Клей полихлоропреновый что это
Клеи на основе полихлоропреновых (неопреновых) каучуков
Химическая природа основы. Синтетические термопластичные эластомеры.
Физическое состояние. Вязкие жидкости, состоящие из раствора хлоропренового каучука (обычно в воспламеняющихся смесях ароматических и алифатических углеводородов) и добавок. Сухой остаток 20. 60%. Цвет белый, коричневый или рыжевато-коричневый (могут быть полупрозрачными или непрозрачными). Содержат наполнители (например, силикат кальция, двуокись кремния, глину, черную сажу) и антиоксиданты.
Срок хранения при 20°С. От 3 мес. до 1 г. в герметичной таре.
Жизнеспособность при 20°С. При исключении потерь растворителя соответствует сроку хранения.
Открытая выдержка при 20°С. 10. 20 мин для «мокрого» склеивания; неограниченная — в случае хранения деталей с просушенной пленкой клея и последующей ее реактивации перед склеиванием с помощью растворителя или нагрева.
Механизм отверждения. Испарение растворителя и последующее соединение липких слоев клея, находящихся на склеиваемых поверхностях, либо реактивация (растворителем или нагревом) сухих пленок клея перед сборкой.
Технологические особенности. При соединении пористых субстратов применяют «мокрое» склеивание (растворитель постепенно мигрирует из клеевого шва через приклеенный материал). Для непористых материалов основную часть растворителя удаляют испарением с выдержкой от 20 мин до нескольких часов (сушку можно ускорить обдувкой горячим воздухом, инфракрасным обогревом и т.д.). Затем производится контактное склеивание липких поверхностей при минимальном давлении.
Работоспособность при воздействии различных факторов. Клеевые соединения имеют хорошую водостойкость, стойкость к воздействию соляного тумана, биологических поражающих факторов, алифатических углеводородов, ацетона, этилового спирта, смазок, слабых кислот и щелочей. Не пригодны для эксплуатации в контакте с ароматическими и хлорированными углеводородами, некоторыми кетонами и сильными окислителями. Длительно могут работать только в интервале температур от –50 до 95°С. При высоких температурах подвергаются деструкции с выделением кислых побочных продуктов. Для уменьшения термодеструкции в состав клеящих композиций часто вводят акцепторы кислот, например, окись цинка и окись магния.
Долговечность клеевых соединений до некоторой степени зависит от характера добавок и модифицирующих агентов, обычно входящих в состав полихлоропреновых клеев. Клеевые соединения поглощают вибрации и имеют хорошую прочность при сдвиге и отдире. При ограниченном уровне напряжений (20. 70 Н/см 2 ) выдерживают длительные статические нагрузки лучше, чем клеи на основе термопластичных каучуков других типов.
Области применения. Универсальные клеи для широкого круга различных материалов: декоративных слоистых пластиков, резин на основе натуральных и синтетических каучуков, кожи и резин с металлами, тонких алюминиевых и стальных листов, линолеума, тканей и синтетических текстильных материалов (полиамидных и полиэфирных), а также для крепления деревянных, фанерных и древесноволокнистых панелей к стенам.
В автомобилестроении — для приклеивания уплотняющих профилей из губчатой резины к металлическим дверцам и внутренней отделки (приклеивание материалов из ПВХ, кожи и тканей к металлу и древесине). В авиационной промышленности — для крепления вулканизованных резин к металлу, покрытому подслоем (грунтом) на основе хлорированного каучука. В строительстве — при обшивке стен и приклеивании декоративных слоистых фенопластов. В обувной промышленности — для временного и постоянного крепления подошвенных материалов на основе каучуков, каучуко-смоляных смесей и кожи.
Полихлоропреновые клеи хорошо заполняют зазоры. Для достижения оптимальных свойств клеевых соединений может понадобиться предварительная выдержка (кондиционирование) склеенных деталей в течение нескольких недель.
Лако-красочные материалы — производство
Технологии и оборудование для изготовления красок, ЛКМ
КЛЕИ НА ОСНОВЕ ПОЛИХЛОРОПРЕНА
Наличие атома хлора в молекуле полихлоропрена (наирита) в а-положении к двойной связи определяет стойкость вулканизатов к старению. Вулканизация клеев может быть осуществлена как при нормальной температуре (самовулканизующиеся клеи), так и при повышенной. Вулканизаты мало горючи, стойки к действию озона и многих химических реагентов. Недостатками вулканизатов являются относительно высокая плотность (1,21—1,25 г/см3) и невысокая морозостойкость — от —40 до —45 °С.
В качестве растворителей в полихлоропреновых клеях применяют дихлорэтан, этилацетат, амилацетат, бензол, толуол, диок — сан, скипидар и др. Клеи, содержащие в качестве растворителя дихлорэтан, образуют более прочные клеевые соединения по сравнению с клеями, содержащими бензол. Концентрации клеев — около 15%.
В качестве ускорителей для самовулканизующихся клеев из полихлоропрена применяют ди — и полифенолы, гексаметилентетр — амин и продукты конденсации аминов с альдегидами. Очень сильным ускорителем является 20%-ный спиртовой раствор едкого кали. Процесс вулканизации при обычной температуре продолжается сутки. Для улучшения клеящих свойств в полихлоропреновые смеси вводят кумароноинденовые смолы. Для предотвращения же — латинизации клеев в них рекомендуется вводить небольшие добавки спирта.
Клей 88Н [120] представляет собой раствор резиновой смеси и бутилфенолоформальдегидной смолы марки 101К в смеси этилацетата и бензина (2 : 1). Эту смесь можно применять и для разбавления клея в случае его загустевания. Концентрация клея 28—32%, вязкость по ВЗ-1 — не более 40 с, срок хранения при 0—20 °С — 3 мес.
Клей применяется для приклеивания вулканизованных резин к металлам, стеклу и другим материалам, а также для крепления к металлам некоторых теплоизоляционных материалов. Продолжительность выдержки под давлением не менее 0,2 кгс/см2 при склеивании резины с металлом должна составлять 24 ч. Приклеивание теплоизоляционных материалов к металлу производится без давления в течение суток. Через 4 ч после склеивания резины с Металлом прочность клеевых соединений при отслаивании составляет 0,7—0,9 кгс/см.
Клей не вызывает коррозии стали и дуралюмина. Вулканизованная клеевая пленка не стойка к действию керосина, бензина и минеральных масел.
Клей 88 НП в качестве основного компонента содержит [121] наирит НП, который при нормальных температурах находится в закристаллизованном состоянии. Поэтому склеивать этим клеем следует при температуре не ниже 18 °С (и относительной влажности воздуха 65—75%). Вязкость клея при концентрации 9±3% составляет 20—40 с по ВЗ-1 и не изменяется в течение 9 мес.
Клей предназначается для склеивания резин с металлами без нагревания. Технология применения клея не отличается от технологии применения клея 88Н. Режимы склеивания и показатели прочности клеевых соединений вулканизованной резины с дуралю — мином и сталью на клеях 88Н и 88НП приведены ниже:
Характеристики полиуретанового и полихлоропренового обувного клея
В обувной промышленности применяются клеевые составы с разными эксплуатационными и качественными характеристиками.
В обувной промышленности применяются клеевые составы с разными эксплуатационными и качественными характеристиками. Универсальный полиуретановый клей надежно соединяет кожаные и синтетические элементы. В состав десмокола входят полиуретановые смолы, растворитель органического происхождения и специальные добавки.
Десмокол: характеристики и плюсы
Состав на основе полиуретана считается самым эффективным клеевым составом, который прочно и быстро соединяет разные детали. Цвет клея прозрачный, но иногда с характерным желтоватым оттенком. Его используют для надежного соединения резиновых, пластиковых, полиуретановых, керамических, стеклянных, деревянных и металлических изделий и деталей.
Полиуретановый клеевой состав широко применяется не только при производстве обуви, но и в промышленности, ремонте, строительстве, кожгалантерее и т.д. При выборе клея следует обратить внимание на состав, причем он может быть однокомпонентным или двухкомпонентным.
Если сравнивать с другими видами клей десмокол имеет ряд преимуществ, к которым относится следующее:
склеивание поверхностей из разных материалов;
отсутствие видимых следов после высыхания;
устойчивость к воздействию влаги;
прочное и долговечное соединение;
эластичность шва без жесткости;
простое и удобное применение.
За счет длительного высыхания состава можно легко корректировать изменение деталей для достижения необходимого результата. Для домашнего применения клей реализуют в компактных тюбиках, а для промышленного использования в более объемных емкостях.
Особенности обувного полихлоропренового клея
Наирит или контактный полихлоропреновый клеевой состав отличается универсальностью применения, устойчивостью к воздействию влаги и химических веществ. Как показывает клей наирит инструкция, его необходимо наносить на обе поверхности, после чего соединить и оставить под давлением минимум на 20 секунд.
Чаще всего наирит используют для изготовления и ремонта обуви, а именно для присоединения верха из кожи к резиновым/кожаным подошвам. Кроме обувного производства полихлоропреновый клей применяют для склеивания стекла и резины, обивочным материалом с неокрашенными металлическими поверхностями.
Основными преимуществами наирита является термо- и водостойкость, эластичность, прочность и долговечность шва, быстрое высыхание, устойчивость к ультрафиолетовым лучам, низким температурам, маслам и бензину, а также полная готовность к использованию.
Для сохранения качественных характеристик необходимо соблюдать установленные производителем правила хранения. Хранить клей наирит следует при комнатной температуре и в специально предназначенном месте (для огнеопасных материалов). Если клей хранился при отрицательной температуре, то требуется выдержать 10 дней в помещении перед его использованием.
Полихлоропреновые (наиритовые) клеи. Состав, приготовление и применение
ПОЛИХЛОРОПРЕНОВЫЕ (НАИРИТОВЫЕ) КЛЕИ ДЛЯ ОБУВИ
Область применения. Полихлоропреновые наиритовые клеи применяются для основного крепления низа обуви из резины и натуральной кожи к верху обуви из натуральной кожи, а также на вспомогательные операции (затяжные операции, склеивание стелек с полустельками и др.).
Состав. Полихлоропреновые клеи для обуви представляют собой растворы на основе хлоропреновых каучуков низкотемпературной полимеризации или меркаптанового регулирования в составном органическом растворителе. В готовый клей в зависимости от назначения дополнительно могут быть введены растворы некоторых смол, хлорированных полимеров, солей железа.
Рецептура клея из каучуков хлоропреновых низкотемпературной полимеризации для основных и вспомогательных операций приведена в таблице 5.2.
Способ приготовления резиновой смеси. Предварительно производят пластикацию каучука. Перед вальцеванием каучук прогревают при температуре 70±10 °С в течение одного часа, затем разрезают на отдельные куски для удобства загрузки на вальцы.
Пластикацию каучука производят на вальцах (ГОСТ 14333-69) при постоянном охлаждении валков. Зазор между валками в начале пластикации 10÷10,5 мм, в конце пластикации 0,8÷1 мм.
Смешение пластицированного каучука с ингредиентами проводят при интенсивном охлаждении валков при зазоре 0,8÷1 мм. Температура валков при этом должна быть в пределах 30÷40 °С.
Режим изготовления клеевой резиновой смеси приведен в таблице 5.3.
Время вальцевания, мин
Мягкие каучуки меркаптанового регулирования
Жесткие каучуки низкотемпературной полимеризации
Введение ингредиентов производят раздельно в следующей последовательности: канифоль, тиурам, оксид магния, диоксид титана, оксид цинка, уротропин. Уротропин следует вводить на холодных вальцах через 24 ч после изготовления клеевой резиновой смеси.
Приготовление клея. С вальцов снимают клеевую резиновую смесь толщиной 1,5÷2,5 мм. После непродолжительного охлаждения листы резиновой смеси нарезают на куски для загрузки в клеемешалку.
Клеевую смесь растворяют в смеси этилацетата марки А (ГОСТ 8981-78) с Нефрасом С2-80/120 или СЗ-80/120 (ГОСТ 443-76) в соотношении по массе 50:50 или 60:40. В клеемешалку типа СМ-200 заливают 1/3 часть необходимого по рецептуре количества составного растворителя и загружают нарезанную клеевую резиновую смесь. По мере растворения клеевой смеси добавляют частями остаток растворителя. Для ускорения растворения смеси можно применять подогрев в конечной стадии процесса с температурой обогревающей воды 40÷45 °С. Общее время растворения клеевой смеси 4÷6 ч.
После полного растворения клеевой смеси в раствор вводят раздельно бутилфенолформальдегидную смолу 101 К (или ин-ден-кумароновую смолу), хлорнаирит, хлорированный натуральный каучук в виде 20÷40 % раствора в этилацетате или в смеси этилацетата с нефрасом и хлорное железо в виде 10÷20 % раствора в этилацетате.
Допускается введение в клеемешалку смол и хлорированных каучуков без предварительного растворения через 2—3 ч после начала изготовления клея.
В зависимости от назначения клей готовят 18÷26 % концентрации.
Клей запускают в производство через 18÷24 ч после его приготовления.
Контроль качества клея. Срок годности клея при температуре 18÷20 °С составляет 3 мес. Клей с хлорным железом может храниться не более 3 сут. Отбор проб и проверку качества клеев проводят по «Методике оценки качества обувных наиритовых (поли-хлоропреновых) и полиуретановых клеев», утвержденной Управлением развития обувной, кожевенной и кожгалантерейной промышленности Минлегпрома 15.07.86 г., а также в соответствии РД 17-06-157-89, утвержденной Минлегпромом 06.09.89 г.
Оценку вязкости клея проводят либо по вискозиметру ВЗ-246 с диаметром сопла 6 мм, либо на приборе Хетчинсона. Для готового клея с концентрацией 18 % показатель вязкости должен быть в пределах соответственно 30÷80 с и 0,7÷1,9 с; для готового клея 25 % концентрации показатели вязкости соответственно 60÷170 с и 2,2÷2,8 с.
Метод применения. Намазка клеем. Приклеивание подошв. При однократной намазке резиновых подошв и каблуков применяют клей 18÷20 % концентрации; при двукратной: сначала клеем 8÷12 % концентрации, затем клеем 18÷20 % концентрации.
При двукратной намазке кожаных подошв, кожаных подложек и затяжной кромки: первая — клеем 8÷12 % концентрации; вторая — клеем 23÷25 % концентрации.
При клеевой затяжке затяжную кромку заготовки и стельки промазывают однократно клеем 23÷25 % концентрации.
Для крепления резинового каблука на ляпис каблука и пяточную часть резиновой подошвы наносят однократно клей 18÷20 % концентрации, а на пяточную часть кожаной подошвы — также однократно клей 23÷25 % концентрации.
Сушка клеевой пленки. Сушка клея при температуре окружающей среды: при намазке клеем 8—12 % концентрации 5÷15 мин, при намазке клеем 18÷20 % концентрации 1÷1,5 ч.
Перед пуском в производство подошвы кожаные, резиновые и каблуки с высушенной клеевой пленкой допускается выдерживать в течение 1 суток при температуре окружающей среды.
В случае применения клеев, содержащих хлорированный натуральный каучук ацетон технический марки А, сушку клеевой пленки на затяжной кромке обуви можно ограничить 30÷40 мин.
Режим активации клеевой пленки. Перед склеиванием поверхности, промазанные клеем, подвергаются термоактивации при температуре: 80÷100 °С — в течение 40÷90 с (вариант а), а в течении 30÷40 с (вариант б, в, г, д); 120÷140 °С — в течение 20÷30 с (для всех вариантов); 200÷250 °С (тепловой удар) — в течение 3÷5 с (для всех вариантов).
За это время температура клеевой пленки должна быть в пределах 45÷60 °С.
Приклеивание. Приклеивание подошв осуществляют в течение не менее 20 с в специальных обувных прессах типа ППГ-4-О, ППГ-5-0 при давлении 0,3÷0,4 Па.
После прессования подошв до фрезерования рекомендуется выдержка обуви в течение 5÷10 мин.
Клеевую затяжку производят на машинах типа ЗНК-1-0 при температуре затяжных пластин 90÷130 °С в течение 20÷30 с при обязательной предварительной тепловой активации (80—ПО °С в течение 30÷60 с).
Склеивание стельки с полустелькой осуществляют на машинах типа СФС-0 при температуре пресс-форм 80÷120 °С в течение 10÷15 с.
Видео по приготовлению наиритового (Полихлоропренового) клея
Обзор контактных клеев на основе полихлоропрена
Обзор контактных клеев на основе полихлоропрена
КЛЕИ НА ОСНОВЕ ПОЛИХЛОРОПРЕНА: ВЛИЯНИЕ СОСТАВА И УСЛОВИЙ ПОЛУЧЕНИЯ НА СВОЙСТВА КОМПОЗИЦИЙ
Адгезионные композиции на основе синтетических и натурального каучуков относятся к классу контактных универсальных клеев, применяемых для склеивания различных материалов (резин, металлов, стекла, кожи, керамики, дерева, тканей и пр.).
Контактным клеи – это клеи, обычно содержащие растворители, и которые наносят на обе склеиваемые поверхности. Высокопрочный клеевой слой образуется после испарения основной части растворителя и кратковременного приведения в соприкосновение соединяемых поверхностей под контактным давлением.
Универсальность, хорошие технологические свойства, достаточно высокая прочность крепления и сравнительно низкая стоимость таких композиций сделали их незаменимыми во многих областях: обувной, резино-технической и мебельной промышленности, автомобиле- и авиастроении, а также в быту и т.п.
Особенно широкое распространение получили клеи на основе натурального каучука, полиуретана и полихлоропрена. Получение, свойства и применение последнего будет рассмотрено в настоящем обзоре.
Благодаря отличной растворимости во многих растворителях и высокой адгезии полихлоропрен исключительно пригоден для получения контактных клеев. Высокая прочность клеевого соединения обусловлена кристаллизацией полихлоропрена, что позволяет обойтись без добавления сшивающих агентов или ускорителей непосредственно перед склеиванием, делая, тем самым, клеи на основе полихлоропрена особенно простыми в применении.
Свойства и области применения полихлоропреновых клеев определяются составом клея (табл.1), природой применяемых ингредиентов и технологией приготовления композиции [1, 2].
Табл. 1. Основные компоненты полихлоропренового клея
Ингредиент | Количество, мас. ч. | Основная функция в рецептуре клея |
Полихлоропрен | 100 | Полимер – основа клея |
Растворитель | Вспомогательный агент | |
Смола | 0–100 | Модифицирующая добавка |
Оксид магния | 4–15 | Акцептор HCl |
Оксид цинка | 0–10 | Вулканизующий агент |
Наполнитель | 0–100 | Добавка, снижающая затраты и корректирующая свойства |
Антиоксидант | 0–3 | Добавка, повышающая сопротивление старению |
Изоцианат | Сшивающий агент |
Функция полихлоропрена в рецептуре.
Как известно, полихлоропрен (ПХ) представляет собой полимер, состоящий из транс-2-хлорбутиленовых звеньев (85–90%), присоединенных в положение 1.4, а также звеньев цис-1.4-структуры (10–12%), 1.2-звеньев (
1%) [3]. Благодаря указанной структуре (наличию атома хлора в a-положении к двойной связи), ПХ кристаллизуется уже при комнатной температуре, образуя пленки с высокой когезионной прочностью. Наличие атома хлора обеспечивает хорошую адгезию ко многим материалам и стойкость клеевой пленки к старению. Технология получения ПХ позволяет регулировать способность последнего к кристаллизации, молекулярные параметры, способность к переработке. Кристаллизация обеспечивает высокую прочность клеевой пленки, что позволяет в определенных случаях отказаться от прижимных устройств при склеивании. Скорость кристаллизации определяет такие важные характеристики, как прочность, температуростойкость, продолжительность сохранения клейкости пленки, нанесенной на соединяемые поверхности, и скорость ее отверждения. Молекулярная масса (ММ) определяет вязкость композиции, устойчивость клеевого шва при повышенных температурах, время открытой выдержки клея. Для оценки технологических свойств каучука используется такой параметр, как вязкость по Муни при 100 о С (ML 100 ), определяющий эффективную вязкость полимера при заданной скорости сдвига. Вязкость по Муни возрастает с увеличением средней ММ и уменьшается с увеличением индекса полидисперсности, поэтому может быть использована для характеристики молекулярных параметров каучука. Существующие товарные типы каучуков отличаются ММ (измеряемой вязкостью по Муни или вязкостью стандартного раствора каучука), скоростью (степенью) кристаллизации, типом регулятора молекулярной массы, товарной формой фирмы-производителя.
По скорости кристаллизации каучуки можно разделить на высоко-, средне- и медленно кристаллизующиеся типы, последние в клеях используют крайне редко. Наиболее часто для производства клеев на российском рынке применяют следующие марки каучуков: Байпрен, Скайпрен, Неопрен, Денка-хлоропрен (табл.2) и совсем редко в настоящее время Наирит [1, 2, 4, ЛТИ* фирм «Bayer AG» (за 1989 г.), «Bombey Chemical & Rubber Products» (за 1994 г.), «Мицуи и Ко, ЛТД» (за 1996 г.)].
Табл. 2. Сравнительная характеристика часто используемых марок полихлоропрена
Параметры каучука
Марка каучука (производитель)
Вязкость
Высокая скорость кристаллизации
Средняя скорость кристаллизации
В табл.3 представлены физические свойства полихлоропрена с различной скоростью кристаллизации [ЛТИ фирмы «Мицуи и Ко, ЛТД» (за 1996 г.)].
Табл. 3. Свойства каучуков Денка-хлоропрен с разной скоростью кристаллизации
Увеличение скорости кристаллизации повышает начальную и конечную прочность крепления, теплостойкость, скорость фиксации. С другой стороны, при этом уменьшаются продолжительность сохранения клейкости пленки клея (время открытой выдержки) и эластичность клеевой пленки (табл. 4) [ЛТИ фирмы «Bombey Chemical & Rubber Products» (за 1994 г.)].
