на чем держится планета земля в космосе

6. На чём же держится Земля?

6. На чём же держится Земля?

Теперь мы подошли к концу наших рассуждений и можем ответить вполне ясно и точно на поставленный нами с самого начала вопрос: на чём же, всё-таки, держится наша Земля?

То же самое можно сказать и про нашу Землю. По закону всемирного тяготения Солнце притягивает Землю. И поэтому мы вправе сказать, что Земля падает на Солнце. Но почему же Земля до настоящего времени не только не упала на Солнце, но и (как показывают самые точные измерения) совсем не приближается к нему? Да потому, что она движется с той самой круговой скоростью, которая как бы обезвреживает солнечное притяжение и заставляет Землю обращаться вокруг Солнца по окружности так же, как движется Луна вокруг Земли.

Несложный расчёт, очень похожий на тот, который мы проделали для Луны, показывает, что дело и здесь обстоит именно так.

Земля находится от Солнца на расстоянии двухсот пятнадцати солнечных радиусов. Но ведь 215 равняется 14,7 х 14,7. Поэтому круговая скорость для Земли должна быть в 14,7 раза меньше, чем на поверхности Солнца, т. е. равняться 29,8 километра в секунду. Именно с такой скоростью Земля и летит вокруг Солнца, благодаря чему она не может ни приблизиться к Солнцу, ни, тем более, упасть на него.

Но и улететь совсем прочь от Солнца Земля тоже не может, так как для этого скорость её движения должна быть почти в полтора раза больше, т. е. равняться, по крайней мере, 42 километрам в секунду.

Итак, мы видим, что на вопрос: «На чём Земля держится?» мы должны ответить: «Ни на чём!» и можем лишь добавить, что наша Земля всё время удерживается на одном и том же расстоянии от Солнца благодаря своему быстрому движению вокруг него. Это и будет вполне грамотное, научное объяснение вопроса «на чём держится наша Земля».

А то, что для поддержания кругового движения нужно применять силу, очень легко доказать с помощью простого всем известного опыта. Для этого достаточно привязать верёвку к небольшому камню и, держа один конец её в руке, начать крутить камень в воздухе; мы тотчас же почувствуем, что камень тянет за верёвку и притом тем сильнее, чем с большей скоростью мы его крутим. Для того чтобы камень не улетел прочь, мы должны удерживать его с заметной силой. Значит, то усилие, которое мы чувствуем при вращении камня, нужно для того, чтобы свернуть камень с прямолинейного пути. Выходит, что сила нашей руки в данном случае заменяет силу притяжения. Стоит только уничтожить эту силу (порвётся верёвка), как камень улетит по прямой в сторону.

Если бы исчезла сила притяжения у Земли и Луны, то и они, подобно оторвавшемуся камню, полетели бы прямолинейно и улетели бы прочь: Луна от Земли, а Земля от Солнца. Но сила притяжения не позволяет им этого сделать. Она сворачивает их с прямолинейного пути и заставляет двигаться по окружности. Но только на это и хватает силы притяжения. Она не может заставить упасть Луну на Землю, а Землю на Солнце, так как оба эти небесные тела обладают слишком большой скоростью.

В заключение скажем, что и все другие планеты нашей солнечной системы также двигаются по орбитам вокруг Солнца, также стараются упасть на Солнце и также никогда не упадут на него.

Читайте также

Земля как управляемый космический корабль

Земля как управляемый космический корабль Д. Фроман [6] Речь на банкете, состоявшемся после конференции по физике плазмы, организованной Американским физическим обществом в ноябре 1961 года в Колорадо-Спрингс. Поскольку я не очень хорошо разбираюсь в физике плазмы и

Антинейтрино и Земля

Антинейтрино и Земля Как только было доказано существование нейтрино, перед учеными встал вопрос о роли нейтрино во Вселенной. Другими словами, возникло новое направление в науке — нейтринная астрономия.Мощным естественным источником нейтрино во Вселенной являются

Земля в сопоставлении с Марсом и Венерой

Земля в сопоставлении с Марсом и Венерой Для уяснения погодных условий на Земле сравним ее с Венерой и Марсом. Поскольку все три планеты поначалу имели одинаковую атмосферу, образовавшуюся в результате вулканического выделения большей части углекислого газа и паров

11. Земля: история недр

11. Земля: история недр В ходе формирования Земли тяготение сортировало первичный материал в соответствии с его плотностью: более плотные составляющие опускались к центру, а менее плотные плавали сверху, образовав в итоге кору. На рис. I.8 представлена Земля в разрезе.Кора

Земля

Земля 13. Откуда мы знаем, что Земля круглая? Это неочевидно. Не считая складок, таких как горы, Земля кажется плоской. Но это потому, что она слишком большая, и ее кривизна незаметна.Имеются многочисленные доказательства кривизны. В море корабли исчезают за горизонтом,

1. Земля — прочная опора

1. Земля — прочная опора Вопрос о том, на чём держится Земля, человек задавал себе с самых древнейших времён. Этот вопрос возникает совершенно естественно, так как в нашей жизни мы всюду привыкли видеть, что каждый предмет должен обязательно иметь какую-нибудь поддержку,

2. «Земля на трёх китах»

2. «Земля на трёх китах» В наше время знают, что Земля вращается вокруг Солнца и вокруг своей оси, но раньше люди считали, что она неподвижна. Следовательно, думали они, у Земли также должна иметься какая-нибудь опора.Однако никаких сведений об этой опоре у людей не было, и

6. На чём же держится Земля?

6. На чём же держится Земля? Теперь мы подошли к концу наших рассуждений и можем ответить вполне ясно и точно на поставленный нами с самого начала вопрос: на чём же, всё-таки, держится наша Земля?Пример с движением Луны нам показал, что Луна ни на чём не держится. Если вы

11. «Возвращение каменного века». Ученые из Цюриха начинают «… выигрывают. Магические цифры. Три кита, на которых держится сверхпроводимость.

11. «Возвращение каменного века». Ученые из Цюриха начинают «… выигрывают. Магические цифры. Три кита, на которых держится сверхпроводимость. Слово «керамика» происходит от греческого «керамос», что в переводе означает «глина».Керамика — один из древнейших материалов,

Источник

На чем держится планета земля в космосе

На чем держится Земля.

Почему тела не улетают с поверхности вращающейся Земли? На чем держатся планеты? Почему они движутся вокруг Солнца, а не улетают от него прочь? Ответов на эти вопросы долгое время не было. Открытием истины мы обязаны великому английскому ученому И.Ньютону.

Он пришел к мысли о существовании сил тяготения между всеми телами Вселенной, В результате открытия Ньютона выяснилось, что множество, казалось бы, разнородных явлений — падение свободных тел на Землю, видимые движения Луны и Солнца, океанские приливы и т.д. — представляют собой проявления одного и того же закона природы: закона всемирного тяготения. Между всеми телами Вселенной, говорит этот закон, будь то песчинки, горошинки, камни или планеты, действуют силы взаимного притяжения (или силы гравитации, как еще их называют).

На первый взгляд, закон кажется неверным: мы что-то не замечали, чтобы притягивались друг к другу окружающие нас предметы. Земля притягивает к себе любые тела, в этом никто не усомнится. Но, может быть, это особое свойство Земли? Нет, это не так. Притяжение двух любых предметов невелико и лишь поэтому не бросается в глаза. Тем не менее в результате специальных опытов его можно обнаружить.

Закон всемирного тяготения, и только он, объясняет устойчивость Солнечной системы, движение планет и других небесных тел. Земля держится на орбите силами притяжения Солнца. Круговое движение планет происходит так же, как круговое движение камня, закрученного на веревке. Силы гравитации — это невидимые «канаты», заставляющие небесные тела двигаться по определенным путям.

Великий Ньютон не только утверждал существование сил тяготения, но и открыл закон тяготения, т.е. показал, от чего зависят эти силы.

Источник

Почему земля не улетает в космос

Земля, как и другие планеты, вращается вокруг Солнца по своей орбите, которая имеет форму эллипса. Хорошо знакомый со школьной программы закон тяготения гласит о взаимном притяжении таких огромных астрономических тел как Солцне и Земля.

Причем тело с меньшей массой двигается в сторону тела с большой массой. Согласно этого закона наша Земля должна упасть на Солнце. Давайте выясним, почему Земля не падает на Солнце, и за счет какой сдерживающей силы этого не происходит!

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Сила удерживающая планету Земля от падения на Солнце

Оказывается, что само по себе падение существует, причем постоянно! Да, Земля находится в состоянии постоянного падения в сторону Солнца. И если бы Земля не вращалась вокруг Солнца, — это бы давно уже произошло.

И эта сила, как вы уже догадались, всегда равна силе притяжения. То есть скорость 30 км/с, с которой Земля движется по своей орбите, создает силу, которая постоянно отклоняет траекторию полета Земли от перпендикулярно направленного падения в сторону Солнца.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Вдумайтесь как отлажен этот механизм, создающий этот неизменный баланс сил, который существует более чем 5 млрд. лет. В случае если бы скорость была больше, мы бы постоянно отклонялись от Солнца, и в случае уменьшения ровным счетом наоборот.

Расчет гравитационной силы между Землей и Солнцем

Можно ли посчитать эту самую силу притяжения, которая возникает между Землей и Солнцем? Конечно. Для этого достаточно знать их массы, взаимное расстояния друг от друга и постоянную гравитационную константу. Стоит отметить, что расстояния между планетами и Солнцем приводится в справочниках усредненные. На самом деле из-за эллипсообразных форм орбит это расстояние в течении года для каждой планеты разное относительно Солнца.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Все то же эффект заставляет быть на своих орбитах и другие планеты Солнечной системы. Отличие состоит лишь в силах притяжения. Для каждой планета присуще своя орбитальная скорость, которая создает противодействующую центробежную силу равной силе притяжения.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Земля имеет форму шара. Но если это так, то почему с ее поверхности не падают предметы, на ней находящиеся. Все происходит как раз наоборот. Подброшенный вверх камень возвращается назад, падают вниз снежинки и капли дождя, летит вниз опрокинутая со стола посуда. Всему виной земная гравитация, которая притягивает к земной поверхности все материальные тела.

Получается, что между всеми телами, в том числе и космическими, возникают силы притяжения. Если следовать логике, то меньшее тело, коим, например, является та же Луна, должно обязательно упасть на Землю. Аналогичную версию можно выдвинуть и по поводу нашей Солнечной системы. По идее, все входящие в нее планеты, должны были бы давно упасть на Солнце. Однако этого не происходит. Возникает вполне логичный вопрос, а почему?

Во- первых, все планеты Солнечной системы держаться около солнца, благодаря его огромной силы тяготения, и не падают на него только потому, что находятся в постоянном движении, которое происходит по эллиптической орбите. То же самое можно сказать и о Луне, которая также движется вокруг Земли, а поэтому на нее и не падает. Если бы не было сил тяготения, то не было бы и Солнечной системы. Земля свободно странствовала бы по космосу, оставаясь пустынной и безжизненной.

Аналогичная участь постигла бы и ее спутник, Луну. Она бы не кружилась вокруг Земли по эллиптической орбите, а давно бы выбрала для себя самостоятельный маршрут. Но, попав в зону действия земной гравитации, она вынуждена менять прямолинейную траекторию движения, на эллиптическую. Если бы не постоянное движение Луны, она давно бы упала на Землю. Получается, что до тех пор, пока планеты движутся вокруг Солнца, они на него упасть не могут. А все потому, что на них постоянно действуют две силы, сила тяготения и сила инерции движения. В результате все планеты движутся не по прямой, а по эллиптической орбите.

Собственно говоря, существующий порядок во Вселенной сохраняется только благодаря закону всемирного тяготения, который был открыт Исааком Ньютоном. Ему подчиняются все космические объекты, включая искусственные спутники Земли, запущенные человеком. Те же приливы и отливы, свидетелями которых мы являемся, также обусловлены действием взаимных сил тяготения Луны, Земли и Солнца. При этом действия Луны более выражены, так она находится намного ближе к Земле, нежели Солнце.

И все же, почему Земля не падает на Солнце, ведь ее масса, по сравнению с небесным светилом, в сотни тысяч раз меньше, и по логике, она должна к нему моментально прилипнуть? Это обязательно произошло бы, но только в том случае, если бы наша планета остановилась. Но так как она движется вокруг Солнца со скоростью 30 километров в одну секунду, то этого и не происходит. Улететь от него она также не может, ввиду огромных сил солнечного притяжения. В результате, прямолинейное движение Земли постепенно искривляется, и переходит в эллиптическое. Аналогично движутся и другие планеты Солнечной системы.

Столь высокие скорости вращения планет ученые связали с особенностью образования Солнечной системы. По их мнению, она возникла из быстро вращающегося космического облака, которое подверглось гравитационному сжатию к центру, из которого, впоследствии, и возникло Солнце. Само же облако имело как угловую, так и поступательную скорости. После сжатия, их значение увеличилось, и затем было передано образовавшимся планетам. Поступательно движутся не только планеты Солнечной системы, но и она сама, причем, со скоростью 20 км/час. Траектория этого движения направлена в сторону созвездия «Геркулес».

Что явилось причиной вращения и поступательного движения самого пылевого облака?

Ученые сходятся во мнении, что так ведет себя вся Галактика. При этом все объекты, расположенные ближе к ее центру, вращаются с большей скоростью, а те, что дальше- с меньшей. Возникшая разность сил разворачивает Галактику, чем и обусловлено сложное движение входящих в нее газовых комплексов. Кроме того, на траекторию их движения оказывают влияние галактические магнитные поля, взрывы звезд и звездный ветер.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосеЭНЦИКЛОПЕДИЯ КОСМОСА. ВСЕЛЕННАЯ И ЕЁ УСТРОЙСТВО

КАКИЕ ПРИБОРЫ ПОМОГАЮТ ИЗУЧАТЬ СОЛНЦЕ?

Как астрономы изучают Солнце? Им на помощь приходит целый ряд специальных инструментов. Например, спектроскоп используется для изучения раскаленных газов Солнца. Он может объяснить, какие химические вещества определяют цвета, исходящие от Солнца. Другой прибор — спектрограф. Он дает возможность ученым делать постоянные записи спектра солнечного излучения.

Спектрогелиоскоп позволяет астрономам узнать, как различные вещества распределены на Солнце. Каких веществ больше, каких меньше, каково их соотношение. Когда к спектрогелиоскопу присоединяется фотооборудование, он называется спектрогелиограф.

Коронограф — это специальный вид телескопа. С помощью коронографа астрономы могут фотографировать солнечную корону, не дожидаясь затмения Солнца.

Радиотелескоп позволяет ученым изучать радиоволны, излучаемые Солнцем.

Атмосфера Земли поглощает большую часть солнечной радиации, достигающей нашей планеты, поэтому ученые установили приборы выше атмосферы. Это космические зонды. Они помогают больше узнать о Солнце.

СОЛНЕЧНАЯ ЭНЕРГИЯ ИЗ КОСМОСА

Солнце излучает свет и теплоту, оно является также источником радиоизлучения, рентгеновского и ультрафиолетового излучения. От Солнца идет поток электрически заряженных частиц. Каждый из этих видов излучения оказывает влияние на жизнь на Земле. Большая часть энергии Солнца рассеивается в космическом пространстве. Земли достигает. лишь миллиардная часть от общего количества энергии, излучаемой Солнцем. От того излучения, которое падает на Землю, отражается и рассеивается около одной трети. Солнечной энергией нагревается атмосфера, поверхность материков и океанов. Использование солнечной энергии могло бы принести большую пользу народному хозяйству. Селиотехникой называют различные устройства и установки, использующие солнечную энергию — солнечные батареи, теплицы, водонагреватели, сушилки, опреснители. Используют сфокусированные солнечные лучи для плавления металлов. Создаются солнечные электростанции. Применить солнечную энергию можно везде, преобразуя ее в электрическую. Этому способствуют полупроводниковые батареи. Они к тому же служат для получения электроэнергии в космосе, являясь источниками электропитания искусственных спутников Земли и автоматических межпланетных станций.

Перспективы использования излучения Солнца для электроснабжения Земли огромны, например, использование космических солнечных электростанций, размещаемых на орбите на высоте 36000 км над поверхностью Земли. Основной элемент космической электростанции — система солнечных батарей и других преобразователей, преобразующих энергию излучения Солнца в энергию электромагнитных волн сверхвысокой частоты, излучение которых передается на Землю в виде сфокусированного луча. На Земле сверхчастотное излучение улавливается приемной антенной, преобразуется в электрический ток промышленной частоты и передается потребителям. Преимущества космических электростанций перед наземными: они экологически чистые, т.е. не загрязняют окружающую среду, безопасны, не расходуют ресурсы полезных ископаемых Земли, экономически очень выгодны, так как имеют большую мощность. Однако главная трудность в реализации проектов космических электростанций — это высокая стоимость доставки в космос элементов электростанции.

ПОЧЕМУ ЗЕМЛЯ НЕ ПАДАЕТ НА СОЛНЦЕ?

Действительно, странно: Солнце огромными силами тяготения удерживает около себя Землю и все другие планеты Солнечной системы, не дает им улететь в космическое пространство. Странно, казалось бы, то, что Земля около себя удерживает Луну. Между всеми телами действуют силы тяготения, но не падают планеты на Солнце потому, что находятся в движении, в этом-то и секрет. Все падает вниз, на Землю: и капли дождя, и снежинки, и сорвавшийся с горы камень, и опрокинутая со стола чашка. А Луна? Она вращается вокруг Земли. Если бы не силы тяготения, она улетела бы по касательной к орбите, а если бы она вдруг остановилась, то упала бы на Землю. Луна, вследствие притяжения Земли, отклоняется от прямолинейного пути, все время как бы «падая» на Землю. Движение Луны происходит по некоторой дуге, и пока действует гравитация, Луна на Землю не упадет. Так же и с Землей — если бы она остановилась, то упала бы на Солнце, но этого не произойдет по той же причине. Два вида движения — одно под действием силы тяготения, другое по инерции — складываются и в результате дают криволинейное движение.

Закон всемирного тяготения, удерживающий в равновесии Вселенную, открыл английский ученый Исаак Ньютон. Когда он опубликовал свое открытие, люди говорили, что он сошел с ума.

Закон тяготения определяет не только движение Луны, Земли, но и всех небесных тел в Солнечной системе, а также искусственных спутников, орбитальных станций, межпланетных космических кораблей.

НА ЧЕМ ДЕРЖИТСЯ ЗЕМЛЯ?

Почему тела не улетают с поверхности вращающейся Земли? На чем держатся планеты? Почему они движутся вокруг Солнца, а не улетают от него прочь? Ответов на эти вопросы долгое время не было. Открытием истины мы обязаны великому английскому ученому И.Ньютону. Он пришел к мысли о существовании сил тяготения между всеми телами Вселенной, В результате открытия Ньютона выяснилось, что множество, казалось бы, разнородных явлений — падение свободных тел на Землю, видимые движения Луны и Солнца, океанские приливы и т.д. — представляют собой проявления одного и того же закона природы: закона всемирного тяготения. Между всеми телами Вселенной, говорит этот закон, будь то песчинки, горошинки, камни или планеты, действуют силы взаимного притяжения (или силы гравитации, как еще их называют). На первый взгляд, закон кажется неверным: мы что-то не замечали, чтобы притягивались друг к другу окружающие нас предметы. Земля притягивает к себе любые тела, в этом никто не усомнится. Но, может быть, это особое свойство Земли? Нет, это не так. Притяжение двух любых предметов невелико и лишь поэтому не бросается в глаза. Тем не менее в результате специальных опытов его можно обнаружить.

Закон всемирного тяготения, и только он, объясняет устойчивость Солнечной системы, движение планет и других небесных тел.

Земля держится на орбите силами притяжения Солнца. Круговое движение планет происходит так же, как круговое движение камня, закрученного на веревке. Силы гравитации — это невидимые «канаты», заставляющие небесные тела двигаться по определенным путям.

Великий Ньютон не только утверждал существование сил тяготения, но и открыл закон тяготения, т.е. показал, от чего зависят эти силы.

Источник

15 самых распространённых заблуждений о космосе в гифках и словах

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

С детства мы заучиваем азбучные истины об устройстве Вселенной: все планеты круглые, в космосе ничего нет, солнце горит. А между тем, это всё неправда. Не зря новый министр образования и науки Ольга Васильева на днях заявила, что необходимо вернуть в школу уроки астрономии. Редакция Medialeaks полностью поддерживает эту инициативу и предлагает читателям обновить свои представления о планетах и звёздах.

1. Земля — это ровный шар

Настоящая форма Земли несколько отличается от глобуса из магазина. То, что наша планета немного сплюснута с полюсов, знают многие. Но кроме этого, разные точки земной поверхности удалены от центра ядра на разное расстояние. Дело не только в рельефе, просто Земля вся неровная. Для наглядности используют такую, немного утрированную иллюстрацию.

Ближе к экватору планета вообще имеет своего рода выступ. Поэтому, например, самая удалённая от центра планеты точка земной поверхности — это не Эверест (8848 м), а вулкан Чимборасо (6268 м) — его вершина находится на 2,5 км дальше. На снимках из космоса этого не видно, поскольку отклонение от идеального шара составляет не более 0,5% от радиуса, кроме того, недостатки внешности нашей любимой планеты сглаживает атмосфера. Правильное название для формы Земли — геоид.

2. Солнце горит

Мы привыкли думать, что Солнце — это огромный огненный шар, поэтому нам кажется, что оно горит, на его поверхности есть пламя. На самом деле горение — химическая реакция, для которой нужен окислитель и горючее, нужна атмосфера. (Кстати, именно поэтому взрывы в открытом космосе практически невозможны).

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Солнце — это огромный кусок плазмы в состоянии термоядерной реакции, оно не горит, а светится, излучая поток фотонов и заряженных частиц. То есть Солнце — это не огонь, это большой и очень-очень тёплый свет.

3. Земля делает оборот вокруг своей оси ровно за 24 часа

Часто кажется, что одни сутки проходят быстрее, другие медленнее. Как ни странно, это действительно так. Солнечный день, то есть время, за которое Солнце возвращается в одну и ту же позицию на небе, варьируется в пределах плюс-минус примерно 8 минут в различное время года в разных точках планеты. Это связано с тем, что линейная скорость движения и угловая скорость вращения Земли вокруг Солнца по мере движения по эллиптической орбите постоянно изменяются. Сутки то слегка увеличиваются, то немного уменьшаются.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Кроме солнечных, есть ещё и звёздные сутки — то время, за которое Земля совершает один оборот вокруг своей оси по отношению к далёким звёздам. Они более постоянны, их продолжительность равна 23 часа 56 минут 04 секунды.

4. Полная невесомость на орбите

Принято думать, что космонавт на космической станции находится в состоянии полной невесомости и его вес равен нулю. Да, влияние притяжения Земли на высоте 100—200 км от её поверхности менее заметно, но остаётся столь же мощным: именно поэтому МКС и люди в ней остаются на орбите, а не улетают по прямой в открытый космос.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Если говорить простым языком, и станция, и космонавты в ней находятся в бесконечном свободном падении (только падают они не вниз, а вперёд), а поддерживает парение само вращение станции вокруг планеты. Правильнее называть это микрогравитацией. Состояние, близкое к полной невесомости, можно испытать только за пределами гравитационного поля Земли.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Главная опасность — это взрывная декомпрессия: пузырьки газа в крови начнут расширяться, но теоретически это можно пережить. Кроме того, в космических условиях недостаточно давления для поддержания жидкого состояния вещества, поэтому со слизистых оболочек организма (язык, глаза, лёгкие) начнёт очень быстро испаряться вода. На земной орбите под прямыми солнечными лучами неизбежны мгновенные ожоги незащищённых участков кожи (кстати, тут температура будет, как в сауне — около 100 °C). Всё это очень неприятно, но не смертельно. Очень важно оказаться в космосе на выдохе (задержка воздуха приведёт к баротравме).

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

6. Пояс астероидов — опасное место для звездолётов

Фантастические фильмы приучили нас к тому, что астероидные скопления — это груда космических обломков, которые летают в непосредственной близости друг от друга. На картах Солнечной системы Пояс астероидов тоже обычно выглядит как серьёзная преграда. Да, в это месте очень большая плотность небесных тел, но только по космическим меркам: полукилометровые глыбы летают на расстоянии сотен тысяч километров друг от друга.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Человечество запустило около десятка зондов, которые вышли за орбиту Марса и долетели до орбиты Юпитера без малейших проблем. Непроходимые скопления космических скал и камней вроде тех, что показывают в «Звёздных войнах», могут возникать в результате столкновения двух массивных небесных тел. И то — ненадолго.

7. Мы видим миллионы звёзд

Выражение «мириады звёзд» до недавнего времени было не более, чем риторическим преувеличением. Невооружённым взглядом с Земли в самую ясную погоду можно видеть одновременно не более 2—3 тысяч небесных тел. Всего в обоих полушариях — около 6 тысяч. А вот на фотоснимках современных телескопов действительно можно найти сотни миллионов, если не миллиардов звёзд (никто пока не считал).

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Недавно полученное изображение Hubble Ultra Deep Field запечатлело около 10 тысяч галактик, самая далёкие из которых находятся на расстоянии примерно 13,5 миллиардов световых лет. По расчётам учёных, эти сверхдалёкие звёздные скопления появились «всего» через 400—800 миллионов лет после Большого взрыва.

8. Звёзды неподвижны

Не звёзды двигаются по небосклону, а Земля вертится — до 18 века учёные были уверены, что за исключением планет и комет большая часть небесных тел остаётся неподвижной. Однако со временем было доказано, что в движении находятся все без исключения звёзды и галактики. Если бы мы вернулись на несколько десятков тысячелетий назад, то не узнали бы звёздного неба над головой (как и нравственный закон, кстати).

Конечно, это происходит медленно, однако отдельные звёзды меняют своё положение в космическом пространстве так, что это становится заметно уже через несколько лет наблюдений. Быстрее всего «летит» звезда Бернарда — её скорость составляет 110 км/с. Галактики тоже смещаются.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Например, видимая невооружённым глазом с Земли Туманность Андромеды приближается к Млечному Пути со скоростью около 140 км/с. Примерно через 5 миллиардов лет мы столкнёмся.

9. У Луны есть тёмная сторона

Луна всегда обращена к Земле одной стороной, потому что её вращение вокруг собственной оси и вокруг нашей планеты синхронизировано. Однако это не значит, что на невидимую нам половину никогда не попадают лучи Солнца.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

В новолуние, когда обращённая к Земле сторона полностью в тени, обратная — целиком освещена. Однако на естественном спутнике Земли день сменяется ночью несколько медленнее. Полный лунный день длится примерно две недели.

10. Меркурий — самая жаркая планета в Солнечной системе

Вполне логично предположить, что ближайшая к Солнцу планета — ещё и самая горячая в нашей системе. Тоже неправда. Максимальная температура на поверхности Меркурия составляет 427 °C. Это меньше, чем на Венере, где зарегистрирован показатель в 477 °C. Вторая планета почти на 50 миллионов км дальше от Солнца, чем первая, но у Венеры есть плотная атмосфера из углекислого газа, которая за счёт парникового эффекта сохраняет и накапливает температуру, а у Меркурия атмосферы практически нет.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

11. Солнечная система состоит из девяти планет

С детства мы привыкли думать, что Солнечная система насчитывает девять планет. Плутон открыли в 1930 году, и более 70 лет он оставался полноправным членом планетарного пантеона. Однако после долгих дискуссий в 2006 году Плутон понизили до звания крупнейшей карликовой планеты в нашей системе. Дело в том, что это небесное тело не соответствует одному из трёх определений планеты, по которому такой объект должен своей массой расчистить окрестности своей орбиты. Масса Плутона составляет всего 7 % от совокупного веса всех объектов пояса Койпера. К примеру, ещё один планетоид из этой области, Эрида, меньше, чем Плутон в диаметре всего на 40 км, однако заметно тяжелее. Для сравнения, масса Земли в 1,7 миллиона раз больше, чем у всех остальных тел в окрестностях её орбиты. То есть полноценных планет в Солнечной системе всё-таки восемь.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

12. Экзопланеты похожи на Землю

Практически каждый месяц астрономы радуют нас сообщениями о том, что обнаружили очередную экзопланету, на которой теоретически может существовать жизнь. Воображение сразу рисует зелёно-голубой шарик где-нибудь у Проксимы Центавры, куда можно будет свалить, когда наша Земля окончательно сломается. На самом деле учёные понятия не имеют, как выглядят экзопланеты и какие на них условия. Дело в том, что они находятся настолько далеко, что современными методами мы пока не можем вычислить их действительные размеры, состав атмосферы и температуру на поверхности.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Как правило, известно лишь предположительное расстояние между такой планетой и её звездой. Из сотен найденных экзопланет, которые находятся внутри обитаемой зоны, потенциально пригодной для поддержания землеподобной жизни, только единицы потенциально могут оказаться похожими на нашу родную планету.

13. Юпитер и Сатурн — шары газа

Все мы знаем, что крупнейшие планеты Солнечной системы — это газовые гиганты, но это вовсе не значит, что попав в зону гравитации этих планет, тело будет падать сквозь них, пока не достигнет твёрдого ядра.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Юпитер и Сатурн состоят в основном из водорода и гелия. Под облаками на глубине нескольких тысяч км начинается слой, в котором водород под воздействием чудовищного давления постепенно переходит из газообразного в состояние жидкого кипящего металла. Температура этой субстанции достигает 6 тысяч °C. Интересно, что Сатурн излучает в космос в 2,5 раза больше энергии, которую планета получает от Солнца, пока не совсем понятно, за счёт чего.

14. В Солнечной системе жизнь может существовать только на Земле

Если бы что-то похожее на земную жизнь существовало где-нибудь ещё в Солнечной системе, мы бы это заметили… Точно? К примеру, на Земле первая органика появилась больше 4 миллиардов лет назад, но в течение ещё сотен миллионов лет ни один внешний наблюдатель не увидел бы никаких явных признаков жизни, а первые многоклеточные организмы появились только через 3 миллиарда лет. На самом деле помимо Марса, в нашей системе ещё как минимум два места, где жизнь вполне может существовать: это спутники Сатурна — Титан и Энцелад.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Энцелад покрыт толстым слоем льда, казалось бы, какая тут жизнь? Однако под поверхностью на глубине 30—40 км, как уверены планетологи, существует океан жидкой воды толщиной примерно в 10 км. Ядро Энцелада горячее и в этом океане могут быть гидротермальные источники наподобие земных «чёрных курильщиков». По одной из гипотез, жизнь на Земле появилась именно благодаря этому явлению, так почему бы тому же самому не произойти и на Энцеладе. Кстати, вода в некоторых местах пробивает лёд и извергается наружу фонтанами высотой до 250 км. Последние данные подтверждают, что в этой воде содержатся органические соединения.

15. Космос — пустой

В межпланетном и межзвёздном пространстве нет ничего, уверены многие с детства. На самом деле вакуум космоса не является абсолютным: в микроскопических количествах здесь есть атомы и молекулы, реликтовое излучение, которое осталось от Большого Взрыва, и космические лучи, в которых содержатся ионизированные атомные ядра и разные субатомные частицы.

Более того, недавно учёные предположили, что космическая пустота состоит в действительности из вещества, которое мы пока не можем зафиксировать. Физики назвали это гипотетическое явление тёмной энергией и тёмной материей. Предположительно, наша Вселенная на 76% состоит из тёмной энергии, на 22% — из тёмной материи, на 3,6% — из межзвёздного газа. Наша обычная барионная материя: звёзды, планеты и прочее — это всего лишь 0,4% от общей массы универсума.

на чем держится планета земля в космосе. Смотреть фото на чем держится планета земля в космосе. Смотреть картинку на чем держится планета земля в космосе. Картинка про на чем держится планета земля в космосе. Фото на чем держится планета земля в космосе

Есть предположение, что именно увеличение количества тёмной энергии заставляет Вселенную расширяться. Рано или поздно эта альтернативная сущность, по идее, разорвёт атомы нашей реальности в клочья отдельных бозонов и кварков. Впрочем, к тому моменту ни Ольги Васильевой, ни уроков астрономии, ни человечества, ни Земли, ни Солнца не будет существовать уже несколько миллиардов лет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *