые. Таким образом, число 307 898 в виде разрядных слагаемых записывается так:
307 898 = 300 000 + 7 000 + 800 + 90 + 8
Обозначение натуральных чисел: Множество натуральных чисел обозначают символом N.
Классы натуральных чисел.
Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Сравнение натуральных чисел.
Таблица разрядов и классов чисел.
1-й разряд единицы тысяч
2-й разряд десятки тысяч
3-й разряд сотни тысяч
1-й разряд единицы миллионов
2-й разряд десятки миллионов
3-й разряд сотни миллионов
4-й класс миллиарды
1-й разряд единицы миллиардов
2-й разряд десятки миллиардов
3-й разряд сотни миллиардов
Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.
Основные свойства натуральных чисел.
Действия над натуральными числами.
1. Сложение натуральных чисел результат: сумма натуральных чисел.
Формулы для сложения:
В основном, сложение натуральных чисел выполняется « столбиком ».
2. Вычитание натуральных чисел – операция, обратная сложению: разница натуральных чисел.
Формулы для вычитания:
Вычитание натуральных чисел удобно производить « столбиком ».
3. Умножение натуральных чисел : произведение натуральных чисел.
Формулы для умножения:
(а + b) ∙ с= а ∙ с + b ∙ с
(а – b) ∙ с = а ∙ с – b ∙ с
4. Деление натуральных чисел – операция, обратная операции умножения.
Формулы для деления:
Числовые выражения и числовые равенства.
Запись, где числа соединяются знаками действий, является числовым выражением.
Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами. У равенства есть левая и правая части.
Порядок выполнения арифметических действий.
Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.
Когда в выражении есть скобки – сначала выполняют действия в скобках.
Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.
0 Однозначное число или нет
Чтобы правильно ответить на этот вопрос необходимо понимать, что такое число, что такое цифра, что такое однозначное число.
Цифра это – знак, который используют для записи числа. Цифр всего десять: 0,1,2,3,4,5,6,7,8,9
Число – это математическое понятие, используемое для описания количества.
Однозначное число – это число, записанное одним знаком.
0 – это и цифра, и число одновременно, но к натуральным числам 0 отнести нельзя, так как натуральные числа – это те, которые используются при счёте предметов.
Если в вопросе речь идёт о натуральных числах, то самое маленькое однозначное число 1.
Математика – наука точная и двусмысленные ответы на одни и те же вопросы, касающиеся чисел, представить сложно, но все же есть определенные исключения. Какое самое маленькое однозначное число: 0 или 1 и на что стоит опираться, давая верный ответ?
Принято считать, что самое маленькое однозначное число – это ноль. Но специалисты в области математики уверяют, что в этом вопросе не все так однозначно. Чтобы понять, какое число является самым маленьким, необходимо разобраться в специфике числового ряда.
Для удобства подсчета в математике принята система цифр и чисел. Цифра – это знак от 0 до 9. Числа складываются из цифр. Они бывают однозначные, двузначные, трехзначные и так далее. Однозначные числа состоят из одной цифры. Иными словами, они представляют собой первое число первого разряда класса единиц. Человеку, далекому от математики, может показаться такое описание достаточно сложным. Но на самом деле оно было придумано для упрощения подсчетов. При помощи разложения любого числа на разряды и классы можно быстро освоить счет, не пользуясь калькулятором. Элементарные знания математики необходимы как школьникам, так и взрослым людям. Конечно, не все специалисты используют в своей деятельности или повседневной жизни то, что было освоено во время изучения школьной программы. Но элементарное незнание числового ряда указывает на неграмотность. Математика – это язык, при помощи которого у человека появляется возможность осваивать другие точные науки. Без получения определенных знаний невозможно изучение физики, информатики и других дисциплин.
Какое самое маленькое число принято считать в математике однозначным? Если речь идет о полном числовом ряде, то самое маленькое число – это ноль. Его еще называют границей между отрицательным и положительным рядом. Ноль – это отсутствие предмета. Но на этот счет у ученых существует два мнения. В математике принято выделять числа натуральные. Они возникают естественным образом при подсчете. Последовательность натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом. Самое маленькое натуральное число – единица. Именно с нее начинается счет. Когда человек видит перед собой несколько предметов, отсчет ведется не от 0, а от 1. Это совершенно логично и понятно.
Ряд однозначных чисел заканчивается девяткой. Именно 9 считается самым большим однозначным числом в ряду. Самое маленькое двузначное число – 10. Оно открывает разряд десятков. Важно понимать, что цифра в каждом последующем числовом ряду на порядок более значима, чем та, которая стоит в ряду предыдущем. Например единица десятков ровно в 10 раз больше единицы, принадлежащей к разряду единиц.
Почему ноль не входит в ряд натуральных чисел? Ответ очень прост. Ноль – это отсутствие чего либо. С него невозможно начать счет. Многие ученые считают, что 0 никак нельзя считать наименьшим числом, так как есть еще и числа отрицательного ряда. Таким образом, говорить о наименьшем числе невозможно. До сих пор не названы максимальное число в положительном числовом ряду и минимальное – в отрицательном. Ограничения можно установить только по классам. Для удобства подсчета в математике принято выделять классы единиц, тысяч, миллионов, триллионов и так далее. Самое маленькое число в классе тысяч, например, – 1000, а самое большое – 999 000. Для разложения любого числа в ряд не нужны специфические знания. Сделать это достаточно просто, если использовать специальные таблицы или он-лайн сервисы.
Самое маленькое однозначное число – это ноль. Но такой вариант ответа актуален только если речь идет обо всем положительном числовом ряде. Самое маленькое натуральное число в ряду – единица. Именно с него начинается предметный отсчет.
Наименьшее однозначное число
Автор Ўлия Михайловская задал вопрос в разделе Домашние задания
Почему наименьшим однозначным числом является 1, а не 0? и получил лучший ответ
По горизонтали: 1. Единица длины. 2. Фамилия древнегреческого математика. 3.
подробнее.
Натуральные числа
Определение натурального числа
Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.
Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, …
Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.
Какие операции возможны над натуральными числами
Записывайтесь на курсы по математике для учеников с 1 по 11 классы!
Десятичная запись натурального числа
В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.
Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.
Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.
077, 0, 004, 0931 — это неправильные примеры натуральных чисел, потому что ноль расположен слева. По правилам так нельзя. Это и есть десятичная запись натурального числа.
Количественный смысл натуральных чисел
Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.
Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».
Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.
Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:
🍌🍌🍌 | 3 предмета («три») |
🍌🍌🍌🍌 | 4 предмета («четыре») |
🍌🍌🍌🍌🍌 | 5 предметов («пять») |
🍌🍌🍌🍌🍌🍌 | 6 предметов («шесть») |
🍌🍌🍌🍌🍌🍌🍌 | 7 предметов («семь») |
🍌🍌🍌🍌🍌🍌🍌🍌 | 8 предметов («восемь») |
🍌🍌🍌🍌🍌🍌🍌🍌🍌 | 9 предметов («девять») |
Основная функция натурального числа — указать количество предметов.
Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.
Однозначные, двузначные и трехзначные натуральные числа
Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.
Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.
По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.
Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.
Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.
Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.
Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.
Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.
Многозначные натуральные числа
Многозначные натуральные числа состоят из двух и более знаков.
1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.
Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.
Сколько всего натуральных чисел?
Однозначных 9, двухзначных 90, трехзначных 900 и т.д.
Свойства натуральных чисел
Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:
множество натуральных чисел | бесконечно и начинается с единицы (1) |
за каждым натуральным числом следует другое | оно больше предыдущего на 1 |
результат деления натурального числа на единицу (1) | само натуральное число: 5 : 1 = 5 |
результат деления натурального числа на него самого | единица (1): 6 : 6 = 1 |
переместительный закон сложения | от перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4 |
сочетательный закон сложения | результат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4) |
переместительный закон умножения | от перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4 |
сочетательный закон умножения | результат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8) |
распределительный закон умножения относительно сложения | чтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6 |
распределительный закон умножения относительно вычитания | чтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5 |
распределительный закон деления относительно сложения | чтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3 |
распределительный закон деления относительно вычитания | чтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2 |
Разряды натурального числа и значение разряда
Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.
Разряд — это позиция, место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.
Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.
Десятичная система счисления
Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.
Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.
Вопрос для самопроверки
Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:
Разряды и классы чисел
Числа и цифры
Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.
Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.
Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …
От количества цифр в числе зависит его название.
Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.
Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.
Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.
Каждая цифра в записи многозначного числа занимает определенное место — позицию.
Классы чисел
Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.
Названия классов многозначных чисел справа налево:
Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:
А теперь прочитаем число единиц каждого класса слева направо:
Разряды чисел
От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:
Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.
Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще чтобы визуально разделить классы чисел.
Разрядные единицы обозначают так:
Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.
Чтобы легче понимать математику — записывайтесь на наши онлайн-курсы по математике!
Потренируемся
Пример 1. Записать цифрами число, в котором содержится:
Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:
Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.
Пример 2. Сколько сотен содержится в числе 6284?
В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.
Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.
Значит, в данном числе содержится 62 сотни.
Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.
Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:
Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.
Какое наименьшее однозначное число?
Чтобы правильно ответить на этот вопрос необходимо понимать, что такое число, что такое цифра, что такое однозначное число.
Если в вопросе речь идёт о натуральных числах, то самое маленькое однозначное число 1.
Но,если этот вопрос для ученика 1-го класса, то ответ:наименьшее однозначное число: 0.
К однозначным числам относятся натуральные числа, в том числе ноль. Максимальное число будет, конечно, 9, а самое маленькое ноль. Если бы упоминалось самое маленькое натуральное число, то я бы назвал в качестве его один.
Наименьшее однозначное число
Если говорить о математике, то очень просто, там и так видно какое число меньше. Если говорить например о информатике, а на информатике часто бывают такие задачи, для решения которых требуется составить алгоритм и написать программу, то тут нужно написать программу, ввести условие, задать цикл и т.д.
Я выбираю из двух зол наименьшее примерно так:
По меньшей степени урона, которое каждое из зол может принести. просто прикидываю где вреда будет меньше!
Можно конечно выбирать и по прогнозируемым последствиям, которые могут наступить, сравнивая действия этих зол. Бывает так, лично у меня. Вроде бы выбрал наименьшее из зол, а потом оказывается такой результат, что, думаешь, лучше бы выбрал большее.
Это числа 1002 и 9999
наименьшее четырехзначное число равно 1000 чтобы число было кратным 3 сумма цифр этого числа должна делиться на 3 без остатка добавляем 2 получаем число 1002
наименьшее четырехзначное число кратное 3 равно 1002
наибольшее четырехзначное число равно 9999 это число кратно 3
я очень люблю салаты с крабовыми палочками. и периодически их готовлю но как любая женщина, заботящаяся о своей фигуре, хочется, чтобы вкусные салатики не отложились на животике. всегда делаю такой салат, который не особо калориен, быстр в приготовлении и не бьет по карману. называется он «Легкий». уже не знаю, то ли я его нашла в интернете, то ли кто-то мне его дал, но салат вкусный. потребуется для его приготовления только крабовые, огурцы свежие и зелень. все режем кубиками и заправляем ложкой майонеза. много майонеза не нужно, потому что он быстро стечет. вот и все. приятного аппетита.