Классификация термометров сопротивления и что показывает градуировка

Термометр сопротивления представляет собой конструкцию, в которой проволока из платины или меди намотана на специальный диэлектрический каркас, размещенный внутри герметичного защитного корпуса, удобного по форме для монтажа.

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

Работа термометра сопротивления основана на явлении изменения электрического сопротивления проводника в зависимости от его температуры (от температуры исследуемого термометром объекта). Зависимость сопротивления проволоки от температуры в общем виде выглядит так: Rt=R0(1+at), где R0 – сопротивление проволоки при 0°C, Rt – сопротивление проволоки при t°C, а — температурный коэффициент сопротивления термочувствительного элемента.

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

В процессе изменения температуры, тепловые колебания кристаллической решетки металла изменяют свою амплитуду, соответственно изменяется и электрическое сопротивление датчика. Чем выше температура — тем сильнее колеблется кристаллическая решетка — тем выше оказывается текущее сопротивление. В приведенной выше таблице представлены типичные характеристики двух популярных термометров сопротивления.

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

Жаропрочный корпус датчика призван защитить его от механических повреждений в процессе измерения температуры того или иного объекта.

Если потребитель точно определился, для каких целей необходим термодатчик, и выбрал именно термометр сопротивления (термопреобразователь сопротивления), значит важнейшими критериями для решения предстоящей задачи явились: высокая точность (порядка 0,1°С), стабильность параметров, почти линейная зависимость сопротивления от температуры объекта, взаимозаменяемость термометров.

Виды и конструкции

Наиболее чувствительные термометры Pt1000 и Pt100 изготавливают путем напыления тончайшего слоя платины на керамическую основу-подложку. Технологически достигается напыление малого количества платины (около 1 мг) на чувствительный элемент, дающее элементу небольшой размер.

Свойства платины при этом сохраняются: линейная зависимость сопротивления от температуры, устойчивость к высоким температурам, термостабильность. По этой причине наиболее популярные платиновые преобразователи сопротивления — это именно Pt100 и Pt1000. Медные элементы 50М и 100М изготавливаются путем ручной намотки тонкой медной проволоки, а платиновые 50П и 100П — путем намотки проволоки платиновой.

Прежде чем монтировать термометр, необходимо убедиться, что его тип выбран правильно, что градуировочная характеристика соответствует поставленной задаче, что монтажная длина рабочего элемента подходит, и остальные особенности конструкции позволяют произвести установку на данное место, для данных внешних условий.

Датчик проверяют на отсутствие внешних повреждений, осматривают его корпус, проверяют целостность обмотки датчика, а также сопротивление изоляции.

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

Некоторые факторы могут негативно отразиться на точности измерений. Если датчик установлен в не то место, монтажная длина не соответствует рабочим условиям, плохое уплотнение, нарушение теплоизоляции трубопровода или иного оборудования — все это вызовет погрешность при измерении температуры.

Следует проверить все контакты, ведь если электрический контакт в соединениях прибора и датчика плохой, то это чревато погрешностью. Не попадает ли влага или конденсат на обмотку термометра, нет ли замыкания витков, правильно ли выполнена схема соединения (отсутствие компенсационного провода, отсутствие подгонки сопротивления линии), соответствует ли градуировка измерительного прибора градуировке датчика? Это важные моменты, на которые всегда стоит обращать пристальное внимание.

Вот типичные ошибки, которые могут возникнуть при монтаже термодатчика:

Если на трубопроводе отсутствует теплоизоляция, то это неизбежно приведет к потерям тепла, поэтому место для измерения температуры должно быть выбрано так, чтобы все внешние факторы были учтены заранее.

Малая или излишняя длина датчика может способствовать ошибке из-за неправильной установки датчика в рабочий поток исследуемой среды (датчик установлен не навстречу потоку и не по оси потока, как это должно быть по правилам).

Градуировка датчика не соответствует регламентированной схеме для монтажа на данном объекте.

Нарушение условия компенсации паразитного влияния изменяющейся температуры окружающей среды (не установлены компенсационные пробки и компенсационный провод, датчик подключен к прибору регистрации температуры по двухпроводной схеме).

Не учтен характер среды: повышенная вибрация, химически агрессивная среда, среда повышенной влажности или повышенного давления. Датчик должен соответствовать условиям среды, выдерживать их.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Термометры сопротивления: от теории к практике

Введение

Температура — одна из наиболее часто измеряемых физических величин. Задачи измерения и контроля температуры встречаются практически во всех областях человеческой деятельности. Системы контроля температуры используются для поддержания микроклимата и в различной бытовой технике, где базовым требованием является их доступность. Прецизионное термостатирование в сельском хозяйстве необходимо для выращивания тепличных сельскохозяйственных культур. В химической промышленности и в металлургии часто требуется контроль температуры высоко агрессивных сред в диапазонах в несколько тысяч градусов. На производстве нарушения технологического процесса, связанные с выходом контролируемой температуры за допустимые пределы, могут привести к выпуску партии бракованного товара. В медицине ошибка в измерении температуры может стоить здоровья пациента и даже человеческой жизни. От качества контроля температуры в атомной промышленности, в частности при отливке корпусов реакторов, зависит жизнь всего населения нашей планеты.

Очевидно, что столь разнообразные требования, как по диапазону и точности, так и по типу исполнения и надежности измерительных систем, породили за многие годы большое разнообразие методов и средств, используемых для измерения и контроля температуры.

Ключевым элементом любой системы измерения и контроля температуры является первичный измерительный преобразователь (чувствительный элемент). От его точности и других основных параметров во многом зависят показатели всей системы в целом. Существуют различные типы датчиков температуры, наибольшее распространение среди них получили термопары, полупроводниковые термисторы и термометры сопротивления [5].

Термометры сопротивления

Термометр сопротивления (ТС) состоит из одного или нескольких термочувствительных элементов и внутренних соединительных проводов, помещенных в герметичный защитный корпус, а также внешних клемм и выводов, предназначенных для подключения к измерительному прибору. Чувствительный элемент (ЧЭ) термометра сопротивления представляет собой резистор, выполненный из металлической проволоки или пленки, с выводами для крепления соединительных проводов, имеющий известную зависимость электрического сопротивления от температуры [1].

На практике под термином «термометр сопротивления» понимают как герметичный датчик в металлическом или керамическом корпусе с внешним разъемом для подключения к измерительным приборам, так и сам чувствительный элемент, который может быть изготовлен в корпусе с проволочными выводами или в SMD-конструктиве для поверхностного монтажа.

Основные преимущества ТС по сравнению с другими типами датчиков температуры — это их высокая точность, широкий диапазон рабочих температур, малые размеры, устойчивость к вибрациям, линейность номинальной статической характеристики и относительно высокое значение температурного коэффициента сопротивления (ТКС). Основными материалами для изготовления ЧЭ ТС являются платина, медь, никель и их сплавы. На практике чаще применяются платиновые термометры сопротивления (ПТС) с различной чистотой платины, которые обладают наивысшей стабильностью характеристик, устойчивостью к воздействию агрессивных сред и широким диапазоном рабочих температур (табл. 1).

Таблица 1. Сравнительные характеристики распространенных типов датчиков температуры

Тип датчика температурыОсновные преимуществаОсновные недостаткиОсновные области применения
Термометры сопротивленияВысокая линейность номинальной статической характеристики
Широкий диапазон рабочих температур
Высокая стабильность основных параметров
Устойчивость к воздействию агрессивных сред (ПТС)
Относительно невысокая стоимость
Необходимость во внешней схеме для возбужденияШироко используются как в относительно недорогих, так и в прецизионных системах измерения и контроля температуры
Полупровод- никовые термисторыДешевизна и доступность
Высокий температурный коэффициент сопротивления
Необходимость во внешней схеме для возбуждения
Высокая нелинейность номинальной статической характеристики
Низкая стабильность
основных параметров
Предназначены для применения в недорогих устройствах с низкими требованиями к точности измерений, в простых системах одно- и двухпорогового контроля температуры или для организации контроля температуры во второстепенных узлах сложной радиоэлектронной аппаратуры
ТермопарыСамый широкий диапазон рабочих температур
Высокая повторяемость характеристик
Высокое быстродействие
Необходимость компенсации опорного спая
Низкое выходное напряжение
Необходимость использования крупногабаритных конструкций для компенсации опорного спая для достижения высокой точности измерений
Широко используются в бюджетных устройствах с «электронной» компенсацией опорного спая с невысокой точностью измерений
Используются в сверхпрецизионных
измерительных системах 0,01…0,25 °С с компенсацией опорного спая
с помощью сосуда Дьюара
или специализированных термостатов

По конструкции чувствительного элемента различают пленочные и проволочные термометры сопротивления. Как правило, медные и никелевые ТС изготавливают из проволоки (рис. 1), а платиновые могут быть как проволочными, так и пленочными. Последние имеют меньшую чувствительность к вибрациям, однако предназначены для функционирования в более узком температурном диапазоне (рис. 2). По предназначению различают рабочие и эталонные термометры сопротивления, параметры обеих групп ТС регламентированы соответствующими стандартами.

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

Рис. 1. Проволочная конструкция термометра сопротивления

Источник

Выбор датчика температуры

Термометры сопротивления

Общие сведения

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра – платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Новый межгосударственный стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009, разработанный на основе российского стандарта ГОСТ Р 8.625-2006 (Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). Ознакомиться со стандартом и скачать текст можно в разделе Российские стандарты. В стандарте приведены диапазоны, классы допуска ТС, таблицы НСХ и стандартные зависимости сопротивление-температура. Эти данные приведены также на нашем сайте в разделе справочник. Главное преимущество термометров сопротивления – широкий диапазон температур, высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Изготавливаются также герметичные чувствительные элементы термометров сопротивления различных размеров, что позволяет их использовать в местах, где важно устанавливать миниатюрный датчик температуры. Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырех- проводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра. Важнейшей технологической проблемой для ТС проволочного типа является герметизация корпуса ЧЭ специальной глазурью, состав глазури должен быть подобран так, чтобы при колебаниях температуры в пределах рабочего диапазона не происходило разрушение герметизирующего слоя. Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка
Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает допуск не лучше 0,1 °С (класс АА при 0 °С). Однако высокая стабильность некоторых термометров позволяет делать их индивидуальную градуировку и определять характерную именно для них зависимость сопротивление-температура. Такая градуировка может повысить точность до нескольких сотых градуса. Следует отметить, что использование функции МТШ-90 (что возможно сейчас для многих цифровых термометров) может точнее описать индивидуальную зависимость ТС, использование квадратичного уравнения Каллендара Ван Дьюзена ограничивает точность аппроксимации до 0,01-0,03 °С в зависимости от диапазона температур.

Свойства термометров сопротивления трех наиболее распространенных типов.

0.0067 °C –1 (DIN)–60°C до 180°CНаиболее высокий температурный коэффициент; наибольший выходной сигнал сопротивления. Однако, если превышена точка Кюри (352°C), может возникать непредсказуемый гистерезис характеристики.Используются значительно реже, чем платиновые термометры сопротивления. Никелевые термометры сопротивления устанавливались раньше на корабельных системах контроля в комплекте с самописцами.Медь0.00428 °C- 1
(ГОСТ 6651-2009)–50°C до 150°CИмеют наиболее линейную характеристику, но очень ограниченный диапазон температур. Очень низкое удельное сопротивление, что обуславливает необходимость использования проволоки значительной длины. Это привело к тому, что в американском стандарте, медные термометры имеют номинальное сопротивление 10 Ом.Используются в электрических генераторах, на электростанциях и в некоторых других отраслях промышленности

НСХ и перечень международных нормативов для термометров сопротивления см. по ссылке>>>

Особенности конструкции платиновых чувствительных элементов (ЧЭ)

1.Самая распространенная конструкция – так называемая «свободная от напряжения спираль» (Strain-free). Эта конструкция выпускается многими российскими предприятиями и считается самой надежной. Вариации основного дизайна заключаются в размерах деталей и материалах, используемых для герметизации корпуса чувствительног элемента (ЧЭ). Для различных диапазонов температур используются разные виды глазури. Эта конструкция ЧЭ также очень распространена за рубежом. Приводим примерную схему данного типа ЧЭ.

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

ЧЭ представляет собой платиновую спираль, четыре отрезка которой укладываются в каналы трубки из оксида алюминия и засыпаются мелкодисперсным порошком из оксида алюминия высокой чистоты. Таким образом, обеспечивается изоляция витков спирали друг от друга, амортизация спирали при термическом расширении и вибропрочность. Герметизация концов ЧЭ проводится с помощью цемента, приготовленного на основе оксида алюминия, или специальной глазури.

2. Вторая конструкция – это новая разработка, которая используется в ЧЭ значительно реже из-за высокой стоимости. Так называемая полая конструкция «hollow annulus». Эта конструкция применяется на особо важных объектах, в атомной промышленности, т.к. обладает повышенной надежностью и стабильностью метрологических параметров.

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

Чувствительный элемент наматывается на поверхность полого металлического цилиндра, изолированную слоем оксида алюминия, образованным способом горячего распыления. Для изготовления цилиндра используется специальный металл, температурный коэффициент расширения которого очень близок к температурному коэффициенту платины. После специальных процедур отжига и обработки поверхности платины изолирующим слоем оксида алюминия ЧЭ вставляется в тонкую металлическую трубку, которая герметизируется с обоих концов. Коэффициент тепловой инерции такого элемента составляет около 350 мс, для погружаемого ЧЭ, до 11 с для ЧЭ, монтированного в корпус термометра. Недостатком данной конструкции, препятствующим ее широкому распространению в промышленности, является высокая стоимость ЧЭ.

3. Пленочные чувствительные элементы типа “thin-film”

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

Технология изготовления пленочного ЧЭ очень сложная. На первом этапе на керамическую подложку напыляют тонкий слой платины, затем на этом слое с помощью меандра формируют токопроводящие дорожки и покрывают сверху эпоксидным или стеклянным изоляционным слоем. Подложка имеет толщину порядка 0,3-0,6 мм. Технология изготовления освоена многими зарубежными фирмами, в настоящее время пленочный платиновый ЧЭ – это самый дешевый и самый широко продаваемый сенсор. Большим преимуществом является малый размер и масса ЧЭ, это позволяет устанавливать такие ЧЭ в миниатюрные корпуса и получать быструю скорость реагирования на изменение температуры объекта. Благодаря малым размерам, пленочные ЧЭ могут изготавливаться с повышенным номинальным сопротивлением. Уже разработаны и производятся ЧЭ с сопротивлением 1000 Ом. Это позволяет значительно снизить влияние сопротивления выводов при подключении по 2-х проводной схеме. По стабильности пленочные ЧЭ все еще уступают проволочным, но их технология постоянно совершенствуется, и в последнее время отчетливо наблюдается прогресс в повышении стабильности сопротивления ЧЭ и расширении температурного диапазона.

4. Платиновая спираль в стеклянной изоляции.

Некоторые фирмы выпускают ЧЭ из платиновой проволоки, покрытой стеклом. Это обычно довольно дорогие термометры сопротивления. Преимуществом является полная герметизация чувствительного элемента, стойкость к условиям повышенной влажности, недостатком – ограниченный диапазон рабочих температур.

Дополнительную информацию о конструкции и методах работы с платиновыми термометрами сопротивления публикуем в материалах семинара « Термометры сопротивления и комплекты термометров для измерения разности температур. Производство, стандартизация, поверка, эксплуатация»

Классы точности (допуска)

В стандартt МЭК 60751 ( введен в 2008 г) и в новом ГОСТ 6651-2009 (введен в России с 1 января 2011) были приняты новые значения предельных отклонений ТС от стандартной функции сопротивление-температура. Также были изменены температурные диапазоны, для которых нормируется точность по стандарту. В классификацию допусков были включены пленочные термометры сопротивления.

Необходимо отметить, что производитель, согласно п. 5.7 ГОСТ 6651, имеет право расширить диапазон измерений и устанавить допуски вне диапазона измерений по своим ТУ. (п. 5.7 Допуски для платиновых ТС при температурах вне диапазона измерений, указанного в таблице 2, должны быть установлены техническими документами на ТС конкретного типа.) О верхнем диапазоне платиновых термометров см. статью Моисеевой Н. П. » Предельная температура для термометра сопротивления «

Самым распространенным в промышленности является класс В. Класс допуска является, прежде всего, показателем точности подгонки ЧЭ под номинальное сопротивление при изготовлении. Стабильность, сопротивление изоляции, нагрев измерительным током и другие параметры, влияющие на точность измерения температуры, могут быть идентичными у термометров разных классов допуска.

Стандарт МЭК и российский стандарт допускает задание производителем специальных допусков для платиновых термометров сопротивления, на основе допуска класса В. Эти допуски гарантируются заводом и составляют обычно 1/3 В или 1/6 В. Однако необходимо иметь ввиду, что эти допуски могут реально означать только приближение термометра к номинальному сопротивлению при 0 °С, гарантировать стабильность рабочих термометров на этом уровне точности очень трудно.

Стабильность термометра сопротивления

«…6.5 Стабильность чувствительных элементов и термометров сопротивления

6.5.1 После выдержки ЧЭ при температуре верхнего предела рабочего диапазона температур в течение 1000 ч сопротивление ЧЭ при 0 °С должно оставаться в пределах допуска соответствующего класса.

6.5.2 После выдержки термометра сопротивления при температуре верхнего предела рабочего диапазона температур в течение 250 ч сопротивление ТС при 0 °С должно оставаться в пределах допуска соответствующего класса. Сопротивление изоляции ТС должно соответствовать требованиям 6.3.

1 Время проверки стабильности 250 ч устанавливают только для термометров сопротивления, ЧЭ которых предварительно были испытаны на стабильность в течение 1000 ч.

2 Для ТС, предназначенных для длительного использования без поверки, и для термометров сопротивления, устанавливаемых на особо важных объектах, требования к стабильности должны быть повышены, время температурной выдержки при верхнем пределе рабочего диапазона температур увеличено. Данные требования должны быть установлены техническими документами на ТС конкретных типов.»

Важнейшим показателем надежности конструкции является стабильность сопротивления в процессе термоциклирования. К сожалению, конкретные данные по термоциклированию не приводятся в описании типа и каталогах на импортные ЧЭ и ТС. Чаще всего технические характеристики декларируются соответствующими стандарту МЭК. В ГОСТ Р 8.625 (п.6.6) установлены следующие требования к стабильности ТС при циклическом изменении температуры:

Схемы подключения и измерительный ток

Существует большое количество измерительных мостов и потенциометров, работающих в комплекте с термометрами сопротивления. Причем отечественные приборы не уступают, а иногда превосходят по качеству импортные установки. Термометры сопротивления могут подключаться к измерительной установке по двух-, трех-, и четырех-проводной схемам. Причем для ТС классов АА и А двух-проводная схема не допустима, т.к. в данном случае, сопротивление подводящих проводов включается в полное измеренное сопротивление термометра и приводит к значительному снижению точности измерения, даже если номинальное сопротивление выводов приведено в документации и учитывается в расчетах.

Выбор измерительного тока также влияет на точность измерения температуры. Поскольку ЧЭ изготовлен из очень тонкой проволоки или пленки, даже малый ток может вызвать существенный нагрев ЧЭ. Во избежание значительного увеличения погрешности из-за нагрева ЧЭ измерительным током для 100-омных ТС рекомендуется использовать токи 1 мА и ниже. В этом случае погрешность не превысит 0,1 °С. Для снижения эффекта нагрева ЧЭ иногда используется импульсный измерительный ток.

Сопротивление изоляции

Корпус термометра сопротивления обычно заполняется неорганической изоляцией из оксида алюминия или магния. Эти материалы в большой степени гигроскопичны, и как только небольшое количество влаги проникает в термометр, происходит эффект шунтирования чувствительного элемента термометра. Проверка сопротивления изоляции ТС – одно из важнейших испытаний при выпуске из производства. Проверка происходит путем измерения сопротивления между корпусом ТС и выводами при испытательном напряжении 100 В при температуре 15-35 °С и от 10 до 50 В при повышенных температурах. При комнатной температуре сопротивление изоляции должно быть более 100 МОм.

Падение сопротивления изоляции – основная причина снижения точности термометра или даже выхода его из строя. Важное значение для предотвращения этого эффекта имеет надежная герметизация ЧЭ, особенно при работе термометра в условиях повышенной влажности.

Тепловая инерционность датчика

Скорость реакции ЧЭ на изменение температуры процесса зависит от конструкции ЧЭ, материала корпуса термометра, изоляции между ЧЭ и корпусом. Для снижения инерции используются специальные способы точной подгонки размеров корпуса и ЧЭ, специальные изолирующие теплопроводящие материалы.

Примерное время термической реакции для платиновых термометров сопротивления различного диаметра

Описание ТСВремя термической реакции (63% от полного изменения)
ЧЭ0,3 – 3 с
Диаметр 3,5 мм2 – 3 с
Диаметр 5,0 мм4 – 5 с
Диаметр 6,0 мм5 – 7 с
Диаметр 6,0 мм, монтированный в гильзу15 – 20 с

Тепловой контакт с объектом

Необходимо всегда учитывать, что термометр фактически регистрирует температуру его собственного чувствительного элемента, а не температуру среды или объекта в которую он погружен. То, на сколько температура ЧЭ близка к измеряемой температуре объекта зависит от суммарного теплового сопротивления между ЧЭ и объектом. Монтаж термометра в измерительный канал осуществляется, как правило, с помощью прижимающей пружины, канал иногда заполняется теплопроводящим материалом. Если контакт с объектом нарушен, то это может привести к ложным значениям регистрируемой температуры. Для проверки теплового контакта разработаны специальные методики, наиболее распространенная из которых – исследование времени реагирования ТС на импульсный нагрев током.

Сборка термометра сопротивления

Предпочтительный способ для соединения выводов ЧЭ и внутренних проводов термометра – сварка. Это предотвращает загрязнение выводных проводников другими металлами, возникающее при пайке, что может привести к возникновению паразитной ТЭДС. Внутренние выводы изготавливают обычно из меди, никеля, константана, меди с никелевым покрытием, меди со стальным покрытием и других металлов и сплавов. Выводы изолируют трубками из оксида алюминия, стекловолоконными трубками или пластиковыми трубками, если позволяет рабочая температура ТС.

Примерная схема сборки ЧЭ, приведена на рисунке.

Классификация термометров сопротивления и что показывает градуировка. Смотреть фото Классификация термометров сопротивления и что показывает градуировка. Смотреть картинку Классификация термометров сопротивления и что показывает градуировка. Картинка про Классификация термометров сопротивления и что показывает градуировка. Фото Классификация термометров сопротивления и что показывает градуировка

В данной конструкции материалом для внутренних выводов служит медь покрытая никелем (27%), путем холодного прессования (так называемый материал Kulgrid) или корозионностойкий высокотемпературный сплав (Oxalloy). Для внешних выводов используется изолированная тефлоном многожильная медь с никелевым покрытием.

Сборка ЧЭ с внутренними выводами помещается в цилиндрическую металлическую трубку-корпус термометра и засыпается мелкодисперсным гигроскопическим порошком из оксида алюминия или магния. Конец трубки, в месте выхода проводников герметизируется. Для надежной герметизации при высоких температурах используется специальная «крышка» с встроенным переходом металл-стекло или керамика-стекло. Выводы, предварительно вваренные в крышку свариваются с выводами термометра, крышка сваривается с корпусом. Такой способ обеспечивает полную герметизацию термометра и значительно повышает его долговечность и надежность.

Материалом корпуса ТС служит латунь (для низких и комнатных температур), сталь 314, сталь 316, инконель 600. Наилучшую коррозионную стойкость обеспечивает инконель 600.

Длина термометра сопротивления

Длина термометра сопротивления должна выбираться исходя из необходимой глубины погружения термометра. Глубина погружения термометра в объект измерения является важным фактором, влияющим на погрешность измерения температуры объекта, возникающую из-за тепловых потерь от ЧЭ в окружающую среду. В стандарте МЭК определен критерий достаточной глубины погружения: при погружении ниже этой глубины ТС должен менять показания не более допуска. Минимальная глубина погружения в высокой степени зависит от условий теплообмена, состава среды (жидкость, газ), скорости потока. Для предварительного выбора необходимой длины ТС предлагается следующая таблица, задающая коэффициент, на который необходимо умножить диаметр корпуса ТС, чтобы получить минимальную глубину погружения:

СредаДинамический потокСтатические условия
жидкая5-1010-20
воздушная10-2020-40

К полученной глубине следует прибавить длину ЧЭ термометра, которая может составлять от 5 до 60 мм. Если диаметр трубы с теплоносителем, в которую должен быть вставлен ТС, меньше рассчитанной минимальной глубины погружения применяют установку ТС под углом к поверхности трубы, или в месте изгиба трубы.

Более подробно о глубине погружения термометра в термостат см. в разделе «Проблемы поверки» а также в статье «Влияние длины термометра на результат поверки в калибраторе»

Источники неопределенности измерения температуры на объекте

В новом стандарте ГОСТ 6651-2009 приведены правила отбраковки термометра сопротивления потребителем. В них установлено, что забраковать термометр можно только, если отклонение сопротивления термометра от НСХ лежит полностью вне диапазона, обусловленного расширенной неопределенностью измерения температуры в рабочих условиях. Поэтому становится очень актуальной проблема оценки неопределенности, возникающей при измерении температуры на объекте. Источники неопределенности измерения температуры промышленным термометром сопротивления можно разделить на источники, связанные с физическими условиями работы ТС и электрическим преобразованием сигнала.

— теплопроводящие свойства данной конструкции термометра и монтажных элементов;
— перенос тепла излучением в окружающую среду;
— теплоемкость датчика температуры;
— скорость изменения измеряемой температуры;
— утечки тока (качество заземления);
— электрические шумы;
— точность измерителя или преобразователя сигнала.

Поверка промышленных термометров сопротивления проводится по ГОСТ 8.461-2009 (см. раздел «Поверка термометров сопротивления»).

Неопределенность поверки термометров можно рассчитать, используя различные программные средства, например, программу расчета TCal-8-461, сертифицированную во ВНИИМ.

Вывод

По оценкам российских и зарубежных специалистов надежность современных датчиков температуры растет. Если стоит вопрос выбора контактного датчика повышенной надежности и стабильности для температур от 200 до 600 °С, то очень сложно найти что-то более подходящее, чем платиновый термометр сопротивления. Превалирующая часть выходов из строя современных термометров сопротивления уже связана с проблемами их крепления на объекте и проблемами во внешней измерительной цепи, а не с проблемой нестабильности ЧЭ.

Прочитайте на нашем сайте также о других типах датчиков температуры:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *