на что влияет медь в стали
Влияние химических элементов на свойства стали.
Каталог
Наш Instagram
Влияние хим. элементов на свойства стали.
Условные обозначения химических элементов:
хром ( Cr ) — Х никель ( Ni ) — Н молибден ( Mo ) — М титан ( Ti ) — Т медь ( Cu ) — Д ванадий ( V ) — Ф вольфрам ( W ) — В | азот ( N ) — А алюминий ( Аl ) — Ю бериллий ( Be ) — Л бор ( B ) — Р висмут ( Вi ) — Ви галлий ( Ga ) — Гл | иридий ( Ir ) — И кадмий ( Cd ) — Кд кобальт ( Co ) — К кремний ( Si ) — C магний ( Mg ) — Ш марганец ( Mn ) — Г | свинец ( Pb ) — АС ниобий ( Nb) — Б селен ( Se ) — Е углерод ( C ) — У фосфор ( P ) — П цирконий ( Zr ) — Ц |
ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА
Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.
Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)
Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.
Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).
Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ
Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.
Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.
Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.
Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.
Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.
Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.
Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.
Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.
Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.
Алюминий (Ю) — повышает жаростойкость и окалиностойкость.
Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.
Церий — повышает прочность и особенно пластичность.
Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.
Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.
Легирующие элементы и примеси в сталях: краткий справочник
Характеристики углеродистых сталей далеко не всегда соответствуют требованиям, которые предъявляют к материалам различные отрасли промышленности. Чтобы откорректировать их свойства, используют легирование.
Чем отличаются легирующие элементы от примесей
В углеродистых сталях, помимо основных элементов – железа и углерода, есть и другие: марганец, сера, фосфор, кремний, водород и прочие. Их считают примесями и делят на несколько групп:
Для каждой из перечисленных примесей характерно определенное процентное содержание. Так, марганца в стали, как правило, не более 0,8 %, кремния – не более 0,4 %, фосфора – не более 0,025 %, серы – не более 0,05 %. Если обычного содержания некоторых элементов недостаточно, для получения сталей с нужными свойствами в них дополнительно вносят в определенных количествах специальные примеси, которые называют легирующими добавками.
Химический состав стали, формируемый в процессе выплавки, напрямую влияет на ее механические свойства
Как примеси влияют на свойства сталей
Примеси оказывают разное влияние на характеристики сталей:
Как легирующие элементы влияют на свойства сталей
Легирующие добавки вводят в стали для изменения их характеристик:
Виды легированных сталей
В зависимости от содержания легирующих элементов, стали делят на три вида:
Заключение
Примеси неизбежно присутствуют в сталях, но ряд из них являются вредными (к ним относятся скрытые примеси), поэтому их содержание стараются минимизировать. Легирующие элементы добавляют в стали целенаправленно для улучшения их свойств или получения специфических характеристик.
Полезное
Обозначение легирующих элементов в нержавеющих сталях
Х- хром
Н — никель
К — кобальт
М — молибден
В — вольфрам
Т — титан
Д — медь
Г — марганец
С — кремний
Ф — ванадий
Р — бор
А — азот
Б — ниобий
Е — селен
Ц — цирконий
Ю — алюминий
Влияние основных легирующих элементов на свойства нержавеющих сталей
Хром (Cr):
Никель (Ni):
Молибден (Mo):
Титан (Ti):
Углерод (C):
Соответствие зарубежных стандартов российскому ГОСТу.
В настоящее время почти весь нержавеющий металлопрокат, поставляемый к нам в страну маркируется по стандартам AISI, DIN, либо EN. Рассмотрим соответствие этих стандартов российскому ГОСТу.
AISI (American Iron and Steel Institute), Американский Институт Чугуна и Стали
Обозначения стандартных нержавеющих сталей по AISI включает в себя три цифры и следующие за ними в ряде случаев одну, две или более буквы. Первая цифра обозначения определяет класс стали.
Так обозначения аустенитных нержавеющих сталей начинаются с цифр 2ХХ и 3ХХ. В то время как ферритные и мартенсистные стали определяются в классе 4ХХ. При этом последние две цифры, в отличие от углеродистых и легированных сталей, никак не связаны с химическим составом, а просто определяют порядковый номер стали в группе.
Дополнительные буквы и цифры, следующие за цифрами, используемые для обозначения нержавеющих сталей по AISI означают:
xxxL – Низкое содержание углерода стандарты принятые European Committee for Standartization (CEN) Европейским Комитетом по Стандартизации
В них марка стали представляется в виде 1.XXXX, где:
По номеру группы можно однозначно определить к какому типу относится та или иная сталь.
1.40ХХ – 1.45ХХ – нержавеющие стали
1.46ХХ – 1.49ХХ – жаропрочные и кислотостойкие стали
1.4016 — AISI 430 (12Х17)
1.4301 — AISI 304 (03Х18Н10)
1.4541 – AISI 321 (08х18Н10Т)
1.4842 – AISI 410S (10Х23Н18)
Таблица соответствия марок стали гост со стандартами других стран.
ГОСТ | Евронормы (EN) | AISI |
12Х15Г9НД | ______ | AISI 201 |
12Х17Г9АН4 | 1.4373 | AISI 202 |
15Х17Н7 | 1.4310 | AISI 301 |
12Х18Н9 | ———- | AISI 302 |
08Х18Н10 | 1.4301 | AISI 304 |
03Х18Н11 | 1.4306 | AISI 304L |
03Х18АН11 | 1.4311 | AISI 304LN |
12Х18Н12 | 1.3955 | AISI 305 |
06Х18Н11 | 1.4303 | AISI 305L |
08Х20Н11 | 1.4331 | AISI 308 |
20Х23Н13 | 1.4833 | AISI 309 |
03Х24Н13Г2С | 1.4332 | AISI 309L |
20Х23Н18 | 1.4843 | AISI 310 |
10Х23Н18 | 1.4842 | AISI 310S |
20Х25Н20С2 | 1.4841 | AISI 314 |
08Х17Н13М2 | 1.4436 | AISI 316 |
03Х17Н13М2 | 1.4404 | AISI 316L |
03Х17Н14М3 | 1.4435 | AISI 316S |
03Х17Н13АМ3 | 1.4429 | AISI 316LN |
1Х16Н13М2Б | 1.4580 | AISI 316Сd |
08Х17Н13М2Т | 1.4571 | AISI 316Ti |
08Х19Н13М3 | 1.4449 | AISI 317 |
03Х19Н13М3 | 1.4438 | AISI 317L |
08Х18Н14М2Б | 1.4583 | AISI 318 |
08Х18Н10Т | 1.4541 | AISI 321 |
12Х18Н10Т | 1.4878 | _________ |
08Х25Н4М2 | 1.4462 | AISI 329 |
15Х12 | _____ | AISI 403 |
08Х12Т1 | 1.4512 | AISI 409 |
10Х13 | 1.40006 | AISI 410 |
08Х13 | 1.4000 | AISI 410S |
15Х13Н2 | _______ | AISI 414 |
20Х13 | 1.4021 | AISI 420 |
12Х15 | 1.4001 | AISI 429 |
12Х17 | 1.4016 | AISI 430 |
08Х17Т | 1.4510 | AISI 430Ti |
20Х17Н2 | 1.4057 | AISI 431 |
12Х17М | 1.4113 | AISI 434 |
12Х17Б | 1.4522 | AISI 436 |
15Х5М | 1.7362 | AISI 501 |
15Х9М | 1.7386 | AISI 504 |
09Х17Н17Ю | 1.4503 | AISI 631 |
06ХН28МДТ | 1.4503 | AISI 904L |
Немного теории: Магнитное поле с определенным уровнем своей напряженности действует на помещенные в него тела таким образом, что намагничивает их.
Ферромагнетики — это такие вещества, к которым, в частности, относятся железо, кобальт и никель способны активно намагничиваться, даже будучи помещенными в слабые магнитные поля. Мы привыкли определять нержавеющую сталь при помощи магнита. Считается, что «настоящая нержавейка» не должна магнитится, но на практике такой способ диагностики не всегда позволяет получить достоверный результат. Почему так происходит?
Под термином «нержавейка» понимают различные материалы, состав которых может содержать в своей структуре феррит, мартенсит или аустенит, а также их различные комбинации. Характеристики нержавеющей стали зависят от фазовых составляющих и их соотношения. Итак, какая нержавейка магнитится, а какая нет?
Нержавеющие стали, которые магнитятся.
Мартенситы и ферриты – сильные ферромагнетики. Таким материалам не страшна коррозия, но при этом магнит на них воздействует, как и на обычную углеродистую сталь. К представленной группе нержавейки относятся хромистые или хромоникелевые стали следующих групп:
Нержавеющие стали, которые не магнитятся.
Чаще всего для производства нержавеющей стали используется хромоникелевый или хромомаргенцевоникелевый сплав. Эти материалы являются немагнитными.
При добавлении в сплав марганца свыше 9% он становится немагнитным.
Примером являются импортные стали AISI 201 (12Х15Г9НД) и AISI 202 (12Х17Г9АН4).
Что такое «Пищевая нержавейка»?
Нередко нам приходится слышать термин «пищевая нержавейка». Разберёмся, что за этим кроется. Ни где в Российском ГОСТе такого термина мы не найдём, так как это название было придумано в быту.
«Пищевая нержавейка» это то, с чем мы ежедневно сталкиваемся у себя на кухне (окантовка поверхности многих кухонных плит, вытяжка, камера микроволновой печи и т.п.), в ванной комнате (барабан стиральной машины), в торговых центрах (лестничные перила) и т.д. и т.п.
В целом «пищевая нержавейка» — универсальный продукт для многих сфер деятельности, где требуется определённая коррозионная стойкость, кислотостойкость, жаростойкость и жаропрочность. Вот некоторые наиболее распространённые и востребованные на сегодняшний день марки пищевой «нержавейки» и сферы их применения:
Влияние химического состава на механические свойства стали
Каждый химический элемент, входящий в состав стали, по-своему влияет на ее механические свойства – улучшает или ухудшает.
Углерод (С), являющийся обязательным элементом и находящимся в стали обычно в виде химического соединения Fe3C (карбид железа), с увеличением его содержания до 1,2% повышает твердость, прочность и упругость стали и уменьшает вязкость и способность к свариваемости. При этом также ухудшаются обрабатываемость и свариваемость.
Кремний (Si) считается полезной примесью, и вводится в качестве активного раскислителя. Как правило, он содержится в стали в небольшом количестве (в пределах до 0,4%) и заметного влияния на ее свойства не оказывает. Но при содержании кремния более 2% сталь становится хрупкой и при ковке разрушается.
Марганец (Mn) содержится в обыкновенной углеродистой стали в небольшом количестве (0,3-0,8%) и серьезного влияния на ее свойства не оказывает. Марганец уменьшает вредное влияние кислорода и серы, повышает твердость и прочность стали, ее режущие свойства, увеличивает прокаливаемость, но снижает стойкость к ударным нагрузкам.
Сера (S) и фосфор (Р) являются вредными примесями. Их содержание даже в незначительных количествах оказывает вредное влияние на механические свойства стали. Содержание в стали более 0,045% серы делает сталь красноломкой, т.е. такой, которая при ковке в нагретом состоянии дает трещины. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды (MnS). Содержание в стали более 0,045% фосфора, делает сталь хладноломкой, т.е. легко ломающейся в холодном состоянии. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
Ниобий (Nb) улучшает кислостойкость стали и способствует уменьшению коррозии в сварных конструкциях.
Титан (Тi) повышает прочность, плотность и пластичность стали, улучшает обрабатываемость и сопротивление коррозии. Повышает прокаливаемость стали при малых содержаниях и понижает при больших.
Молибден (Mo) повышает прочностные характеристики стали, увеличивает твердость, красностойкость, антикоррозионные свойства. Делает ее теплоустойчивой, увеличивает несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает.
Никель (Ni) увеличивает вязкость, прочность и упругость, но несколько снижает теплопроводность стали. Никелевые стали хорошо куются. Значительное содержание никеля делает сталь немагнитной, коррозионностойкой и жаропрочной.
Вольфрам (W) образуя в стали твердые химические соединения – карбиды, резко увеличивает твердость и красностойкость. Увеличивает работоспособность стали при высоких температурах, ее прокаливаемость, повышает сопротивление стали к коррозии и истиранию, уменьшает свариваемость.
Ванадий (V) обеспечивает мелкозернистость стали, повышает твердость и прочность. Увеличивает плотность стали, так как является хорошим раскислителем. Снижает чувствительность стали к перегреву и улучшает свариваемость.
Кобальт (Co) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Алюминий (Аl) является активным раскислителем. Делает сталь мелкозернистой, однородной по химическому составу, предотвращает старение, улучшает штампуемость, повышает твердость и прочность, увеличивает сопротивление окислению при высоких температурах.
Медь (Cu) влияет на повышение коррозионной стойкости, предела текучести и прокаливаемости. На свариваемость не влияет.
Для всестороннего понимания и анализа процессов, происходящих при легировании и деформировании сталей, важную роль играет знание зависимостей между химическим составом и механическими свойствами.
Целью настоящих исследований является изучение комплексного влияния химического состава на предел текучести σТ арматурной стали класса А500С.
В течение сентября и октября текущего года в Лаборатории испытаний строительных материалов и конструкций ГБУ «ЦЭИИС» проводились испытания образцов арматурных стержней диаметром от Ø16 до Ø36. Были выполнены более 30 параллельных испытаний. При этом для одной и той же пробы данного типоразмера арматурных стержней определяли фактическую массовую долю химических элементов с помощью оптико-эмиссионного спектрометра PMI-MASTER SORT (рис.1) и механические свойства стали при помощи испытательной машины ИР-1000М-авто (рис.2).
Для обеспечения достоверности статистических выводов и содержательной интерпретации результатов исследований сначала определили необходимый объем выборки, т.е. минимальное количество параллельных испытаний. Так как в данном случае испытания проводятся для оценки математического ожидания, то при нормальном распределении исследуемой величины минимально необходимый объем испытаний можно найти из соотношения:
где υ – выборочный коэффициент вариации,
tα,k – коэффициент Стьюдента,
k = n-1 – число степеней свободы,
Как правило, генеральный коэффициент вариации γ неизвестен, и его заменяют выборочным коэффициентом вариации υ, для определения которого нами была проведена серия из десяти предварительных испытаний.
По результатам проведенных испытаний и выполненных расчетов при доверительной вероятности Р=0,95 получен необходимый объем выборки, равной n=26. Фактическое количество испытаний, как было сказано выше, составило 36.
Массив данных, полученных по результатам проведенных параллельных испытаний, был обработан с помощью многофакторного корреляционного анализа.
Уравнение множественной регрессии может быть представлено в виде:
где X=(X1, X2,…, Xm) – вектор независимых (исходных) переменных; β – вектор параметров (подлежащих определению); ε – случайная ошибка (отклонение); Y – зависимая (расчетная) переменная.
Разработка множественной корреляционной модели всегда сопряжена с отбором существенных факторов, оказывающих наибольшее влияние на признак-результат. В нашем случае из дальнейшего рассмотрения были исключены три элемента (Аl, Тi, W) по причине их низкой массовой доли (
Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter
Влияние легирующих элементов на свойства стали
После выдержки при 600° в течение нескольких часов повышения твердости уже не наблюдается, что связано с процессами укрупнения выделившихся фаз. Так как медь удерживается в растворе при малых скоростях охлаждения (до 100°/час), дисперсионному твердению подвержены не только закаленные, но
и нормализованные стали. Влияние концентрации меди на степень упрочнения стали при дисперсионном твердении иллюстрирует рис. 198. Предельный эффект упрочнения наблюдается при содержании меди в количестве около 1,0—1,5%; дальнейшее повышение концентрации меди существенных изменений не вызывает.
Влияние углерода на степень максимального упрочнения стали при дисперсионном твердении показано на рис. 199. Чем меньше в стали углерода, тем больше эффект старения, что объясняется уменьшением в структуре относительного количества феррита, превращения в котором и вызывают изменение свойств. Другие легирующие элементы, присутствующие в конструкционной стали, не оказывают существенного влияния на процессы дисперсионного твердения. Следовательно, эффект изменения свойств при отпуске конструкционной стали определяется количеством в стали меди (до 1,5%), углерода, а также температурой и продолжительностью выдержки.
На рис. 200 показаны свойства стали с 0,30—0,37% С; 0,8—1,1% Мп; 1,0—1,3% Си; 1,5—1,8% Сг и 0,1—0,2% V после закалки и последующего отпуска в интервале 550—650°. Из рисунка видно, что около 600° наблюдается резкое изменение свойств: показатели прочности уменьшаются, а пластичность (Ф) и ударная вязкость резко возрастают. Следовательно, высокие показатели пластичности и ударной вязкости при термическом улучшении конструкционной стали, содержащей в своем составе
более 0,35% Си, могут быть достигнуты только в тех случаях, когда температура ее отпуска несколько превосходит 600°. Haoборот, отпуск в районе температур, лежащих несколько ниже
600°, хотя и обеспечивает высокое значение прочности, но ударная вязкость стали при этом резко понижена.
В табл. 72 по данным автора показано изменение механических свойств медистой стали после закалки и высокого отпуска в сопоставлении со свойствами нелегированной стали.
Медь, как это видно из таблицы, заметно повышает показатели прочности и несколько снижает ударную вязкость и пластичность стали. На рис. 201 показано изменение ударной вязкости термически улучшенной стали с 0,24—0,28% С в зависимости от температуры испытания Как видно из рисунка, медь уменьшает склонность стали к хладноломкости при условии, если отпуск осуществляется выше температур активного течения процессов дисперсионного твердения.
Молибден и вольфрам. Влияние молибдена и вольфрама на механические свойства улучшенной стали по данным автора показано в табл. 73.
Влияние вольфрама на механические свойства улучшенной стали в некоторых чертах сходно с влиянием молибдена (табл. 73). Вольфрам, аналогично молибдену, вызывает упрочнение стали при отпуске.
Однако его действие несравненно слабее, чем молибдена. Для достижения равного эффекта после отпуска при 600° требуется примерно в три раза больше вольфрама, чем молибдена.
После отпуска при 650°, даже при указанном количественном соотношении, некоторые преимущества в отношении упрочнения сохраняются за молибденом. Влияние молибдена и вольфрама на склонность стали к хладноломкости видно из табл. 74, в которой приведена ударная вязкость улучшенной стали после обработки на одинаковую твердость.
Введение в сталь молибдена или вольфрама в количестве 0,8—1,0% не вносит существенных изменений в склонности термически улучшенной стали к хладноломкости.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _