на чем основана квантовая физика
Квантовая физика: что на самом деле реально?
По словам Оуэна Маруни, работающего физиком в Оксфордском университете, с момента появления квантовой теории в 1900-х годах все говорили о странности этой теории. Как она позволяет частицам и атомам двигаться в нескольких направлениях одновременно, или одновременно вращаться по часовой и против часовой стрелки. Но словами ничего не докажешь. «Если мы рассказываем общественности, что квантовая теория очень странная, нам необходимо проверить это утверждение экспериментально,- говорит Маруни. – А иначе мы не наукой занимаемся, а рассказываем про всякие закорючки на доске».
Именно это навело Маруни сотоварищи на мысль разработать новую серию экспериментов для раскрытия сути волновой функции – загадочной сущности, лежащей в основе квантовых странностей. На бумаге, волновая функция – просто математический объект, обозначаемый буквой пси (Ψ) (одна из тех самых закорючек), и используется для описания квантового поведения частиц. В зависимости от эксперимента, волновая функция позволяет учёным вычислять вероятность наблюдения электрона в каком-то конкретном месте, или шансы того, что его спин ориентирован вверх или вниз. Но математика не говорит о том, что на самом деле такое волновая функция. Это нечто физическое? Или просто вычислительный инструмент, позволяющий работать с невежественностью наблюдателя касательно реального мира?
Использованные для ответа на вопрос тесты очень тонкие, и им всё ещё предстоит выдать однозначный ответ. Но исследователи оптимистичны в том, что развязка близка. И им, наконец, удастся ответить на вопросы, мучавшие всех десятки лет. Может ли частица реально быть во многих местах одновременно? Делится ли Вселенная постоянно на параллельные миры, в каждом из которых существует наша альтернативная версия? Существует ли вообще нечто под названием «объективная реальность»?
«Такие вопросы рано или поздно появляются у любого»,- говорит Алессандро Федриччи, физик из Квинслендского университета (Австралия). «Что на самом деле реально?»
Споры о существе реальности начались ещё тогда, когда физики выяснили, что волна и частица – лишь две стороны одной медали. Классический пример – эксперимент с двумя щелями, где отдельные электроны выстреливаются в барьер, имеющий две щели: электрон ведёт себя так, будто проходит через две щели одновременно, создавая полосатый рисунок интерференции с другой её стороны. В 1926 году австрийский физик Эрвин Шрёдингер придумал волновую функцию для описания этого поведения и вывел уравнение, позволявшее вычислять её для любой ситуации. Но ни он, ни кто либо ещё, не мог ничего рассказать о природе этой функции.
Благодать в невежестве
С практической точки зрения её природа не важна. Копенгагенская интерпретация квантовой теории, созданная в 1920-х годах Нильсом Бором и Вернером Гейзенбергом, использует волновую функцию просто как инструмент для предсказания результатов наблюдений, позволяя не думать о том, что происходит при этом в реальности. «Нельзя винить физиков в такой модели поведения, „заткнись и считай“, поскольку она привела к значительным прорывам в ядерной и атомной физике, физике твёрдого тела и физике элементарных частиц»,- говорит Джин Брикмонт, специалист по статистической физике Католического университета в Бельгии. «Поэтому люди советуют не волноваться относительно фундаментальных вопросов».
Но некоторые всё равно волнуются. К 1930-м годам Эйнштейн отверг копенгагенскую интерпретацию, не в последнюю очередь потому, что она позволяла двум частицам спутывать свои волновые функции, что приводило к ситуации, в которой измерения одной из них могли мгновенно дать состояние другой, даже если они при этом разделены огромными расстояниями. Чтобы не смиряться с этим «пугающим взаимодействием на расстоянии», Эйнштейн предпочитал верить, что волновые функции частиц были неполны. Он говорил, что возможно, у частиц есть некие скрытые переменные, определяющие результат измерения, которые не были замечены квантовой теорией.
Эксперименты с тех пор продемонстрировали работоспособность пугающего взаимодействия на расстоянии, что отвергает концепцию скрытых переменных. но это не остановило остальных физиков интерпретировать их по-своему. Эти интерпретации делятся на два лагеря. Одни соглашаются с Эйнштейном в том, что волновая функция отражает наше невежество. Это то, что философы зовут пси-эпистемическими моделями. А другие рассматривают волновую функцию как реальную вещь – пси-онтические модели.
Чтобы понять разницу, представим себе мысленный эксперимент Шрёдингера, описанный им в 1935 году в письме Эйнштейну. Кот находится в стальной коробке. Коробка содержит образец радиоактивного материала, у которого есть 50% шанс испустить продукт распада за один час, и аппарат, отравляющий кота в случае, если этот продукт будет обнаружен. Поскольку радиоактивный распад – событие квантового уровня, пишет Шрёдингер, правила квантовой теории говорят, что в конце часа волновая функция внутренностей коробки должна быть смесью из мёртвого и живого кота.
«Грубо говоря,- мягко выражается Федриччи,- в пси-эпистемической модели кот в коробке либо жив, либо мёртв, и мы просто не знаем этого из-за того, что коробка закрыта». А в большинстве пси-онтических моделей существует согласие с копенгагенской интерпретацией: пока наблюдатель не откроет коробку, кот одновременно будет и жив и мёртв.
Но тут спор заходит в тупик. Какая из интерпретаций истинна? На этот вопрос сложно ответить экспериментально, поскольку разница между моделями очень тонка. Они по сути должны предсказать то же квантовое явление, что и очень успешная копенгагенская интерпретация. Эндрю Уайт, физик из Квинслендского университета, говорит, что за его 20-летнюю карьеру в квантовых технологиях «эта задача была как огромная гладкая гора без уступов, к которой нельзя было подступиться».
Всё поменялось в 2011 году, с опубликованием теоремы о квантовых измерениях, которая вроде бы устранила подход «волновая функция как невежество». Но по ближайшему рассмотрению оказалось, что эта теорема оставляет достаточно место для их манёвра. Тем не менее, она вдохновила физиков серьёзно задуматься о способах решения спора путём тестирования реальности волновой функции. Маруни уже разработал эксперимент, который в принципе работоспособен, и он с коллегами вскоре нашёл способ заставить его работать на практике. Эксперимент был проведён в прошлом году Федриччи, Уайтом и другими.
Для понимания идеи теста представьте две колоды карт. В одной есть только красные, в другой – только тузы. «Вам дают карту и просят определить, из какой она колоды»,- говорит Мартин Рингбауэр, физик из того же университета. Если это красный туз, «случается пересечение, и вы не сможете сказать этого определённо». Но если вы знаете, сколько карт в каждой колоде, можно подсчитать, как часто будет возникать такая двусмысленная ситуация.
Физика в опасности
Такая же двусмысленность случается и в квантовых системах. Не всегда можно одним измерением узнать, например, как поляризован фотон. «В реально жизни просто отличить запад от направления чуть южнее запада, но в квантовых системах это не так просто»,- говорит Уайт. Согласно стандартной копенгагенской интерпретации, нет смысла спрашивать о поляризации, поскольку у вопроса нет ответа – пока ещё одно измерение не определит ответ в точности. Но согласно модели «волновая функция как невежество», вопрос имеет смысл – просто в эксперименте, как и в том, с колодами карт, не хватает информации. Как и с картами, возможно предсказать, сколько двусмысленных ситуаций можно объяснить таким невежеством, и сравнить с большим количеством двусмысленных ситуаций, разрешённых стандартной теорией.
Именно это и проверяли Федриччи с командой. Группа измеряла поляризацию и другие свойства в луче фотонов, и находила уровень пересечений, который нельзя объяснить моделями «невежества». Результат поддерживает альтернативную теорию – если объективная реальность существует, то существует и волновая функция. «Впечатляет, что команда смогла решить такую сложную задачу таким простым экспериментом»,- говорит Андреа Альберти, физик из Университета Бонна (Германия).
Вывод ещё не высечен в граните: поскольку детекторы улавливали лишь пятую часть использованных в тесте фотонов, приходится предполагать, что утерянные фотоны вели себя точно так же. Это сильное предположение, и сейчас группа работает над тем, чтобы уменьшить потери и выдать более определённый результат. В это время команда МАруни в Оксфорде работает с Университетом Нового Южного Уэльса (Австралия), чтобы повторить такой опыт с ионами, которых проще отслеживать. «В ближайшие шесть месяцев у нас будет неоспоримая версия этого эксперимента»,- говорит Маруни.
Но даже если их ждёт успех и победят модели «волновая функция как реальность», то и у этих моделей есть разные варианты. Экспериментаторам придётся выбирать один из них.
Одна из самых ранних интерпретаций была сделана в 1920-х годах французом Луи де Бройлем, и расширена в 1950-х американцем Дэвидом Бомом. Согласно моделям Бройля-Бома, у частиц есть определённое местоположение и свойства, но их ведёт некая «пилотная волна», которая и определяется как волновая функция. Это объясняет эксперимент с двумя щелями, поскольку пилотная волна может пройти через обе щели и выдать картину интерференции, хотя сам электрон, влекомый ею, проходит только через одну щель из двух.
В 2005 году эта модель получила неожиданную поддержку. Физики Эммануэль Форт, сейчас работающий в Институте Лангевина в Париже, и Ив Кодье из Университета Париж Дидро задали студентам простую, по их мнению, задачку: поставить эксперимент, в котором капли масла, падающие на поднос, будут сливаться из-за вибраций подноса. К удивлению всех вокруг капель начали образовываться волны, когда поднос вибрировал с определённой частотой. «Капли начали передвигаться самостоятельно по своим собственным волнам»,- говорит Форт. «Это был дуальный объект – частица, влекомая волной».
С тех пор форт и Кодье показали, что такие волны могут провести свои частицы в эксперименте с двумя щелями точно как предсказывает теория пилотной волны, и могут воспроизводить другие квантовые эффекты. Но это не доказывает существование пилотных волн в квантовом мире. «Нам говорили, что такие эффекты в классической физике невозможны,- говорит Форт. – И тут мы показали, что возможны».
Ещё один набор моделей, основанных на реальности, разработанный в 1980-х, пытается объяснить сильную разницу свойств у больших и малых объектов. «Почему электроны и атомы могут быть в двух местах одновременно, а столы, стулья, люди и коты – не могут»,-говорит Анджело Баси, физик Триестского университета (Италия). Известные как «коллапсные модели», эти теории говорят, что волновые функции отдельных частиц реальны, но могут терять свои квантовые свойства и приводить частицу в определённое положение в пространстве. Модели построены так, что шансы такого коллапса чрезвычайно малы для отдельной частицы, так что на атомном уровне доминируют квантовые эффекты. Но вероятность коллапса быстро растёт при объединении частиц, и макроскопические объекты полностью теряют свои квантовые свойства и ведут себя согласно законам классической физики.
Один из способов это проверить – искать квантовые эффекты у больших объектов. Если верна стандартная квантовая теория, то ограничений на размер нет. И физики уже провели эксперимент с двумя щелями при помощи больших молекул. Но если верны модели коллапса, то квантовые эффекты не будут видны при превышении определённой массы. Разные группы планируют искать эту массу, используя холодные атомы, молекулы, металлические кластеры и наночастицы. Они надеются обнаружить результаты в ближайшие десять лет. «Что классно с этими экспериментами, так это то, что мы будем подвергать квантовую теорию точным тестам там, где её ещё не проверяли»,- говорит Маруни.
Параллельные миры
Одна модель «волновая функция как реальность» уже известна и любима писателями-фантастами. Это многомировая интерпретация, выработанная в 1950-х Хью Эвереттом, который в то время был студентом Принстонского университета в Нью-Джерси. В этой модели волновая функция так сильно определяет развитие реальности, что при каждом квантовом измерении Вселенная расщепляется на параллельные миры. Иными словами, открывая коробку с котом, мы порождаем две Вселенные – одна с мёртвым котом, а другая – с живым.
Сложно разделить эту интерпретацию и стандартную квантовую теорию, поскольку их предсказания совпадают. Но в прошлом году Говард Вайзман из Гриффитского университета в Брисбейне с коллегами предложил модель мультивёрса, которую можно проверить. В их модели нет волновой функции – частицы подчиняются классической физике, законам Ньютона. А странные эффекты квантового мира появляются потому, что между частицами и их клонами в параллельных вселенных есть отталкивающие силы. «Отталкивающая сила между ними порождает волны, распространяющиеся по всем параллельным мирам»,- говорит Вайзман.
Используя компьютерную симуляцию, в которой взаимодействовали 41 вселенная, они показали, что модель грубо воспроизводит несколько квантовых эффектов, включая траектории частиц в эксперименте с двумя щелями. При увеличении количества миров рисунок интерференции стремится к реальному. Поскольку предсказания теории разнятся в зависимости от количества миров, говорит Вайзман, можно проверить, права ли модель мультивёрса – то есть, что никакой волновой функции нет, а реальность работает по классическим законам.
Поскольку в этой модели волновая функция не нужна, она останется жизнеспособной, даже если будущие эксперименты исключат модели с «невежеством». Кроме неё выживут другие модели, например, копенгагенская интерпретация, которые утверждают, что нет объективной реальности, а есть лишь вычисления.
Но тогда, как говорит Уайт, этот вопрос и станет объектом изучения. И хотя пока никто не знает, как это сделать, «что было бы реально интересным, так это разработать тест, проверяющий, есть ли у нас вообще объективная реальность».
Квантовая физика для чайников. Что такое квантовая физика: суть простыми словами
Здравствуйте, дорогие читатели. Если вы не хотите отставать от жизни, хотите стать по-настоящему счастливым и здоровым человеком, вы должны знать о тайнах квантовой современной физики, хоть немного представлять до каких глубин мироздания докопались сегодня ученые. Вам некогда вдаваться в глубокие научные подробности, а хотите постигнуть лишь суть, но увидеть красоту неизведанного мира, тогда эта статья: квантовая физика для обычных чайников или можно сказать для домохозяек как раз для вас. Я постараюсь объяснить, что такое квантовая физика, но простыми словами, показать наглядно.
«Какая связь между счастьем, здоровьем и квантовой физикой?»- спросите вы.
Дело в том, что она помогает ответить на многие непонятные вопросы, связанные с сознанием человека, влияния сознания на тело. К сожалению, медицина, опираясь на классическую физику, не всегда нам помогает быть здоровым. А психология не может нормально сказать, как обрести счастье.
Только более глубокие познания мира помогут нам понять, как же по-настоящему справиться с болезнями и где обитает счастье. Это знание находится в глубоких слоях Вселенной. На помощь нам приходит квантовая физика. Скоро вы все узнаете.
Что изучает квантовая физика простыми словами
Да, действительно квантовую физику очень сложно понять из-за того, что она изучает законы микромира. То есть мир на более глубоких его слоях, на очень малых расстояниях, там, куда очень сложно заглянуть человеку.
А мир, оказывается, ведет себя там очень странно, загадочно и непостижимо, не так как мы привыкли.
Отсюда вся сложность и непонимание квантовой физики.
Но после прочтения этой статьи вы раздвинете горизонты своего познания и посмотрите на мир совсем по-другому.
Кратко об истории квантовой физики
Все началось в начале 20 века, когда ньютоновская физика не могла объяснить многие вещи и ученые зашли в тупик. Тогда Максом Планком было введено понятие кванта. Альберт Эйнштейн подхватил эту идею и доказал, что свет распространяется не непрерывно, а порциями – квантами (фотонами). До этого же считалось, что свет имеет волновую природу.
Но как оказалось позже любая элементарная частица, это не только квант, то есть твердая частица, а также волна. Так появился корпускулярно-волновой дуализм в квантовой физике, первый парадокс и начало открытий загадочных явлений микромира.
Самые интересные парадоксы начались, когда был проведен знаменитый эксперимент с двумя щелями, после которого загадок стало намного больше. Можно сказать, что квантовая физика началась с него. Давайте его рассмотрим.
Эксперимент с двумя щелями в квантовой физике
Представьте себе пластину с двумя щелями в виде вертикальных полос. За этой пластиной поставим экран. Если направить свет на пластину, то на экране мы увидим интерференционную картину. То есть чередующиеся темные и яркие вертикальные полосы. Интерференция это результат волнового поведения чего-либо, в нашем случае света.
Если вы пропустите волну воды через два отверстия расположенных рядом, вы поймете что такое интерференция. То есть свет получается вроде как имеет волновую природу. Но как доказала физика, вернее Эйнштейн, он распространяется частицами-фотонами. Уже парадокс. Но это ладно, корпускулярно-волновым дуализмом нас уже не удивить. Квантовая физика говорит нам, что свет ведет себя как волна, но состоит из фотонов. Но чудеса только начинаются.
Электроны ведь это частицы, значит поток электронов, проходя через две щели, должны оставлять на экране всего две полосы, два следа напротив щелей. Представили себе камушки, пролетающие сквозь две щели и ударяющие об экран?
Но что мы видим на самом деле? Всю ту же интерференционную картину. Каков вывод: электроны распространяются волнами. Значит электроны это волны. Но ведь это элементарная частица. Опять корпускулярно-волновой дуализм в физике.
Но можно предположить, что на более глубоком уровне электрон это частица, а когда эти частицы собираются вместе, они начинают вести себя как волны. Например, морская волна это волна, но ведь она состоит из капель воды, а на более мелком уровне из молекул, а затем из атомов. Хорошо, логика твердая.
Но ужас. Вместо этих двух полос получаются все те же интерференционные чередования нескольких полос. Как так? Такое может случиться, если бы электрон пролетал одновременно через две щели, а за пластиной, как волна сталкивался бы сам с собой и интерферировал. Но такое не может быть, ведь частица не может находиться в двух местах одновременно. Она или пролетает сквозь первую щель или сквозь вторую.
Вот тут начинаются поистине фантастические вещи квантовой физики.
Суперпозиция в квантовой физике
При более глубоком анализе ученые выясняют что любая элементарная квантовая частица или тот же свет(фотон) на самом деле может находиться в нескольких местах одновременно. И это не чудеса, а реальные факты микромира. Так утверждает квантовая физика. Вот поэтому, стреляя из пушки отдельной частицей, мы видим результат интерференции. За пластиной электрон сталкивается сам с собой и создает интерференционную картину.
Обычные нам объекты макромира находятся всегда в одном месте, имеют одно состояние. Например, вы сейчас сидите на стуле, весите, допустим, 50 кг, имеете частоту пульса 60 ударов в минуту. Конечно, эти показания изменятся, но изменятся они через какое-то время. Ведь вы не можете одновременно быть дома и на работе, весить 50 и 100 кг. Все это понятно, это здравый смысл.
В физике микромира же все по-другому.
Квантовая механика утверждает, а это уже подтверждено экспериментально, что любая элементарная частица может находиться одновременно не только в нескольких точках пространства, но также иметь в одно и то же время несколько состояний, например спин.
Все это не укладывается в голову, подрывает привычное представление о мире, старые законы физики, переворачивает мышление, можно смело сказать сводит с ума.
Так мы приходим к пониманию термина «суперпозиции» в квантовой механике.
Суперпозиция означает, что объект микромира может одновременно находиться в разных точках пространства, а также иметь несколько состояний одновременно. И это нормально для элементарных частиц. Таков закон микромира, каким бы странным и фантастическим он не казался.
Вы удивлены, но это только цветочки, самые необъяснимые чудеса, загадки и парадоксы квантовой физики еще впереди.
Коллапс волновой функции в физике простыми словами
Затем ученые решили выяснить и посмотреть более точно, реально ли электрон проходит через обе щели. Вдруг он проходит через одну щель, а затем каким-то образом разделяется и создает интерференционную картину, проходя через нее. Ну, мало ли. То есть нужно поставить какой-нибудь прибор возле щели, который бы точно зафиксировал прохождение электрона через нее. Сказано, сделано. Конечно, осуществить это сложно, нужен не прибор, а что-то другое, чтобы увидеть прохождение электрона. Но ученые сделали это.
Но в итоге результат ошеломил всех.
Как только мы начинаем смотреть, через какую щель проходит электрон, так он начинает вести себя не как волна, не как странное вещество, которое одновременно находится в разных точках пространства, а как обычная частица. То есть начинает проявлять конкретные свойства кванта: находится только в одном месте, проходит через одну щель, имеет одно значение спина. На экране появляется не интерференционная картина, а простой след напротив щели.
Но как такое возможно. Как будто электрон шутит, играет с нами. Сначала он ведет себя как волна, а затем, после того, как мы решили посмотреть прохождение его через щель, проявляет свойства твердой частицы и проходит только через одну щель. Но так оно и есть в микромире. Таковы законы квантовой физики.
Ученые увидели еще одно загадочное свойство элементарных частиц. Так появились в квантовой физике понятия неопределенность и коллапс волновой функции.
Когда электрон летит к щели, он находится в неопределенном состоянии или как мы сказали выше в суперпозиции. То есть ведет себя как волна, находится одновременно в разных точках пространства, имеет сразу два значения спина (у спина всего два значения). Если бы мы его не трогали, не пытались смотреть на него, не выясняли, где именно он находится, не измеряли бы значение его спина, он бы так и пролетел как волна одновременно через две щели, а значит, создал интерференционную картину. Его траекторию и параметры квантовая физика описывает с помощью волновой функции.
После того, как мы произвели измерение (а произвести измерение частицы микромира можно только взаимодействуя с ней, например, столкнуть с ней другую частицу), то происходит коллапс волновой функции.
То есть теперь электрон находится точно в каком-то одном месте пространства, имеет одно значение спина.
Можно сказать элементарная частица как призрак, она как бы есть, но одновременно ее нет в одном месте, и может с определенной вероятностью оказаться в любом месте в пределах описания волновой функции. Но как только мы начинаем с ней контактировать, она из призрачного объекта превращается в реальное осязаемое вещество, которое ведет себя как обычный, привычный для нас предмет классического мира.
«Вот это фантастика»- скажете вы. Конечно, но чудеса квантовой физики только начинаются. Самое невероятное еще впереди. Но давайте немного отдохнем от обилия информации и вернемся к квантовым приключениям в другой раз, в другой
статье. А пока поразмышляйте о том, что вы сегодня узнали. К чему могут привести такие чудеса? Ведь они окружают нас, это свойство нашего мира, хоть и на более глубоком уровне. А мы все еще думаем, что живем в скучном мире? Но выводы сделаем позже.
Я попытался рассказать об основах квантовой физики кратко и понятно.
Но если вы что-то не поняли, тогда посмотрите вот этот мультик про квантовую физику, про эксперимент с двумя щелями, там также все рассказывается понятным, простым языком.
Мультфильм про квантовую физику:
Или можно смотреть вот этот видео, все станет на свои места, квантовая физика ведь очень интересна.
Видео о квантовой физике:
И как вы раньше об этом не знали.
Современные открытия в квантовой физике меняют наш привычный материальный мир.
Квантовая физика для начинающих
Квантовая физика является молодой наукой, что не мешает появлению в ней фантастических гипотез. Перспективы квантовой физики способны поразить любое сознание. Вот лишь несколько примеров: появление квантовой криптографии, основанной на передаче информации отдельными фотонами, и развитие квантового компьютера, который использует квантовую суперпозицию и квантовую запутанность для работы с информацией.
Хотите понять квантовую физику? Не пытайтесь ассоциировать эту науку с классической физикой. Тогда вы сможете взглянуть на мир иначе.
Квантовая гипотеза Планка
Днём рождения квантовой физики считается 14 декабря 1900 года, когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым им излучением. Он гласил: энергия электромагнитной волны может излучаться и поглощаться исключительно целыми порциями — квантами. Формула энергии кванта:
где e — энергия излучения, n — частота излучения, h — постоянная Планка.
Это предположение показывало, что законы классической физики неприменимы к микромиру.
Эйнштейн и фотоэлектрический эффект
В 1905 году Альберт Эйнштейн объяснил фотоэффект, опираясь на квантовую гипотезу Планка.
Фотоэлектрический эффект — явление вылета электрона из твёрдых и жидких тел под воздействием электромагнитного излучения.
Учёный предположил, что электромагнитная волна (которой считался свет) состоит из световых квантов (фотонов). Поглощение света происходит так, что фотоны квантами передают собственную энергию электронам вещества. При фотоэффекте часть электромагнитного излучения отражается от поверхности металла, а другая попадает внутрь и там поглощается. Электрон получает энергию от фотона и совершает работу выхода из вещества, приобретая начальную скорость.
где h — постоянная Планка, n — частота электромагнитного излучения, A — работа выхода, mv^2/2— кинетическая энергия вышедшего электрона.
Это уравнение объясняет все законы внешнего фотоэлектрического эффекта:
Благодаря явлению внешнего фотоэффекта мы смотрим фильмы со звуком. Фотоэлемент позволял превратить звук, запечатлённый на киноплёнке, в слышимый. Свет обычной лампы проходил через звуковую дорожку киноплёнки, преобразовывался и попадал на фотоэлемент. Чем больше света проходило через дорожку, тем громче был звук в динамике.
Не начинайте изучение квантовой физики со сложных математических формул. Улавливайте суть законов и экспериментов.
Формирование квантовой механики
Матричная механика Гейзенберга
В 1925 году Вернер Гейзенберг сформулировал теорию квантовой механики.
Квантовая механика — раздел квантовой физики, описывающий свойства и строение субатомных частиц и их систем.
Метод Гейзенберга требовал работы с матрицами (математическая таблица, представляющая набор упорядоченных чисел). Отсюда название — матричная механика. Теория объясняла, как происходят квантовые скачки.
Квантовый скачок — переход квантовой системы (в частности атома) с одного энергетического уровня на другой.
Подход Гейзенберга включал два компонента:
Замысел матричной механики заключался в том, что физические величины, характеризующие частицу, описываются матрицами, изменяющимися во времени.
Волновая механика Шрёдингера
Совершенно другой подход предложил Эрвин Шрёдингер, назвав теорию волновой механикой. Он предположил, что любая материя существует в виде волн.
Волновое уравнение, сформулированное Шрёдингером, относится к ненаблюдаемой величине. Квадрат модуля этой величины показывает распределение вероятности обнаружить частицу в различных точках пространства, то есть отдельная частица представляется как волна, распределённая по всему пространству. Из его метода описание материи стало статистическим, то есть вероятностным.
Позже Поль Дирак доказал, что теории двух учёных были разными представлениями одного и того же и равноценными. Эти два подхода сформировали квантовую механику.
Однако Гейзенберг и Шрёдингер известны другими открытиями.
Помните: в квантовой физике и её разделах всё неопределённо и вероятностно.
Основные законы квантовой механики
Принцип неопределённости Гейзенберга — где и с какой скоростью?
В 1927 году Гейзенберг сформулировал принцип неопределённости: невозможно одновременно точно измерить пространственную координату и скорость частицы. Формула:
где Δx— неопределённость координаты пространства, Δv — неопределённость скорости частицы, h — Постоянная Планка, m — масса частицы.
Принцип неопределённости также связывает иные пары характеристик, например, энергию квантовой системы и момент времени, когда квантовая система обладает ей.
Подходящей аналогией является фотографирование движущегося объекта. Объект, сфотографированный с длительной экспозицией, размывается. Это демонстрирует, как движется объект, но не где он находится. Наоборот: можно определить местоположение объекта, сфотографированного с короткой экспозицией, но не то, как он движется. Однако следует понимать, что принцип неопределённости не ориентирован на наблюдателя, а показывает природу частиц.
Кот Шрёдингера — и жив и мёртв одновременно
Шрёдингер, желая показать неполноту квантовой механики при переходе от микромира к макромиру, провёл мысленный эксперимент.
Кот Шрёдингера — и жив и мёртв одновременно
Статья дает научный ответ на вопрос, безгранична ли Вселенная и как это доказать.
Интерпретации квантовой механики
У квантовой механики существуют две интерпретации:
Различность этих подходов демонстрирует квантовое бессмертие, которое можно считать пересказом эксперимента Шрёдингера от лица кота. Вместо кота — участник, вместо колбы с ядом — ружьё, которое стреляет, если радиоактивный распад произойдёт (вероятность по-прежнему 50/50).
Квантовая физика — FAQ
Это были основы квантовой физики, которые необходимо знать для базового понимания. Однако осталось несколько интересных вопросов:
Квант — наименьшая неделимая порция чего-либо, в частности энергии. Понятие кванта ввёл Макс Планк.
Квантовый компьютер — вычислительное устройство, использующее явления квантовой суперпозиции и квантовой запутанности для передачи и обработки информации. И он существует. Наибольший составлен из семи кубитов. Этого хватит, чтобы разложить число 14 на простые множители: 7 и 2. Пока что нет квантового компьютера для практического применения, однако его появление поможет человечеству решить медицинские проблемы, расшифровать генетический код и выйти за рамки материального мира. Поэтому многие страны финансируют десятки миллионов долларов на создание квантового компьютера.
Пока что о квантовой криптографии говорят в будущем времени. Однако первый протокол был создан в 1984 году и носил название BB84. Замысел квантового шифрования состоит в том, чтобы передавать информацию отдельными фотонами. Главным теоретическим недостатком квантового шифрования является низкая пропускная способность.
Если выбрать одну частицу из определённого количества частиц и повлиять на неё, то состояние изменится у остальных частиц, независимо от условий. Явление квантовой запутанности — основа квантовой телепортации.
Свойство некоторых металлов при охлаждении до абсолютного нуля полностью терять сопротивление электрическому току.
Свет не является ни частицей, ни волной, приобретая их свойства только в некотором приближении.
Квантовый двигатель — механизм, который выполняет работу без потерь энергии, сил трения и теплообмена с окружающей средой.
Эффект наблюдателя — теория о том, что наблюдение за объектом изменяет его свойства.
В квантовых полях процесс передачи взаимодействия происходит квантами, в качестве которых выступают элементарные частицы с фиксированными физическими характеристиками. Таким образом, взаимодействующие частицы имеют квантованные характеристики и взаимодействие между ними передаётся квантовым полем со своими квантованными характеристиками.
Квантовый камуфляж сделан из оксида самария и никеля и позволяет спрятаться от инфракрасных камер.
Книги о квантовой физике
Если вы хотите и дальше познавать квантовый мир, рекомендуем следующие книги: