Класс точности тензодатчиков c3 что значит
Тензодатчики веса
Тензодатчик веса – это изделие, которое преобразовывает механическую деформацию в электрический сигнал. Это резистивный преобразователь, являющийся основным компонентом в большинстве современных весов.
Конструктивно тензодатчик представляет собой тензорезистор с контактным элементом. В контактном элементе создается постоянное напряжение. Вес измеряемого груза образует механическую деформацию и разрывает цепь. Мостовая схема подключения тензодатчика основана на законе Ома, при котором: если все сопротивления имеют одинаковые значения, то ток, проходящий через резисторы, также будет иметь равные значения. Здесь воздействие из вне (действие силы веса) принято называть «внешним фактором», а преобразование сигнала «внутренним». Тогда принцип действия основан на анализе внешнего фактора при помощи внутреннего.
В большинстве весов сигнал передается на терминал, который преобразует его в значение массы груза. Но в некоторых весах аналоговый электрический сигнал преобразуется в цифровую величину и уже «цифра» (внутренний фактор) передается на обработку в терминал. Балочные датчики, как правило, используются в весах небольшой грузоподъёмности, например, платформенных (до 10-20 тонн).
В платформенных весах используется обычно не один датчик. В этом случае применяется разветвительная коробка (сумматор). С помощью этого сумматора для аналоговых датчиков можно произвести юстировку по сопротивлению. Установку датчиков рекомендуется производить с помощью экранированного кабеля с целью исключения внешних помех.
Точность тензодатчиков веса
Применение и неисправности
В крановых весах используется S-образный датчик, деформация, которую он измеряет – это растяжение. В автомобильных весах используются вертикальные. Внешний фактор здесь – сжатие.
При замене датчика в весах необходимо очень внимательно учитывать все параметры.
Датчики могут работать годами даже при интенсивном их использовании, но бережном отношении. Самая распространенная причина выхода из строя датчика это превышение его НПВ. Превышение может быть как статическим, так и динамическим. Проще говоря на весы можно аккуратно положить груз, превышающий его предельную нагрузку. А можно груз, не превышающий предельную нагрузку бросить на весы.
Также распространенной причиной поломки датчика является использование его в агрессивной среде. На фото показаны датчики, использовавшиеся в во влажном помещении с растворами натриевой соли.
Выбираем тензодатчик
Материал, представленный в данной статье рассчитан на новичков, но, возможно, будет полезен и опытным специалистам.
Как выбрать тензодатчик?
С каждым годом тензодатчики находят все большее применение в различных технических областях. Многие компании предлагают богатый ассортимент тензодатчиков различного качества и по различным ценам. Как не запутаться в многообразии предлагаемых типов и сделать правильный выбор?
Для начала определимся с терминологией. Иногда тензодатчик называют как датчик веса, датчик силы, тензометрический датчик, тензорезисторный датчик- все это обозначает обычно одно и то же. Иногда тензорезистор называют тензодатчиком, но мы считаем, что это не верно, тензорезистор- это сам резистор который заключается в пленку и клеится внутри тензодатчика.
Основные характеристики тензодатчиков
Схема подключения тензодатчика. Наиболее распространенной является «четырехжильная» схема подключения, такая схема используется в обычных случаях. В случаях, когда имеется существенная разница сопротивлений кабелей смежных тензодатчиков, используется «шестижильная» схема подключения, такая схема позволяет компенсировать электрическое сопротивление кабелей тензодатчиков.
Класс точности тензодатчика. В соответствии с OIML R 60 классы точности датчиков распространяются в очень широком диапазоне, но в реальности классы точности тензодатчиков соответствуют от D1 до С6. Наибольшее применение нашел класс точности C3, что примерно соответствует комбинированной погрешности равной 0.02%. Использование более точных датчиков требует обоснования. Кроме всего прочего существенное влияние на точность может оказать весовой терминал.
Другие характеристики тензодатчиков. Кроме вышеперечисленных основных характеристик следует обратить внимание на рабочий диапазон температур, рабочий коэффициент передачи (РКП), рекомендуемое и максимальное напряжение питания, класс защиты, входное и выходное сопротивление, длину и диаметр кабеля.
Специалисты компании ТОКВЕС подберут тензодатчик и сопутствующие приборы исключительно под Вашу задачу.