Табл. 4. Влияние степени кристаллизации и молекулярной массы (вязкости по Муни) на свойства клея
Наименование показателя | Марка каучука | |||
G40S | У30 | В30 | В10 | |
Вязкость по Муни при 100 о С | 85 | 120 | 50 | 50 |
Вязкость 10%-ного р-ра каучука в толуоле, мПа·с | 420 | 1030 | 140 | 140 |
Скорость кристаллизации | Высокая | Средняя | Средняя | Низкая |
Вязкость клея, мПа·с | 2200 | 4000 | 690 | 700 |
Сопротивление расслаиванию кН/м, через: 4,7 | ||||
0,27 | 2,12 | 0,12 | 0,15 | |
Время открытой выдержки, мин | 70 | 1500 | 2000 | >3000 |
Каучуки со средней степенью кристаллизации используют для клеев с большей продолжительностью контактного склеивания и более эластичными пленками, но к которым не предъявляют максимальные требования относительно быстроты схватывания. Кроме того, каучуки со средней степенью кристаллизации дешевле каучуков с высокой степенью кристаллизации.
Ряд параметров, например поверхность склеиваемых материалов или характер наполнителя, могут действовать ориентирующим образом и ускорять кристаллизацию. С другой стороны, присутствующие в клеевой композиции смолы, как правило, замедляют кристаллизацию полихлоропрена. Наименьшее влияние оказывают фенольные и терпеновые смолы, а инденкумароновая смола при дозировке 50 мас.ч. на 100 мас.ч. каучука снижает скорость кристаллизации вдвое [1].
Тип и содержание регулятора молекулярной массы при синтезе полихлоропрена (меркаптан или тиурамдисульфид) определяют способность каучука к переработке, вязкость полученного раствора клея, а также стабильность и цвет клея при хранении. Каучуки, модифицированные тиурамдисульфидом (например, Байпрен 321 и 331, Денка-хлоропрен ТА-85 и ТА-95), обеспечивают хорошую пластицируемость и улучшают совместимость с другими компонентами клея, например смолами. При склеивании материалов, имеющих светлую окраску (светлая кожа или поливинилхлоридные пленки), рекомендуется применять не содержащие тиурама типы каучуков. В присутствии ряда пластификаторов или жировых веществ кожи тиурам может мигрировать из клеевой пленки на поверхность материалов. Последнее обстоятельство может привести к появлению желтых пятен. Кроме того, клеи, полученные с использованием тиурамсодержащих каучуков, могут менять свою окраску в результате взаимодействия тиурама с железом, медью или латунью.
С увеличением ММ каучука повышается и прочность крепления (сопротивление расслаиванию) [9]. Более того, молекулярная масса является более важным фактором для сохранения прочности крепления при повышенных температурах, чем степень кристалличности (табл.5) [ЛТИ фирмы «Bombey Chemical & Rubber Products» (за 1994 г.)].
Табл. 5. Влияние добавки высокомолекулярного каучука на свойства клея при высокой температуре
Наименование показателя
Соотношение каучуков Скайпрен G40S / У30 в смеси, мас.ч.
4,9
В работах [ЛТИ фирмы «Мицуи и Ко, ЛТД» (за 1996 г.)] также показано, что добавление каучука со средней степенью кристаллизации увеличивает время открытой выдержки, но уменьшает как первоначальную, так и конечную прочность крепления. С другой стороны, высокомолекулярный каучук существенно увеличивает прочность крепления при высоких температурах. Следовательно, для клеев, предназначенных для соединения изделий, эксплуатируемых при повышенных температурах, следует применять высокомолекулярные ПХ: Байпрен 340 и 243; Денка-хлоропрен А-120 и А-400 (используют исключительно в смесях с другими каучуками), М130L, М130Н; Скайпрен У-30 или их смеси с более низкомолекулярными каучуками
Для достижения высокой начальной прочности при склеивании применяют метод термоактивации: высушенную досуха клеевую пленку нагревают до 60–70 о С и склеиваемые поверхности прижимают на 1–2 минуты. Склеенным изделием можно пользоваться уже через 20–30 минут. Кроме того, установлено, что метод термоактивации позволяет достичь более высоких (на 10–20%) значений прочности склеивания, чем при обычном методе склеивания [8].
При использовании каучуков с высокой ММ (вязкостью по Муни) получают клей с пониженным содержанием сухого остатка при заданной вязкости раствора. В ряде случаев данный факт используют для снижения стоимости клея. Однако при более низкой цене за единицу клея в конечном итоге для потребителя он обходится дороже: ведь содержащийся в составе клея растворитель все равно улетучивается в атмосферу, обуславливая при этом только дополнительные расходы (за счет потери растворителя) и ухудшение экологической обстановки при проведении работ.
Для изготовления клеев из выпускаемого в настоящее время ПХ (за исключением каучуков типа Наирит) не требуется обязательно предварительно пластицировать каучук, так как практически все марки легко растворяются в известных системах растворителей. Несмотря на хорошую растворимость, в ряде случаев ПХ перед приготовлением клеев все же подвергают многократной пластикации [9]. В первую очередь, данную операцию применяют для каучуков с высокой ММ или для получения клеев с высоким содержанием активных наполнителей. Пластицированные каучуки образуют растворы с меньшей величиной вязкости и легче поддающиеся нанесению на склеиваемую поверхность, чем непластифицированные. Эта разница тем больше, чем выше исходная ММ каучука. Так, клей на основе непластицированных каучуков (например, Байпрена 340 и 243, Неопрена АD-40, Скайпрена G-40T) даже при средней концентрации является слизеобразным и вытягивается в нити при нанесении, т.е. имеет неудовлетворительные технологические свойства. Если эти растворы разбавить, то слизеобразное состояние хотя и уменьшается, а способность к нанесению становится хорошей, но такие клеи имеют сравнительно низкое содержание каучука. В результате пластикации получают более концентрированные клеи, содержащие соответственно больше активного вещества, чем растворы клеев из непластицированного каучука при одинаковой вязкости. При склеивании за счет более высокого содержания ПХ при одинаковой технологии на поверхность склеиваемого материала наносится больше активного вещества клея. Клеи из пластицированного каучука имеют отличную стабильность при хранении. Наоборот, клеи на основе непластицированных каучуков склонны к нарастанию вязкости раствора при хранении и седиментации ингредиентов. Поэтому при изготовлении клеев из непластицированых каучуков большое внимание следует уделять построению смесей, подбору каучука и других ингредиентов, а также системы растворителей.
Каучуки с низкой ММ – Байпрен 213, Байпрен- 310 и особенно Денка-хлоропрен А-30 – можно использовать по технологии прямого растворения для получения клеев с повышенным содержанием каучука.
Для получения клеев-герметиков с высоким содержанием сухого остатка разработаны специальные виды каучуков, содержащие гель-фракцию и обладающие тиксотропными свойствами: Байпрен-214А, Денка-хлоропрен DCR-11, DCR-11-14 и ряд других [2, ЛТИ фирмы «Мицуи и Ко, ЛТД» (за 1996 г.)].
Функция растворителя в рецептуре.
При выборе растворителя (или смеси растворителей) следует учитывать его скорость испарения, влияние на вязкость раствора, физиологические и экономические особенности, токсичность, однородность клея, седиментацию ингредиентов, сохранение клейкости, склонность к гелеобразованию при пониженных температурах, прочность крепления к различным материалам, а также технологические свойства клея. Ни один из известных индивидуальных растворителей не может обеспечить весь комплекс свойств, поэтому часто используют их смеси.
В табл.6 показана растворимость Байпрена в ряде растворителей или их смесей, позволяющая на практике правильно построить клеевую композицию [ЛТИ №1.2.2. за 1989 г. фирмы «Байер АГ»]. Известные углеводородные растворители условно можно разделить на «растворители», которые хорошо растворяют ПХ, и «нерастворители», в которых ПХ не растворяется.
Табл. 6. Растворимость Байпрена в смесях растворителей
Растворитель | Соотношение компонентов, мас. ч. | Растворимость | Растворитель | Соотношение компонентов, мас. ч. | Растворимость |
Один растворитель | Один нерастворитель | ||||
МЭК | |||||
Бутилацетат | Бензин | ||||
Дихлорэтан | Гептан | ||||
Толуол | Этилацетат | Набухает | |||
Ксилол | Изопропанол | Не растворим | |||
Один растворитель+один нерастворитель | Смесь двух нерастворителей | ||||
Этилацетат + МЭК | 9 : 1 Растворим | ||||
7:3 | |||||
8 : 2 | Растворим | 6:4 | |||
4:6 | Не растворим | ||||
Бензин + МЭК | 7 : 3 | Не растворим | Ацетон + бензин | 7:3 | Не растворим |
6:4 | Растворим | ||||
6 : 4 | Растворим | 4:6 | Растворим | ||
3:7 | Не растворим | ||||
Ацетон + толуол | 7 : 3 | Не растворим | Циклогексан + этилацетат | 8:2 Растворим | |
6 : 4 | Растворим | ||||
Этилацетат + толуол | 9 : 1 Растворим | Циклогексан + ацетон | 8:2 | Растворим | |
3:7 | Не растворим | ||||
Бензин + толуол | 6 : 4 | Не растворим | |||
5 : 5 | Растворим | ||||
Ацетон + МЭК | 1 : 9 | Набухает | |||
Один растворитель + два нерастворителя | Смесь трех нерастворителей | ||||
Этилацетат + бензин + толуол | 3:6:1 | Не растворим | Этилацетат + бензин + циклогексан | ||
4:4:2 | Растворим | ||||
3:5:2 | Растворим | ||||
2:6:2 | Не растворим | ||||
Ацетон + бензин + толуол | 4:4:2 Растворим | ||||
Этилацетат + бензин + МЭК | 4:4:2 | Растворим | Этилацетат + ацетон + циклогексан | ||
3:5:2 | Растворим | ||||
2:6:2 | Не растворим |
Из данных, представленных в табл.6, следует, что можно составить смеси из растворителя и нерастворителя, из двух нерастворителей и одного растворителя (или даже из трех нерастворителей), в которых полихлоропрен будет хорошо растворяться. Особенно благоприятно добавление толуола к нерастворителю (часто используемые – бензин 65/75, этилацетат или циклогексан): даже при небольших его добавках Байпрен начинает растворяться.
Очень часто для получения клеев используют смеси двух нерастворителей – бензин + этилацетат, ацетон + бензин или циклогексан +бензин, обеспечивающих оптимальную вязкость клеевой композиции: более низкую, чем в смесях, содержащих хороший растворитель, например толуол (табл.7). Влияние типа растворителя на вязкость раствора Байпрена 320 показано в табл. 7 [2, ЛТИ № 1.2.2 за 1989 г. фирмы «Байер АГ»].
Табл. 7. Вязкость растворов Байпрена 320 в различных растворителях
Система растворителей | Соотношение компонентов растворителя, мас.ч. | Вязкость 15%-ного раствора каучука, мПа·с |
Метиленхлорид | 2450 | |
Толуол | 510 | |
МЭК | 130 | |
Этилацетат или бензин | Не растворим | |
МЭК + бензин + циклогексан | 1 : 1 : 1 | 140 |
Этилацетат + бензин + толуол | 2 : 2 : 1 | 180 |
Максимальная вязкость раствора ПХ наблюдается в случае использования хлорсодержащих углеводородов, например, метиленхлорида, достаточно высокая вязкость – при использовании толуола. Значительно меньше вязкость раствора в случае использования смеси растворителей. При необходимости вязкость растворов клея можно регулировать также молекулярной массой используемого каучука, которая, в свою очередь, как показано выше, зависит от пластикации каучука.
Знание параметров растворимости и вязкости получаемых растворов всегда позволит правильно подобрать необходимую смесь растворителей, исходя из заданных параметров клея, условий его производства, стоимости, вязкости, требований экологии и пожароопасности. Кроме того, ниже будет рассмотрено влияние растворителя на время открытой выдержки, начальную прочность схватывания, стабильность при хранении и склонность к желатинизации.
Функции оксидов металла и наполнителей в рецептуре.
К основным ингредиентам полихлоропреновых клеев относятся оксиды металлов – оксид цинка и оксид магния.
Оксид магния является главным средством против «подвулканизации» при пластикации и хранении. Оптимальное количество добавляемых оксидов металлов составляет 4 мас. ч. на 100 мас. ч. каучука. Вместо оксидов иногда добавляют карбонаты этих металлов. Карбонат цинка позволяет получать клей с большей прозрачностью, чем оксид цинка. Практически обязательным является добавление оксидов металлов при одновременном использовании полихлоропрена и хлоркаучука (например, пергута), так как хлоркаучук даже при тщательной стабилизации выделяет хлористый водород. Оксиды металлов или карбонаты должны быть по возможности тщательно диспергированы в клее для достижения оптимального действия и предупреждения седиментации при хранении клея. Недостаточно просто добавить порошкообразные вещества в клей в процессе изготовления. Если каучук перед изготовлением клея пластицируют, то оксиды и наполнители лучше всего вводить на вальцах или в резиносмесителе. Если помимо пластицированного каучука используют непластицированный, то оксиды добавляют к пластицированной части. Можно готовить смеси с повышенным содержанием оксидов («маточные смеси»), а затем добавлять их в необходимом количестве к основной смеси. При введении оксидов металлов на вальцах в первую очередь вводят оксид магния и наполнители, а оксид цинка – последним с целью исключения процессов «подвулканизации» [1].
Если используется только непластицированный каучук, то желательно применять специальные «активные» (мелкодисперсные) формы оксидов или перед приготовлением клея затереть оксиды и карбонаты на валковых, конических или шаровых мельницах. Более предпочтительным является использование оксидов с высокой степенью дисперсности, например «цинк оксид активный». Еще более высокую прозрачность позволяет получить «цинк оксид транспарент» – тонкодисперсный осажденный карбонат цинка [2, ЛТИ фирмы «Байер АГ» (за 1989 г.)].
К полихлоропреновым клеям можно добавлять наполнители самого различного типа в любом количестве. Подходящими наполнителями являются мел, каолин, кварцевая мука, технический углерод, кремнекислота. В этом случае оксид цинка и оксид магния могут добавляться в значительных количествах. Вследствие щелочного характера их стабилизирующее действие особенно велико. Высоконаполненные клеевые смеси применяют для получения замазок и зазорозаполняющих клеев. Добавка каолина и мела в количестве 50–100 мас. ч. позволяет получать клеи с достаточно хорошими прочностными показателями, которые используют для приклеивания напольных покрытий. Сажа (технический углерод) и кремнекислотные наполнители позволяют даже повысить когезионную прочность клеевой пленки. Сажу из-за ее темного цвета используют в редких случаях. Весьма эффективными являются светлый усиливающий наполнитель «Вулкасил С», осажденная кремнекислота, белая сажа БС-50 и ряд других. Добавление «Вулкасила С» рекомендуется, в первую очередь, для клеев, предназначенных для соединения жестких материалов, таких как древесина, пластики. В этих случаях «Вулкасил С» повышает начальную прочность соединений на 20–30% и ускоряет схватывание. Кроме того, данная добавка повышает прочность соединений при повышенных температурах. Силикатные наполнители плохо распределяются в клеевой смеси, поэтому наполнитель следует вводить на вальцах или в резиносмесителе. Добавление силикагеля (например, aerosil ® 200) позволяет придать клеевой композиции тиксотропные свойства, вследствие чего уменьшаются ее растекание и нитеобразование.
Для получения окрашенных клеев можно использовать пигменты и красители. Однако надо иметь в виду, что красители могут влиять на технологические свойства клея, в частности, на жизнеспособность, стойкость к старению и продолжительность открытой выдержки.
Наиболее эффективным способом введения оксида магния в клеевую композицию является его «предреакция» со смолой. Условия проведения «предреакции» и ее влияние на свойства клея рассмотрено далее.
Функции смолы в рецептуре.
Растворы полихлоропрена, содержащие оксиды металлов, уже могут быть использованы в качестве клея. Однако растворы на основе сильно кристаллизующихся каучуков при высоких значениях начальной и конечной прочности имеют очень маленькое время открытой выдержки, а растворы на основе каучуков со средней скоростью кристаллизации, наоборот, при длительном времени открытой выдержки характеризуются слишком низкой скоростью схватывания и лишь умеренной прочностью клеевых соединений.
Отличным средством для улучшения свойств клеевой композиции является добавление в рецептуру различных смол. Правильный подбор смолы позволяет корректировать время открытой выдержки, способность к термоактивации, исходную и конечную прочность клеевого шва, теплостойкость, стойкость к тепловому старению. Смолы при растворении дают низкую вязкость и поэтому могут содержаться в клеевой композиции в большом количестве, значительно повышая содержание активного клеящего вещества. На рис.1 приведены основные типы используемых смол и их структура.
Используемые в полихлоропреновых клеях смолы можно условно разделить на 2 группы [1, 12, 13]:
смолы, повышающие клейкость и увеличивающие время открытой выдержки;
смолы, улучшающие адгезионные и прочностные свойства клеев.
К первой группе можно отнести терпенфенольные, кумароновые, некоторые виды алкилфенолформальдегидных смол (АФФС) и низкоплавкие эфиры канифоли.
Ко второй группе относятся АФФС и высокоплавкие эфиры канифоли.
Инденкумароновые смолы используют в основном в высоконаполненных клеях-мастиках (типа КН-3). Эффективными повысителями клейкости являются АФФС, содержащие не менее 4 атомов углерода в алкильной группе. Наилучшие результаты дает АФФС на основе п-третбутилфенола (ТБФФС).
Табл. 8. Характеристика смол, используемых в полихлоропреновых клеях
Марка смолы | Точка плавления, о С | Содержание метилольных групп, % | Производитель | Примечание |
трет-Бутилфенолформальдегидные смолы общего назначения | ||||
101 К | 70–85 | ОАО «Котовский лакокрасочный завод» (Россия) | ||
SP134 | 70 | 14 | Schenectady (Франция) | |
R7540 | 105 | 16 | Сеса (Франция) | |
R7522 | 110–120 | 11–14 | ||
PA103 | 53–65 | 14 | Высокое время открытой выдержки | |
РА321 | 65–75 | 11 | ||
трет-Бутилфенолформальдегидные смолы с повышенной теплостойкостью | ||||
PA341 | 66–76 | 14 | Vianova Resins (Германия) | |
PA565 | 66–75 | 14 | Повышенная прочность | |
FRJ 551 | 80 | 10 | Schenectady (Франция) | |
трет-Бутилфенолформальдегидные смолы с высокой теплостойкостью | ||||
SP154H | 165–190 | 8–12 | Schenectady (Франция) | |
VPA 1361 | Vianova Resins (Германия) | Высокое время открытой выдержки | ||
SFP 121H | 165–190 | 15–17 | Schenectady (Франция) | Максимальные теплостойкость и адгезия |
Октилфенолформальдегидные смолы | ||||
R7500 | Schenectady (Франция) | |||
Октафор | 80–95 | Россия | ||
Терпенфенольные | ||||
SP553 | 90 | |||
SP560 | 140–155 | |||
R7580 | 130 | |||
РТ 214 | 64–72 | Повышенное время открытой выдержки | ||
Канифольные смолы Albertol | ||||
КР 209 | 118–134 | 1,5 | Vianova Resins (Германия) | Термостойкость |
КР 543 | 146–162 | 4,0 | Повышенная термостойкость |
Установлено, что сам полихлоропрен более устойчив к старению, чем некоторые из смол. Так, терпенфенольные, кумароновые смолы, а также сложные эфиры канифоли, являясь ненасыщенными соединениями, со временем подвергаются окислению, выражающемуся либо в размягчении клеевого слоя в переферийных зонах, либо, наоборот, в образовании хрупких фрагментов. Для предотвращения данного процесса рекомендуется вводить в клеевые композиции антиоксиданты аминного или фенольного типов (например, агидол-1, агидол-2 – оба российского производства, Вулканокс BKF, SKF и OSD) в количестве до 2 мас. ч. на 100 мас. ч. каучука.
Применение АФФС при изготовлении клеев позволяет в определенной степени повысить теплостойкость клеевых соединений, так как эти смолы образуют с оксидом магния высокоплавкие комплексные соединения, хорошо растворимые в органических растворителях (рис. 2).
Целесообразно проводить реакцию в предусмотренном для этого растворителе перед получением клеевой композиции по типу «предреакции» для того, чтобы в готовом клее исключить изменение свойств в результате этой реакции. Скорость и равновесное количество связанного металла в полученном хелате прямо пропорционально количеству функциональных групп (метилольных и диметилэфирных). Для обеспечения высокой прочности крепления необходимо использовать сочетание полихлоропрена и АФФС с максимально возможным содержанием метилольных и диметилэфирных групп. С другой стороны, с увеличением содержания метилольных групп в смоле клейкость клеевой композиции падает. В табл.9 представлены данные по влиянию «предреакции» на начальную и конечную прочность крепления, а также теплостойкость клеевого шва [2, 12, 13].
Табл. 9. Влияние комплекса смола–оксид магния на прочностные свойства клея
Композиция | Прочность при расслаивании, кН/м, | |||
начальная через 20 мин | через суток / при температуре, о С | |||
7 / 23 | 7 / 50 | 7 / 70 | ||
Раствор Байпрена | 1,3 | 5,4 | 0,9 | 0,5 |
То же со смолой РА565 | 1,3 | 6,1 | 1,7 | 0,5 |
То же с хелатом РА565-МgО | 2,7 | 9,9 | 4,2 | 5,6 |
Примечание. Все композиции содержат оксид магния и оксид цинка. |
«Предреакцию» смолы и оксида магния с точки зрения экономики следует проводить в растворителе, в котором она протекает наиболее полно и быстро. Из данных, представленных на рис. 3, следует, что самым благоприятным для проведения «предреакции» из всех традиционных растворителей является толуол. Небольшое количество воды (
0,5–2% на смолу) существенно ускоряет реакцию. Кроме толуола для проведения «предреакции» можно использовать циклогексан и не рекомендуется ацетон. Следует учитывать, что данная реакция обратима и при большом содержании воды количество связанного оксида магния уменьшается. Образующиеся хелаты легко подвергаются кислотному гидролизу. В тех растворителях, в которых «предреакция» протекает медленно даже в присутствии воды, существует возможность ее ускорения за счет повышения температуры и уменьшения степени дисперсности оксида магния. «Предреакция» с солями протекает быстрее, чем с оксидами. «Предреакция» протекает в течение 3–6 ч в смесителе и в течение от нескольких дней до нескольких месяцев – в клеевой композиции при комнатной температуре. Наличие хелата в клеевой композиции уменьшает, кроме того, вероятность разделения фаз клея и седиментацию ингредиентов.
Тип и дозировка смолы определяют также и адгезионные свойства клеев. Для получения удовлетворительной прочности склеивания в каждом конкретном случае должен быть выбран определенный, оптимальный с технической и экономической точек зрения, тип АФФС.