на что влияет частота fsb
Системная шина — что это?
Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.
Кстати, надпись «O.C.» означает, буквально «разгон», это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.
Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.
Системная шина FSB
Автор: arlarung · Опубликовано 05/27/2019 · Обновлено 11/20/2019
Тактовая частота и ширина шины FSB (в битах) определяют скорость, с которой данные передаются между процессором (CPU) и чипсетом.
Внешняя шина определяет пропускную способность процессора для чипсета, памяти, видеокарты и остальной периферии. Пропускная способность процессора в идеале должна быть равна пропускной способности основной памяти. В противном случае процессор и память будет работать асинхронно и, следовательно, производительность того или другого компонента будет просто теряться.
Отношения между шиной FSB и RAM
Процессор — это часть компьютерной системы, которая в основном использует оперативную память. Следовательно, соединение между процессором (CPU) и оперативной памятью (RAM) должно быть скоординировано. В оптимальном случае процессор подключается к чипсету через FSB, а память через шину памяти с той же пропускной способностью. Ведь для оптимальной вычислительной мощности основная память и внешняя шина (FSB) должны иметь одинаковую производительность передачи. Тогда система будет работать с максимально возможной производительностью.
Аббревиатура
Аббревиатура FSB (например, FSB400) относится к числу 8-байтовых передач данных в секунду. Относительно шины FSB400 (400 МГц) скорость передачи данных составляет 3,2 миллиарда байтов в секунду. Аналогом на стороне памяти является модуль памяти PC3200 или PC2-3200 (в зависимости от чипсета и материнской платы). Хотя чипсет или материнская плата могут поддерживать более быструю память (например, PC2-4200), она все равно будет основана на скорости FSB. Конечно, вы можете использовать и более быструю память, но при этом вы не сможете использовать ту разницу между шиной и частотой памяти. Это делает разгон памяти бессмысленным занятием в данном случае. Если память медленнее, чем FSB, процессор будет работать не на полную свою мощность.
В зависимости от процессора связь по шине выполняется с тактовой частотой 66, 75, 83, 95, 100, 133, 166, 200, 266, 333 или 400 МГц. Дальнейшее увеличение тактовой частоты было не рационально, поэтому был разработан метод двойной скорости передачи данных (DDR). За счет этого максимальная теоретическая скорость передачи удваивается. Эта процедура также используется для основной памяти (DDR-SDRAM).
Пример увеличение данных за такт:
Физическая частота | 66 MHz | 75 MHz | 83 MHz | 95 MHz | 100 MHz | 133 MHz | 166 MHz | 200 MHz | 266 MHz | 333 MHz | 400 MHz |
(SDR) | FSB66 | FSB75 | FSB83 | FSB95 | FSB100 | FSB133 | FSB166 | FSB200 | — | — | — |
(DDR) | FSB133 | FSB150 | FSB166 | FSB190 | FSB200 | FSB266 | FSB333 | FSB400 | — | — | — |
(DDR3) | — | — | — | — | FSB400 | FSB533 | — | FSB800 | FSB1066 | FSB1333 | FSB1600 |
Поскольку тактовая частота и ширина шины (количество шинных линий) пространственно ограничены параллельными линиями (классическая шина), были разработаны методы последовательного соединения для соединения процессора и набора микросхем. В отличие от Intel, AMD первой переключилась на технологию последовательного соединения, которая оказалась намного быстрее предшественницы и имела свойства масштабируемости.
HyperTransport от AMD
HyperTransport был первоначально разработан Alpha Prozessors Inc. как Lightning Data Transfer (LDT). HyperTransport — это метод последовательного соединения, подходящий для подключения интегральных микросхем. AMD использует HyperTransport в качестве связующего звена между процессором, чипсетом и памятью.
16-разрядная версия HyperTransport 800 МГц может передавать 3,2 ГБ / с (51 Гбит / с) в каждом направлении.
QuickPath Interconnection от Intel
QPI заменил FSB у Intel и стал симметричным ответом на аналогичную технологию от AMD. Как и HyperTransport от AMD, QPI является последовательным интерфейсом.
Порт QPI полной ширины состоит из 20 каналов в каждом направлении, каждое из которых передает до 6,4 Гбит / с.
Media Interface или PCIe — PCI Express
Современные процессоры сочетают в себе основной процессор, графический процессор и контроллер памяти. В этом ключе чипсет уже теряет свой первоначальный смысл. Он служит только для обеспечения внутренних и внешних интерфейсов для расширений и жестких дисков.
На что влияет частота fsb
Во намутили, я тоже ни чего не понял.
FSB (англ. Front side bus, переводится как «системная шина») — компьютерная шина, обеспечивающая соединение между x86-совместимым центральным процессором и внешним миром. |
Как правило, современный персональный компьютер на базе x86-совместимого микропроцессора устроен следующим образом: микропроцессор через FSB подключается к системному контроллеру (обычно системный контроллер персонального компьютера называют «северным мостом», англ. North Bridge). Системный контроллер имеет в своем составе контроллер ОЗУ, а также контроллеры шин, к которым подключаются периферийные устройства. Получил распространение подход, при котором, к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express 16x, а менее производительные устройства (микросхема BIOS’а, устройства с шиной PCI) подключаются к т. н. «южному мосту» (англ. South Bridge), который соединяется с северным мостом специальной высокопроизводительной шиной. Набор из «южного» и «северного» мостов часто называют чипсетом (англ. chipset).
Таким образом, FSB работают в качестве магистрального канала между процессором и чипсетом.
Некоторые компьютеры имеют внешнюю кэш-память, подключенную через «заднюю» шину (англ. back side bus), которая быстрее, чем FSB, но работает только со специфичными устройствами.
Каждая из вторичных шин работает на своей частоте (которая может быть как выше, так и ниже частоты FSB). Иногда частота вторичной шины является производной от частоты FSB, иногда задаётся независимо.
Частота процессора Частота, на которой работает центральный процессор, определяется исходя из частоты FSB и коэффициента умножения. Большинство современных процессоров имеют заблокированный коэффициент умножения, так что единственным способом разгона является изменение частоты FSB. |
Память
До определённого момента в развитии компьютеров частота работы памяти совпадала с частотой FSB, на современных персональных компьютерах (кроме Athlon 64/FX) частоты FSB и шины памяти могут различаться.
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
FSB (Front-side Bus)
Наиболее часто можно встретить систему организации внешнего интерфейса процессора, которая предполагает, что параллельная мультиплексированная процессорная шина, носящая название FSB, соединяет процессор (порой два процессора, четыре или даже больше) и системный контроллер, который обеспечивает доступ к оперативной памяти и внешним устройствам. Этот системный контроллер обычно называется «северным мостом» (от англ. Northbridge). Он, наряду с «южным мостом» (от англ. Southbridge), входит в состав набора системной логики, который, однако, чаще фигурирует под названием «чипсет» (от англ. Chipset).
Системный контроллер имеет в своём составе контроллер ОЗУ (в некоторых современных персональных компьютерах контроллер ОЗУ встроен в микропроцессор), а также контроллеры шин, к которым подключаются периферийные устройства. Получил распространение подход, при котором к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express 16x, а менее производительные устройства (микросхема BIOS’а, устройства с шиной PCI) подключаются к «южному мосту».
Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.
Как правило, процессор и шина имеют одну и ту же базовую частоту, которая называется опорной или реальной. В случае процессора его конечная частота определяется произведением опорной частоты на определенный множитель. Вообще говоря, реальная частота FSB обычно является основной частотой материнской платы, при помощи которой определяются рабочие частоты всех остальных устройств.
В большинстве старых компьютеров реальная частота системной шины определяла и частоту оперативной памяти, однако сейчас память часто может иметь и другую частоту – в том случае, если контроллер памяти располагается в самом процессоре. Кроме того, следует иметь в виду, что реальная частота шины не эквивалентна ее эффективной частоте, которая определяется количеством передаваемых бит информации в секунду.
В настоящее время данная шина считается устаревшей и постепенно заменяется более новыми – QuickPath и HyperTransport. Системная шина QuickPath является разработкой фирмы Intel, а HyperTransport – компании AMD.
Содержание
Северный мост
Северный мост начал именоваться именно так из-за своего расположения на материнской плате. Он представляет собой микрочип, визуально расположенный «под» процессором, однако в верхней части материнской платы, как бы в «северной» ее части. Системный контроллер служит для передачи команд центрального процессора к оперативной памяти, и видеоконтроллеру (в случае встроенного видеоконтроллера, северный мост, производимый компанией Intel, именуется GMCH (от англ. Chipset Graphics and Memory Controller Hub), а также конвертацию этих команд в форму, необходимую для обращения к оперативной памяти. Порой, для увеличения потенциальной производительности системы, к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express, а менее производительные устройства (BIOS, устройства PCI, интерфейсы устройств хранения информации, ввода и т. п.) могут подключаться к так называемому южному мосту. Северный мост соединен с материнской платой посредством согласующего интерфейса, также контроллер соединяется шиной и с южным мостом.
Северным мостом определяются параметры (пропускная способность, частота, а также тип): системной шины, оперативной памяти (тип используемой памяти, а также ее максимальный объем), подключенного видеоконтроллера (режим работы, возможность использования SLI (от англ. Scalable Link Interface, что означает «масштабируемый интерфейс» и фактически означает возможность работы 2 (3 — 3-Way SLI, или даже 4 — Quad SLI) видеоадаптеров одновременно, что чрезвычайно повышает производительность видео). В настоящее время в процессорах серии Core i-x с разъемом LGA 1156 северный мост встроен в процессор и связывается с ядрами по внутренней шине QPI со скоростью соединения 2.5^109 операций в секунду. Из факта поглощения процессором северного моста вытекает неактуальность использования шины FSB и внешней шины QPI в подобных системах.
Южный мост
Еще одним компонентом чипсета является функциональный контроллер ввода-вывода (от англ. I/O Controller Hub, ICH), так называемый южный мост, служащий для связи центрального процессора (через северный мост) с устройствами, не столь критичными к скорости взаимодействия:
Основные параметры FSB некоторых процессоров
Процессор | Частота FSB, МГц | Тип FSB | Теоретическая пропускная способность FSB, Мб/с |
---|---|---|---|
Intel Pentium III | 100/133 | AGTL+ | 800/1066 |
Intel Pentium 4 | 100/133/200 | QPB | 3200/4266/6400 |
Intel Pentium D | 133/200 | QPB | 4266/6400 |
Intel Pentium 4 EE | 200/266 | QPB | 6400/8533 |
Intel Core | 133/166 | QPB | 4266/5333 |
Intel Core 2 | 200/266 | QPB | 6400/8533 |
AMD Athlon | 100/133 | EV6 | 1600/2133 |
AMD Athlon XP | 133/166/200 | EV6 | 2133/2666/3200 |
AMD Sempron | 800 | HyperTransport | 6400 |
AMD Athlon 64 | 800/1000 | HyperTransport | 6400/8000 |
На что влияет частота процессора
Частота процессора – это величина, определяющая, как часто на центральный процессор (ЦП) приходят тактовые импульсы, синхронизирующие его работу. Многих пользователей интересует вопрос – в чем измеряется частота. Она измеряется в герцах, или количестве изменений состояния тактового входа ЦП в секунду. Фактически измерение частоты используют преимущественно для определения производительности системы.
Важно! Если частота ЦП составляет, например 3 ГГц, это вовсе не значит, что он выполняет три миллиарда команд в секунду. Каждая команда может выполняться несколько тактов.
Все современные центральные процессоры (ЦП) работают по следующей схеме: каждое действие в них происходит поэтапно, с приходом на специальный вход ПЦ (обычно обозначаемый CLK – от слова clock) очередного импульса. Каждый импульс называется тактом. Несколько тактов составляют так называемый «машинный цикл» — минимальное время между обращением процессора к памяти, необходимым для считывания команды.
Работа ЦП состоит в чтении команды и её выполнении. В среднем на один машинный цикл уходит около трёх тактов и ещё несколько тактов уходит на исполнение команды. В системе команд семейств х86 или х64 длительность команд может достигать от 3 до 30 тактов. Кроме того, в работе ЦП также присутствуют такты простоя.
То есть, фактическое быстродействие (число команд исполняемых ЦП в секунду) хоть и зависит от частоты, но не равно ей.
В данной статье будет рассмотрено, как узнать тактовую частоту, как проверить её на соответствие штатной величине, и как изменить значения частоты процессора.
Описание тактовой частоты процессора
Фактически частота ЦП, на которой он работает, является величиной, зависящей от двух важных параметров:
Итоговая величина получается умножением одного параметра на другой. То есть каждый параметр может влиять общую частоту. Например, у процессоров Intel Core i7-4700 значение FSB равно 100 МГц, а множитель может меняться от 23 до 23 в зависимости от режима работы ЦП. Что соответствует реальному значению тактовой частоты процессора от 2300 МГц до 3300 МГц.
Обозначение и измерение частоты процессора
Частота обозначается на корпусе процессора или в его документации. Сразу следует отметить, что в этих местах указывается её штатная величина для ЦП. Измерение её реального показателя для ЦП может производиться либо средствами операционной системы, либо при помощи сторонних программ.
Влияние показателя
Частота является базовой величиной, влияющей на производительность компьютерной системы в целом. Это один из основных параметров, определяющий быстродействие ПК. Влияние других параметров (числа ядер, объёма кэш памяти и т.д.) проявляется не более, чем в 20% случаев.
Фактически для увеличения производительности системы можно попытаться увеличить значение тактовой частоты ЦП в тех пределах, которые будет позволять аппаратная часть компьютера.
Определение штатной и действующей частоты процессора
Штатная частота – это такое её значение, при котором ЦП работает в номинальном режиме с расчётным быстродействием и его тепловыделение не превышает максимально допустимого значения.
Помимо штатной величины оперируют понятием действующей частоты. Это просто то её значение, с которым ЦП работает в настоящее время. Она может быть выше штатной (например, для игр нужна максимальное быстродействие, чтобы обеспечить наибольшую производительность графической подсистемы) или же заниженной, когда ПК находится в режиме покоя.
Посмотреть значения штатной и действующей частоты можно стандартными средствами, встроенными в Windows 7 или Windows 10. Даже минимальный диагностический функционал, установленный на этих системах, позволяет находить эти параметры. Операционные системы способны находить практически все существующие ЦП в базе данных и выводить их штатную величину (в свойствах системы), а также определять действующую (в диспетчере задач).
Кроме того, определить все перечисленные параметры можно при помощи любой сторонней программы диагностики, например:
Перечисленные программы способны определять как действующее, так и штатное значение. Кроме того, штатную величину можно узнать, посмотрев BIOS ПК в разделе CPU Info или CPU Clock Settings.
Внимание! Частота может быть легко изменяема в биосе. Собственно, практически весь разгон ЦП с тонкой настройкой его параметров корректно можно реализовать исключительно через BIOS.
Как узнать изменить частоту процессора
Вопрос, как узнать частоту ЦП, фактически уже рассмотрен. Даже обычные средства Windows позволяют делать это без каких бы то ни было проблем. Однако, большинство пользователей волнуют более насущные вопросы: им нужно выжать из своих ПК максимум производительности.
Поэтому работа в режиме «турбо» у большинства ПК давно уже стала практически штатным режимом. Работа современных систем охлаждения позволяет без особых проблем увеличивать значение частоты на 20-30% от штатной, при этом не опасаясь за судьбу своего ЦП. Именно поэтому многие пользователи увеличивают быстродействие своих ЦП всеми доступными методами: от изменений планов быстродействия и электропитания до аппаратного разгона процессора.
Рассмотрим, как увеличить тактовую частоту ЦП. Поскольку её итоговое значение получается в виде произведения величины FSB на множитель, есть два пути: увеличение FSB, либо увеличение множителя.
Однако, оба имеют свои ограничения. Величина множителя изначально заблокирована производителем на каком-то уровне, незначительно превышающем максимальное значение. Например, множители у упомянутого выше i7-4700 имеют следующие значение:
То есть, максимальное значение частоты, с которой может работать данный ЦП, составляет 3500 МГц, однако, производитель приводит не эту величину, а немного меньшую (3300 МГц), то есть максимальный разгон данного процессора по множителю составит всего лишь 6%.
Внимание! Существуют серии процессоров «для энтузиастов», у которых верхнее значение множителя разблокировано, то есть способно принимать, в принципе, любые значения. Подобные ЦП обозначаются индексом «К» или «Х».
Ограничение по FSB обусловлено не только физическими процессами в ЦП, но и поведением материнки и всего остального «обвеса»: памяти, видеокарты, USB и т.д., поскольку каждое из этих устройств также ориентируется на работу, с которой работает FSB.
Реальный рост скорости ЦП при увеличении FSB может доходить до 50%. Однако, это экстремальные случаи, требующие не только экстремальных систем охлаждения, но и настройки задержек в работе всех перечисленных устройств. Выигрыш быстродействия здесь получится только в том случае, если эти задержки не будут влиять на производительность.
Непосредственно само увеличение частоты процессора может быть осуществлено несколькими методами:
Последний способ наиболее предпочтителен, поскольку именно он позволяет управлять и FSB и множителем. Кроме того, данное решение даёт возможность увеличивать напряжение питания ЦП, если разгон при обычном способе не приносит результата. При этом пользуются простым правилом: постепенно увеличивают FSB на 2-3% и следят за стабильностью системы. Если система не даёт сбоев, переходят на повышенную частоту, если сбои есть, повышают напряжение.
Увеличение частоты прекращают на последнем её стабильном значении, при котором повышение напряжения не опасно для ЦП (не более +10% от номинального значения).
Решение вопроса, как уменьшить частоту, состоит в противоположных действиях: обычно при этом убирается весь разгон, а ПК переводится на план электропитания, имеющий минимальное энергопотребление. При этом система сама понизит частоту ЦП до нужных значений.
Зависимость частоты процессора от количества ядер
Фактически число или количество ядер на частоту никакого влияния не оказывает. Однако, есть некоторые особенности работы многоядерных систем, связанные с этим. Вообще-то изначально многоядерность планировалась, как дальнейшее достижение всё большей производительности. Но со временем стало понятно, что быстродействие современных ЦП в тривиальных задачах и так более, чем достаточное.
И на первое место в большем количестве задач стали выходить не сколько вопросы производительности, сколько вопросы энергосбережения. Последние требовали снижения частоты, поскольку, как показала практика, чаще снизить частоту выгоднее, чем поддерживать её в каком-то постоянном значении.
До 2015 года все многоядерные ЦП имели единые значения скорости работы для каждого ядра. И только появление в 2015 году семейства Skylake позволило устанавливать для каждого ядра своё быстродействие. Для всех последующих поколений (шестое и более поздние) понижать или повышать частоты можно для каждого ядра в отдельности. Методы, как понизить частоту или повысить её для каждого ядра в отдельности, такие же, как и для процессора в целом. Современные твикеры позволяют вести тонкую настройку частоты каждого ядра.
То есть теперь вопрос, что важнее: скорость или потребление решается уже на уровне ядра.
Способы изменения частоты процессора на ПК и ноутбуке
На ноутбуке способов изменения частоты, связанных со встроенным функционалом (BIOS и т.д.) относительно немного, поскольку производители сознательно «огораживают» своих пользователей от всех потенциально опасных действий. В этом есть своя логика, поскольку ноуты являются персоналками, работающими практически на пределе своих способностей и неизвестно, как они себя поведут при нарушении в них баланса тепловыделения и теплоотвода.
Какая частота для ноутбука является штатной, можно узнать из его описания, но какая будет максимальной, скорее всего, определять придётся самостоятельно, поскольку ориентироваться на опыт других пользователей в этом вопросе, мягко говоря, не стоит. Дело в том, что в силу особенностей дизайна ноутов даже незначительные изменения в конструкции могут оказать существенное влияние на его охлаждение. А зачастую и даже изделия из одной партии ведут себя в одних и тех же задачах совершенно по-разному.
Поэтому, решая вопрос, как поднять частоту на ноуте, следует очень внимательно следить за его состоянием, поскольку сложность настроек параметров тепловой безопасности такого типа персоналок может сыграть с пользователем злую шутку. Например, можно настроить ноут на минимальную интенсивность системы охлаждения, но при этом при помощи твикера дать ему разгон на процессор. Как при этом он себя поведёт – неизвестно. Если отключится – хорошо. А если нет?
В любом случае, экспериментируя с FSB или множителем ЦП ноутбука, следует пользоваться только программами-твикерами, разработанными исключительно производителями ноута. Стороннее программное обеспечение лучше не использовать.