Что такое тензодатчик? Разница между тензометрическим датчиком и тензорезисторным датчиком
Тензодатчик веса – это основной и, пожалуй, главный элемент весового оборудования. Именно от того, каким типом тензодатчика оснащены Ваши весы, напрямую зависит точность и скорость измерений.
Общие сведения
Устройство и принцип действия тензометрических датчиков
Принцип работы системы измерения веса с использованием тензодатчика предельно прост: под действием массы груза, в тензодатчике возникает механическая деформация, которую и учитывает датчик, преобразует её в электрический аналоговый или цифровой сигнал, и передаёт на индикатор веса, на котором и отображается масса взвешиваемого груза.
Особенности тензодатчиков
Тензодатчики используются практически во всех современных электронных весоизмерительных системах и системах дозирования – бункерных и крановых весах, весовых дозаторах и т.д. Они обеспечивают высокую точность измерений, устойчивы к воздействию окружающей среды, а современные технологии позволяют добиться систематизации и автоматизации всего процесса измерения, используя оборудование с электронными тензодатчиками.
Следует отметить следующие возможности и преимущества тензорезисторных весоизмерительных датчиков:
Среди многообразия форм, типов тензометрических датчиков, среди датчиков, различных по цене и качеству сложно сделать правильный выбор.
Как выбрать тензодатчик?
При покупке тензодатчика следует учитывать следующие показатели:
Выбирая тип тензометрического датчика, также следует обратить внимание на следующие характеристики: рабочий диапазон температур, рабочий коэффициент передачи, класс защиты, диаметр и длину кабеля, входное и выходное сопротивление, рекомендуемое и максимальное напряжение питания.
Виды тензорезисторных датчиков
Одноточечные тензодатчики. Главным их как преимуществом, так и недостатком является возможность создания весоизмерительной системы используя лишь один датчик. Такие датчики применяются в фасовочном и дозирующем оборудовании, а также в конструкциях небольших платформенных весов с малой нагрузкой на платформу.
Тензодатчики балочного (консольного) типа (консольная балка сдвига). Используются как чувствительные элементы в весах и весоизмерительных системах с общим НПВ в 5-7 тонн.
S-образные тензодатчики (балка на растяжение-сжатие). Предназначаются для использования в подвесных и бункерных весах. Датчики укомплектованы шарнирными подвесами, за счет которых снижается затрачиваемое время на установку и запуск оборудования. В основе работы таких тензодатчиков лежит принцип преобразования механической силы растяжения/сжатия в электрический сигнал, пропорциональный этой механической силе.
Цилиндрические тензодатчики. Работают по принципу преобразования показаний механической деформации при сжатии в пропорциональный электрический сигнал. Чаще всего применяются при выпуске новых или модернизации старых вагонных, автомобильных или многотонных бункерных весов, а также в испытательных стендах.
Колонные датчики. Силоизмеряющий элемент выполнен в виде колонны. Применяются в автомобильных весах, железнодорожных весах и т.д.
Датчики платформенного типа. Используются в производстве автомобильных, вагонных, бункерных и емкостных весов.
Торсионные тензодатчики. Также называются тензодатчиками мембранного типа, шайбами, «таблетками», круглыми датчиками. Используются для производства автомобильных, железнодорожных и емкостных весов, а также в конвейерном весовом оборудовании.
Прочие. Включают в себя специализированные узкопрофильные модели.
Вывод
Подводя итоги, можно сказать, что тензодатчик – это важный элемент, составляющий основу механизма любого электронного весоизмерительного оборудования. Электронное весовое оборудование, в отличие от механического оборудования, благодаря применению датчиков силы, стало менее громоздким, более точным и намного более функциональным. Электронная система с применением тензодатчиков позволила перейти на качественно новый уровень работы и полностью автоматизировать контрольно-измерительные процессы.
Класс точности тензодатчиков c3 что значит
Главная государственная инспекция Туркменистана
3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 26 июня 1997 г. N 231 межгосударственный стандарт ГОСТ 30129-96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1998 г.
5 ИЗДАНИЕ (октябрь 2002 г.) с Поправкой (ИУС 10-2002)
1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Требования, установленные в настоящем стандарте, являются обязательными.
Основные положения стандарта соответствуют рекомендации Международной организации законодательной метрологии (МОЗМ) MP 60.
2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 12.2.007.0-75 ССБТ. Изделия электротехнические. Общие требования безопасности
ГОСТ 12997-84 Изделия ГСП. Общие технические условия
ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
3 ОПРЕДЕЛЕНИЯ И ОБОЗНАЧЕНИЯ
, (1)
. (2)
4 КЛАССИФИКАЦИЯ, ОСНОВНЫЕ ПАРАМЕТРЫ
4.1 В зависимости от нормируемых значений метрологических характеристик датчики могут быть четырех классов точности: А, В, С, D.
4.2 Число поверочных интервалов датчиков в зависимости от класса точности должно составлять, единиц:
для датчиков класса точности
от 5000 до 100000 включ.
от 500 до 10000 включ.
от 100 до 1000 включ.
4.3 Пределы допускаемой погрешности датчика по входу в зависимости от его класса точности и диапазона измерения должны соответствовать указанным в таблице 1.
Диапазоны измерения для датчиков классов точности
Пределы допускаемой погрешности
Св. 50000 до 200000 включ.
Св. 5000 до 20000 включ.
Св. 500 до 2000 включ.
Св. 50 до 200 включ.
4.4 Условное обозначение датчика должно включать в себя:
— число поверочных интервалов в тысячах единиц;
— границы диапазона рабочих температур в градусах Цельсия (обозначаются в виде дроби, числитель и знаменатель которой соответствуют значениям нижней и верхней границ).
Примеры записи условных обозначений:
— датчика класса точности D, имеющего 500 поверочных интервалов, работающего на изгиб, с границами диапазона рабочих температур минус 10 и плюс 50 °С:
— датчика универсального, при сжатии относящегося к классу точности С, имеющего 1000 поверочных интервалов, с границами диапазона рабочих температур плюс 5 и плюс 40 °С, а при растяжении относящегося к классу точности С, имеющего 2000 поверочных интервалов, с границами диапазона рабочих температур плюс 5 и плюс 50 °С:
4.5 Значения наибольшего и наименьшего пределов измерения должны быть установлены в технических условиях на датчики конкретного типа.
5 ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
5.1 Датчики изготовляют в соответствии с требованиями настоящего стандарта и технических условий на датчики конкретного типа по рабочим чертежам, утвержденным в установленном порядке.
5.2 Размах значений выходного сигнала (разность между наибольшим и наименьшим значениями выходного сигнала датчика, приведенными ко входу, соответствующими одной и той же нагрузке, дифференцированно для повторных нагружений или повторных разгружений) не должен превышать абсолютного значения пределов допускаемой погрешности по 4.3 при пяти повторных измерениях для датчиков классов точности А, В и при трех повторных измерениях для датчиков классов точности С и D.
Тензодатчик: принцип работы, устройство, типы, схемы подключения
Системы контроля производят постоянное наблюдение за состоянием различных механизмов, положением рабочих органов и, в том числе, контролируют вес. Для измерения величины веса и дальнейшего применения данных в логических схемах устанавливается тензометрический датчик (тензодатчик). Что это такое и как он работает мы рассмотрим в данной статье.
Что такое тензодатчик?
Тензометрический датчик, в соответствии с п.2.1.2 ГОСТ 8.631-2013 представляет собой весоизмерительный элемент, который реагирует на изменение величины физического воздействия (усилия) и переводит его в электрический сигнал. Фактически это резистор, меняющий параметр омического сопротивления, по отношению к прилагаемой силе. На практике широко используются для измерения массы и нагрузки в весоизмерительных системах. В зависимости от сферы применения используются различные типы тензодатчиков, отличающихся как принципом действия, так и конструктивными особенностями.
Конструкция
В качестве примера рассмотрим наиболее простой вариант тензодатчика, где в роли чувствительного элемента выступает тензорезистор. Конструктивно его можно представить в виде тонкой упругой проволоки или пленки, распределенной по контролируемой поверхности.
Работа тензорезистора основывается на законе Гука, гласящем, что изменение электрического сопротивления по отношению к исходному положению элемента пропорционально удлинению или сжатию сенсора. Руководствуясь данным принципом определяется коэффициент пропорциональности:
На практике это реализуется следующим образом (рисунок 1):
Рис. 1. Устройство тензорезистора
При нахождении в состоянии покоя дорожки тензорезистора имеют определенное сечение и длину проводника. Сопротивление всего резистивного элемента тензодатчика будет определяться по формуле:
Таким образом, в случае удлинения тензодатчика длина проводящих дорожек увеличивается, а поперечное сечение уменьшается. Как результат, омическое сопротивление тензорезистора будет повышаться. При сжатии произойдет обратный процесс – длина проводящих элементов уменьшиться, а их поперечное сечение увеличиться. В результате сжатия сопротивление тензодатчика уменьшиться, что и лежит в основе принципа его работы.
Принцип работы
В большинстве случаев тензодатчик функционирует не от одного тензорезистора, а включает в себя мостовую измерительную схему. Такой принцип получил название моста Уитстона и реализуется следующим образом (рисунок 2):
Рис. 2. Принцип действия тензодатчика
Как видите на рисунке, в плечи моста включены четыре тензорезистора, которые расположены на гибкой подложке, что обеспечивает им упругую деформацию в ходе измерений. Все резистивные элементы тензодатчика подбираются равнозначными, что обеспечивает на выходе в состоянии покоя нулевое значение разности потенциалов в точках + S и – S. Это обозначает, что в ненагруженном идеальном тензодатчике не будет протекать ток в выходной цепи измерительного прибора. В реальном устройстве, все равно существует токовая нагрузка из-за конструктивных отличий резистивных деталей, температурных колебаний.
Как только к измерительному органу прибора будет приложена механическая нагрузка, гибкое основание деформируется, от чего изменятся рабочие параметры всех резисторов в цепи моста тензодатчика. В большинстве случаев попарно происходит сжатие и растяжение тензорезисторов (рисунок 3):
Рис. 3. Воздействие нагрузки на тензодатчик
Как видите, на рисунке два резистора сжимаются, а другие два растягиваются, в результате чего происходит искажение моста. Электрическая цепь выходит из равновесия и через выход тензодатчика начинает протекать электрический ток. О чем будет свидетельствовать отклонение стрелки гальванометра или дисплей оборудования, реагирующий на изменение разности потенциалов. Как только нагрузка перестанет воздействовать на тензодатчик, гибкая пластина вернется в исходное состояние, а измерительный мост снова перейдет в состояние равновесия.
На данном примере мы рассмотрели простейший вариант четырехпроводного тензометрического датчика. Но на практике также используются пяти и шестипроводные весоизмерительные сенсоры, что обусловлено типом конкретного устройства.
Сфера применения тензометрических датчиков охватывает ряд устройств самого различного назначения. Поэтому для измерения величины физического воздействия применяются тензодатчики разных типов. Разделение сенсоров по видам осуществляется на основании нескольких факторов.
Рис. 4. Типы датчиков по форме грузоприемного основания
Так, в зависимости от формы грузоприемного основания выделяют:
В зависимости от вида метода измерения все тензодатчики подразделяются на:
В соответствии с п.1.2 ГОСТ 28836-90 по характеру прилагаемого усилия тензодатчики можно разделить на те, которые реагируют на сжатие, растяжение и универсальные.
Схемы подключения
На практике применяются различные способы подключения тензодатчика в общую цепь. Наиболее простой вариант – схема четырехпроводного подключения, которая приведена на рисунке 6 ниже:
Рис. 6. Четырехпроводная схема подключения
В данном случае схема подключения подразумевает строгое соблюдение цветовой маркировки проводов: красного и белого для подачи напряжения питания, а черного и зеленого для съема получаемого сигнала. Пятый провод используется для заземления корпуса оборудования, в некоторых моделях используется экран для устранения помех. Такой вариант применяется для силовых датчиков, слаботочного оборудования, устанавливаемого непосредственно в месте измерения и фиксации результата. На практике может реализоваться следующим образом:
Рис. 7. Практическая реализация четырехпроводной схемы подключения
Когда весоизмерительный блок удален от контрольного блока, используется шестипроводная схема для исключения влияния омического сопротивления проводов питания на результат измерений.
Рис. 8. Шестипроводная схема с цепью обратной связи
Выводы + E и – E применяются для подачи напряжения питания на тензодатчик. С клемм + Sen и – Sen снимается падение напряжения на проводах, которое затем вычитается из результирующего сигнала. Контакты + S и – S используются для съема показаний, функция вычитания реализуется следующим образом:
Рис. 9. Практическая реализация вычитания напряжения
Назначение
Тензодатчик устанавливается в различных приборах и приспособлениях для отслеживания реакции на физическое воздействие. На сегодняшний день сфера его применения охватывает самые различные отрасли промышленности и народного хозяйства, где он используется для:
Как выбрать?
При выборе модели для измерения какого-либо физического усилия или веса, необходимо руководствоваться основными параметрами сенсора. К таким характеристикам относятся: