Что такое жестокость тела при каких деформациях
Дополнительным понятием является гибкость или податливость: чем более гибкий объект, тем он менее жесткий.
СОДЕРЖАНИЕ
Расчеты
Следует отметить, что для тела с несколькими степенями свободы вышеупомянутое уравнение обычно не применяется, поскольку приложенная сила создает не только отклонение в своем собственном направлении (или степени свободы), но также и в других направлениях.
Для тела с несколькими степенями свободы, чтобы вычислить конкретную прямую жесткость (диагональные члены), соответствующая степень свободы остается свободной, а остальные должны быть ограничены. При таком условии, приведенное выше уравнение можно использовать для получения жесткости, напрямую связанной с неограниченной степенью свободы. Соотношения между силами реакции (или моментами) и произведенным прогибом представляют собой жесткости соединения.
Согласие
Вращательная жесткость
На аналогичной основе выводятся и другие меры жесткости, в том числе:
Отношение к эластичности
Точно так же жесткость прямого участка на кручение равна
Обратите внимание, что жесткость на кручение имеет размеры [сила] * [длина] / [угол], так что в системе СИ единицами измерения являются Н * м / рад.
В частном случае неограниченного одноосного растяжения или сжатия модуль Юнга можно рассматривать как меру жесткости конструкции.
Приложения
Сила упругости
Сила: что это за величина
В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.
Сила — это физическая векторная величина, которую воздействует на данное тело со стороны других тел.
Она измеряется в Ньютонах — это единица измерения названа в честь Исаака Ньютона.
Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.
Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.
Деформация
Деформация — это изменение формы и размеров тела (или части тела) под действием внешних сил
Происходит деформация из-за различных факторов: при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела.
Деформация является деформацией, пока сила, вызывающая эту деформацию, не приведет к разрушению.
На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преимущественно перпендикулярно (нормально) приложенной силой, а другие — преимущественно с силой, приложенной по касательной.
По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:
Сила упругости: Закон Гука
Деформацию тоже можно назвать упругой (при которой тело стремится вернуть свою форму и размер в изначальное состояние) и неупругой (когда тело не стремится вернуться в исходное состояние).
При деформации возникает сила упругости— это та сила, которая стремится вернуть тело в исходное состояние, в котором оно было до деформации.
Сила упругости, возникающая при упругой деформации растяжения или сжатия тела, пропорциональна абсолютному значению изменения длины тела. Выражение, описывающее эту закономерность, называется законом Гука.
Какой буквой обозначается сила упругости?
Закон Гука
Fупр = kx
Fупр — сила упругости [Н]
k — коэффициент жесткости [Н/м]
х — изменение длины (деформация) [м]
Изменение длины может обозначаться по-разному в различных источниках. Варианты обозначений: x, ∆x, ∆l.
Это равноценные обозначения — можно использовать любое удобное.
Поскольку сила упругости направлена против направления силы, с которой это тело деформируется (она же стремится все «распрямить»), в Законе Гука должен быть знак минус. Часто его и можно встретить в разных учебниках. Но поскольку мы учитываем направление этой силы при решении задач, знак минус можно не ставить.
Задачка
На сколько удлинится рыболовная леска жесткостью 0,3 кН/м при поднятии вверх рыбы весом 300 г?
Решение:
Сначала определим силу, которая возникает, когда мы что-то поднимаем. Это, конечно, сила тяжести. Не забываем массу представить в единицах СИ – килограммах.
Если принять ускорение свободного падения равным 10 м/с*с, то модуль силы тяжести равен :
Тогда из Закона Гука выразим модуль удлинения лески:
Выражаем модуль удлинения:
Подставим числа, жесткость лески при этом выражаем в Ньютонах:
x=3/(0,3 * 1000)=0,01 м = 1 см
Ответ: удлинение лески равно 1 см.
Параллельное и последовательное соединение пружин
В Законе Гука есть такая величина, как коэффициент жесткости— это характеристика тела, которая показывает его способность сопротивляться деформации. Чем больше коэффициент жесткости, тем больше эта способность, а как следствие из Закона Гука — и сила упругости.
Чаще всего эта характеристика используется для описания жесткости пружины. Но если мы соединим несколько пружин, то их суммарная жесткость нужно будет рассчитать. Разберемся, каким же образом.
Последовательное соединение системы пружин
Последовательное соединение характерно наличием одной точки соединения пружин.
При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:
Коэффициент жесткости при последовательном соединении пружин
1/k = 1/k₁ + 1/k₂ + … + 1/k_i
k — общая жесткость системы [Н/м] k1, k2, …, — отдельные жесткости каждого элемента [Н/м] i — общее количество всех пружин, задействованных в системе [-]
Параллельное соединение системы пружин
Последовательное соединение характерно наличием двух точек соединения пружин.
В случае когда пружины соединены параллельно величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:
Коэффициент жесткости при параллельном соединении пружин
k — общая жесткость системы [Н/м] k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м] i — общее количество всех пружин, задействованных в системе [-]
Задачка
Какова жесткость системы из двух пружин, жесткости которых k₁ = 100 Н/м, k₂ = 200 Н/м, соединенных: а) параллельно; б) последовательно?
Решение:
а) Рассмотрим параллельное соединение пружин.
При параллельном соединении пружин общая жесткость
k = k₁ + k₂ = 100 + 200 = 300 Н/м
б) Рассмотрим последовательное соединение пружин.
При последовательном соединении общая жесткость двух пружин
1/k = 1/100 + 1/200 = 0,01 + 0,005 = 0,015
k = 1000/15 = 200/3 ≃ 66,7 Н/м
График зависимости силы упругости от жесткости
Закон Гука можно представить в виде графика. Это график зависимости силы упругости от изменения длины и по нему очень удобно можно рассчитать коэффициент жесткости. Давай рассмотрим на примере задач.
Задачка 1
Определите по графику коэффициент жесткости тела.
Решение:
Из Закона Гука выразим коэффициент жесткости тела:
Снимем значения с графика. Важно выбрать одну точку на графике и записать для нее значения обеих величин.
Например, возьмем вот эту точку.
В ней удлинение равно 2 см, а сила упругости 2 Н.
Переведем сантиметры в метры: 2 см = 0,02 м И подставим в формулу: k = F/x = 2/0,02 = 100 Н/м
Ответ:жесткость пружины равна 100 Н/м
Задачка 2
На рисунке представлены графики зависимости удлинения от модуля приложенной силы для стальной (1) и медной (2) проволок равной длины и диаметра. Сравнить жесткости проволок.
Решение:
Возьмем точки на графиках, у которых будет одинаковая сила, но разное удлинение.
Мы видим, что при одинаковой силе удлинение 2 проволоки (медной) больше, чем 1 (стальной). Если выразить из Закона Гука жесткость, то можно увидеть, что она обратно пропорциональна удлинению.
Значит жесткость стальной проволоки больше.
Ответ: жесткость стальной проволоки больше медной.
Научная электронная библиотека
Лекция 1. ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
Прочность, жесткость, устойчивость, – как понятия определяющие надёжность конструкций в их сопротивлении внешним воздействиям. Расчётные схемы (модели): твёрдого деформируемого тела, геометрических форм элементов конструкций. Внутренние силы в деформируемых телах и их количественные меры. Метод сечений. Напряжённое состояние. Перемещения и деформации. Понятия упругости и пластичности. Линейная упругость (закон Гука). Принцип независимости действия сил (принцип суперпозиции).
Основные понятия. Сопротивление материалов, наука о прочности (способности сопротивляться разрушению при действии сил) и деформируемости (изменении формы и размеров) элементов конструкций сооружений и деталей машин. Таким образом, данный раздел механики дает теоретические основы расчета прочности, жесткости и устойчивости инженерных конструкций.
Под нарушением прочности понимается не только разрушение конструкции, но и возникновение в ней больших пластических деформаций. Пластическая деформация – это часть деформации, которая не исчезает при разгрузке, а пластичность – способность материала сохранять деформацию.Возникновение пластических деформаций связано с нарушением нормальной работы конструкции и поэтому пластические деформации считаются недопустимым.
Жесткость – это способность конструкции (или материала) сопротивляться деформированию. Иногда деформация конструкции, отвечающей условию прочности, может воспрепятствовать нормальной ее эксплуатации. В таком случае конструкция имеет недостаточную жесткость.
Устойчивость – это способность конструкции сохранять положение равновесия, отвечающее действующей на нее нагрузке.
Конструкции, как правило, имеют сложную форму, отдельные элементы которой можно свести к простейшим типам, являющимисяосновными объектами изучения сопротивления материалов: стержни, пластинки, оболочки, массивы, для которых устанавливаются соответствующие методы расчёта на прочность, жёсткость и устойчивость при действии статических и динамических нагрузок, т.е. расчет реальной конструкции начинается с выбора расчетной схемы. Выбор расчетной схемы начинается со схематизации свойств материала и характера деформирования твердого тела, затем выполняется схематизация геометрической.Стержень – тело, у которого один размер (длина) значительно превышает два других размера.
Оболочка – это тело, ограниченное двумя криволинейными поверхностями, у которого один размер (толщина) много меньше двух других размеров. Пластина – это тело, ограниченное двумя параллельными плоскостями.
Массив – тело, у которого все три размера имеют один порядок.
Базируясь на законах и выводах теоретической механики, сопротивление материалов, помимо этого, учитывает способность реальных материалов деформироваться под действием внешних сил.
При выполнении расчетов принимаются допущения, связанные со свойствами материалов и с деформацией тела.
1. Материал считается однородным (независимо от его микроструктуры физико-механические свойства считаются одинаковыми во всех точках).
2. Материал полностью заполняет весь объем тела, без каких-либо пустот (тело рассматривается как сплошная среда).
3. Обычно сплошная среда принимается изотропной, т.е. предполагается, что свойства тела, выделенного из нее, не зависят от его ориентации в пределах этой среды. Материалы, имеющие различные свойства в разных направлениях, называют анизотропными (например, дерево).
4. Материал является идеально упругим (после снятия нагрузки все деформации полностью исчезают, т.е. геометрические размеры тела полностью или частично восстанавливаются). Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью.
5. Деформации тела считаются малыми по сравнению с его размерами. Это допущение называется принципом начальных размеров. Допущение позволяет при составлении уравнений равновесия пренебречь изменениями формы и размеров конструкции.
6. Перемещения точек тела пропорциональны нагрузкам, вызывающим эти перемещения (до определенной величины деформации материалов подчиняются закону Гука). Для линейно деформируемых конструкций справедлив принцип независимости действия сил (или принцип суперпозиции): результат действия группы сил не зависит от последовательности нагружения ими конструкции и равен сумме результатов действия каждой из этих сил в отдельности.
7. Предполагается, что в сечениях, достаточно удаленных от мест приложения нагрузки, характер распределения напряжений не зависит от конкретного способа нагружения. Основанием для такого утверждения служит принцип Сен-Венана.
8. Принимается гипотеза плоских сечений (гипотеза Бернулли): плоские поперечные сечения стержня до деформации остаются плоскими и после деформации.
Внутри любого материала имеются внутренние межатомные силы. При деформации тела изменяются расстояния между его частицами, что в свою очередь приводит к изменению сил взаимного притяжения между ними. Отсюда, как следствие, возникают внутренние усилия. Для определения внутренних усилий используют метод сечения. Для этого тело мысленно рассекают плоскостью и рассматривают равновесие одной из его частей (рис. 4).
Рис. 4. Выявление внутренних усилий по методу сечений
Метод заключается в следующем:
1 Разрезаем систему (на части).
2. Отбрасываем одну часть.
3. Заменяем действие отброшенной части на оставшуюся внутренними силами упругости (приложим в сечении усилия, способные уравновесить внешние силы, действующие на отсеченную часть).
4. Составляем уравнения равновесия, составленное для отсеченной части и находим значения усилий.
Используем метод сечений и приведем внутренние силы к центру тяжести поперечного сечения стержня. В результате приведения мы получим результирующую силу R, равную главному вектору и пару сил с моментом M, равным главному моменту системы.
Проектируя R и M на координатные оси, получаем в общем случае 6 алгебраических величин – 6 внутренних силовых факторов:
Содержание:
Сила упругости:
Мы уже знаем, что на все тела, которые находятся на Земле или вблизи неё, действует сила тяжести. Эта сила является причиной того, что тела, лишённые опор или подвесов, например капли дождя, брошенный вверх камень, листва, оторвавшаяся от ветви дерева, падают на Землю.
Опыт 1. Положим на две опоры стальную пластину. Она будет находиться в горизонтальном положении (рис. 72, а). Когда на середину ее поставим гирю, то под действием силы тяжести гиря вместе со стальной пластиной будет двигаться вниз до тех пор, пока не остановится (рис. 72, б).
Изменение формы или размеров тела называют деформацией. Вследствие движения тела вниз стальная пластина прогибается — деформируется. В результате деформации в пластине возникает сила, с которой она действует на гирю, стоящую на ней. Эту силу назвали силой упругости, она направлена вверх, т. е. в сторону, противоположную силе тяжести. Когда сила упругости по значению сравняется с силой тяжести, опора и тело остановятся.
Одним из видов деформации является прогиб. Чем больше прогибается опора, тем большей становится сила упругости, действующая со стороны опоры на тело. До того как тело поставили на пластину, деформация в ней отсутствовала, как и сила упругости. По мере перемещения гири прогиб пластины возрастал и увеличивалась сила упругости. Свойства упругих тел (пружин) всесторонне изучил более 300 лет назад английский естествоиспытатель Роберт Гук. Проделанные им опыты позволили установить закон, названный его именем — закон Гука, а именно:
Сила упругости прямо пропорциональна деформации (удлинению) тела (пружины) и направлена противоположно направлению перемещения частиц тела при деформации.
Если удлинение тела, т. е. изменение его длины, обозначить через х (рис. 73, б), а силу упругости — через
где — коэффициент пропорциональности, который называют жёсткостью тела. У каждого тела свое значение жесткости.
Чем больше жёсткость тела (пружины, провода, стержня и т. п.), тем меньше оно изменяет собственную длину под действием данной силы. Единицей жёсткости в СИ является один ньютон на метр . Закон Гука даёт возможность сравнивать между собой тела с разной массой, т. е. взвешивать их. Чем больше масса тела, которое подвешиваем к пружине, тем больше она растягивается. На этом принципе устроен прибор для измерения силы — динамометр.
Опыт 2. Установим тело на опору (рис. 73, а). Вследствие взаимодействия деформируется не только опора, но и само тело, которое притягивается Землёй. Деформированное тело давит на опору с силой, которую называют весом тела Р. Если тело подвесить к пружине, то оно деформируется и при этом растягивает пружину, в результате чего возникает сила упругости (рис. 73, б).
Тело действует на подвес с силой, которую называют весом тела Р.
Не следует путать силу тяжести с весом тела. Сила тяжести действует на само тело со стороны Земли, а вес этого тела — это сила упругости, которая действует на опору или подвес.
Если горизонтальная опора или подвес с телом находится в состоянии покоя или движется прямолинейно и равномерно, то вес тела равен силе тяжести и определяется по формуле:
где Р— вес тела; = 9,81 ; — масса тела.
Начиная с 4 октября 1957 г., когда космическая ракета вывела на орбиту первый искусственный спутник Земли, началась эра освоения человеком космического пространства. Человек побывал на Луне, готовится экспедиция на Марс. Мы часто слышим по радио и телевидению, читаем в газетах и журналах, что космонавты во время полёта в космическом корабле по орбите вокруг Земли находятся в особом состоянии, называемом невесомостью.
Что это за состояние и можно ли его наблюдать на Зеше?
Опыт 3. Верхний конец пружины с помощью нити прикрепим к неподвижной опоре, а к нижнему подвесим грузик (рис. 74, а). Под действием силы тяжести он начинает двигаться вниз. Пружина будет растягиваться до тех пор, пока возникшая в ней сила упругости не уравновесит силу тяжести. Перережем или пережжём нить, которая удерживает тело с пружиной. Пружина и тело начинают свободно падать, при этом растяжение у пружины исчезает, а это и означает, что тело потеряло вес и не действует на подвес (рис. 74, б).
Сила тяжести при этом никуда не исчезает и заставляет тело падать на Землю.
Так же если скорости падения тела и опоры (подвеса) одинаковы, то тело не действует на них, и его вес равен нулю. Если искусственный спутник или космическая станция обращается вокруг Земли, то космонавты и все предметы внутри них двигаются с одинаковой скоростью относительно Земли. Вследствие этого тела, размещённые на подставках, не действуют на них, подвешенные к пружинам тела не растягивают их, разлитая из сосуда вода плавает в виде большой капли, маятниковые часы перестают работать, космонавты без особых усилий передвигаются, «летая» или «плавая» в корабле.
Если бы сила тяжести внезапно исчезла, то космический корабль вследствие инерции удалялся бы от Земли в космическое пространство по прямой линии. В состоянии невесомости находится любое тело во время свободного, т. е. безопорного падения. Если при обычных условиях не учитывать сопротивление воздуха, то в невесомости находится спортсмен, прыгающий с вышки в бассейн или выполняющий упражнения на батуте; любой из нас кратковременно находится в состоянии невесомости во время бега, когда обе ноги отрываются от Земли.
Кстати:
Пример №1
Назовите силы, которые действуют на груз, подвешенный к концу спиральной пружины.
Ответ: на груз действуют сила тяжести, направленная вертикально вниз, и сила упругости, направленная противоположно удлинению пружины.
Пример №2
Каков вес космического аппарата массой 383 кг на поверхности планеты Марс? На Марсе= 3,9 .
Дано:
= 383 кг
= 3,9
Решение:
Чтобы определить вес космического аппарата, используем формулу:
.
.
Ответ: Р= 1493,7 Н.
Пример №3
Космонавту в условиях невесомости необходимо заниматься физическими упражнениями. Понадобятся ли ему гантели?
Ответ: обычные упражнения на подъём веса в состоянии невесомости теряют смысл, но упражнения на преодоление инертности гантелей (махи, повороты, разведения рук и т. п.) выполнять вполне возможно. Тем не менее гантели как лишний груз скорее заменят на эспандер.
Измерение силы
Устройство динамометра (от греческих слов динамис — сила; метрео — измеряю) основано на том, что сила упругости пружины по закону Гука прямо пропорциональная удлинению (деформации) пружины.
Простейший пружинный динамометр изготовляют так. На дощечке закрепляют пружину, которая заканчивается внизу стержнем с крючком (рис. 79, а). К верхней части стержня прикрепляют указатель. На дощечке отмечают положение указателя — это нулевой штрих. Потом к крючку подвешивают разновесы массой 102 г. На этот грузик действует сила тяжести 1 Н. Под действием силы 1 Н пружина растянется, указатель опустится вниз. Отмечают его новое положение и напротив метки ставят цифру 1 (рис. 79, б). Потом подвешивают разновесы массой 204 г и ставят метку 2, которая означает, что в этом положении сила упругости пружины равна 2 Н (рис. 79, в). С помощью разновесов массой 306 г наносят метку 3
Можно нанести деления, соответствующие десятым долям ньютона: 0,2; 0,4; 0,6 и т. д. Для этого промежутки между соседними штрихами нужно поделить на пять одинаковых частей.
Деформация тел
Одним из признаков твердых тел является их свойство сохранять свою форму длительное время. Однако такое свойство наблюдается только тогда, когда на тело не действуют другие тела. Взаимодействуя с другими телами, оно изменяет свою форму. Это изменение не всегда заметно, однако оно всегда существует.
Что такое деформация
Изменение форм или размеров тела называют деформацией.
Явление деформации подчиняется действию определенных законов. Один из таких законов можно проиллюстрировать опытом. Повесим на штативе резиновую нить и измерим ее длину. Подвесим к нити груз определенной массы и увидим, что он начнет опускаться вниз, растягивая нить. Скорость его будет уменьшаться, и он в конце концов остановится, а длина нити будет больше начальной. По результатам опыта можно сделать вывод, что при деформации нити возникла сила, направленная в сторону, противоположную деформации.
Эту силу назвали силой упругости.
Силу, возникающую при деформации называют силой упругости.
Как рассчитать силу упругости
В предыдущем опыте добавим еще одну гирьку. Нить растянется больше. Если измерим изменение длины нити для этого случая, то увидим, что она стала в два раза большей, чем до этого. Такая закономерность характерна для всех случаев незначительной деформации тел и отображает действие закона Гука.
В чем суть закона Гука
Математически эта зависимость записывается так:
Здесь — сила упругости; — деформация тела; — коэффициент упругости.
Сила упругости пропорциональна деформации тела и направлена всегда в противоположном деформации направлении.
Закон Гука можно проиллюстрировать с помощью графика (рис. 46). На нем зависимость силы упругости от деформации изображена прямой линией, поскольку сила пропорциональна деформации. На рисунке показана зависимость силы упругости от деформации для двух различных тел. Графики являются прямыми линиями, но имеют различный наклон, что свидетельствует о различном значении коэффициента упругости для различных тел.
Закон Гука выполняется для таких деформаций, после снятия которых тело приобретает предыдущие размеры и форму. Такие деформации называют упругими.
В чем природа сил упругости
Возникновение силы упругости связано с силами взаимодействия между молекулами. При деформации изменяется расстояние между молекулами, а поэтому преобладают или силы притяжения (при растяжении тела), или силы отталкивания (при сжатии тела).
Силы упругости учитывают и используют в различных приспособлениях и машинах. Автомобили, железнодорожные вагоны и другие транспортные средства имеют рессоры. Их использование делает движение более мягким, так как наезд колеса на камень или другое препятствие вызывает только деформацию рессоры и ощутимо не изменяет положения самого транспортного средства.
В странах, где часто бывают землетрясения, дома ставят на специальные пружины, которые во время толчка деформируются, а здание остается практически неподвижным.
Что такое сила упругости
Как известно, взаимодействие тел является не только причиной изменения их скоростей, но и деформации. Сила, вызывающая это явление, называется силой упругости.
Английский естествоиспытатель, ученый и экспериментатор Роберт Гук установил закон, названный его именем. Исследуя упругие деформации различных тел, Гук установил, что при деформации упругих тел их растяжение или сжатие прямо пропорционально силе, которая их растягивает или сжимает (рис. 2.16):
Во время решения задач по расчету силы упругости необходимо четко представлять ее направление и к какому именно телу она приложена. Следует помнить, что деформация тела под действием любой внешней силы вызывает силу упругости, которую определяют по закону Гука.
Если в поле силы тяготения к пружине подвесить тело (рис. 2.18), то под действием этой силы оно будет опускаться.
В пружине возникнет сила упругости, которая будет постепенно возрастать.
Когда сила упругости сравняется с силой тяготения ( = mg), тело будет находиться в состоянии покоя. Обе рассмотренные силы приложены к одному телу и направлены в противоположных направлениях. В состоянии равновесия тела их равнодействующая равна нулю.
Силу упругости, действующую на тело со стороны подвеса или опоры, называют силой реакции опоры.
Природа сил упругости — электромагнитная. Она обусловлена взаимодействием молекул и атомов, из которых и состоят тела (положительно заряженные протоны, которые входят в состав ядер атомов, и электроны, движущиеся вокруг ядер).
Силы взаимодействия между молекулами и атомами имеют такую особенность: при увеличении расстояния между ними они являются силами притяжения, а при уменьшении — силами отталкивания. Этим и объясняется возникновение сил упругости и направление их действия.
Пример №4
К проволоке подвесили груз массой 10 кг (рис. 2.19). Длина проволоки увеличилась на 0,5 мм. Какова ее жесткость, если ускорение силы тяжести 10
g =10
или
Таким образом, mg = kx, отсюда
Ответ:
Работа силы упругости
Как известно, сила упругости — это сила, возникающая при деформации тела внешними воздействиями. Наиболее удобно изучать действие этой силы на примере пружин или резинового шнура, поскольку достаточно малые внешние силы вызывают значительное изменение их длины, которое легко можно измерить.
Рассмотрим систему, состоящую из пружины и тела некоторой массы, лежащего на достаточно гладкой горизонтальной поверхности (рис. 137, а). Правый конец пружины прикреплен к стене, а левый — к телу. Направим ось Ох, как показано на рисунке 137. Если тело сместить на расстояние х1 от положения равновесия, то пружина будет действовать на него с силой упругости (рис. 137, б), направленной влево. Модуль проекции этой силы на ось Ox равен kx1, где k — жесткость пружины.
Теперь отпустим тело. Тогда под действием силы упругости пружины тело будет смещаться влево. При этом движении сила упругости совершает работу.
Предположим, что тело переместилось из положения А в положение В (рис. 137, в) так, что расстояние от положения равновесия стало х2. Модуль перемещения тела равен x1-x2. Направления действия силы и перемещения тела совпадают.
Рис. 137
Для нахождения работы, совершенной пружиной по перемещению тела, необходимо учесть, что сила упругости меняется, так как ее величина зависит от удлинения пружины. Воспользуемся графиком зависимости модуля силы от удлинения пружины (рис. 138). Как нам уже известно, работа силы численно равна площади под графиком силы. В нашем случае площади трапеции. Нетрудно сообразить, что
Рис. 138
Из полученной формулы следует, что работа силы упругости пружины зависит только от координат x1 и х2 начального и конечного положений. Из рисунка 137 видно, что x1 и х2 — это и удлинение пружины, и координаты ее конца в выбранной системе координат. Следовательно, работа силы упругости не зависит от формы траектории. А если траектория замкнута, то работа равна нулю. Итак, сила упругости является потенциальной силой. Удлинение пружины или резинового шнура часто обозначают через Δl, поэтому
(2)
где ∆l1 и Δl2 — удлинения пружины в начальном и конечном положениях.
Формулу (1) для работы силы упругости можно записать и в таком виде:
(3)
В правой части полученного равенства стоит изменение величины со знаком «минус». Поэтому, как и в случае силы тяжести, величина представляет собой потенциальную энергию упруго деформированного тела:
(4)
(5)
Таким образом, работа силы упругости равна изменению потенциальной энергии упруго деформированного тела (пружины), взятому с противоположным знаком.
Если в конечном состоянии удлинение пружины равно нулю, то формула (5) с учетом (1) принимает вид:
Отсюда следует, что потенциальная энергия упруго деформированной пружины равна работе сил упругости при переходе тела (пружины) в состояние, в котором его деформация равна нулю. Например, растянутая пружина закрывает дверь подъезда (рис. 139).
Рис. 139
О потенциальной энергии тела, на которое действует сила тяжести, мы говорили, что это энергия взаимодействия тела с Землей. Потенциальная энергия упруго деформированного тела — это тоже энергия взаимодействия. Однако в этом случае речь идет о взаимодействии частиц, из которых состоит тело.
Главные выводы:
Силы электромагнитной природы
Известно, что наэлектризованные электрическим зарядом тела притягиваются или отталкиваются силами электрического характера. Если же электрические заряды в телах будут двигаться друг относительно друга, то дополнительно к электрическим силам между телами возникают магнитные силы. Эти силы, прочно связанные между собой, невозможно отделить друг от друга, потому что они действуют одновременно. Поэтому говорят, что взаимодействие между наэлектризованными телами происходит в результате действия сил электромагнитной природы. Силы упругости и трения, являющиеся причиной изменения скорости механического движения тела, также являются силами электромагнитной природы.
Как вы знаете, любое твердое тело под действием внешней силы испытывает деформацию.
Деформацией называется изменение формы и размеров тела под действием внешней силы. В результате деформации происходит смещение атомов и молекул относительно друг друга: расстояние между атомами или увеличивается, или уменьшается. Такое смещение вызывает соответствующее увеличение или уменьшение действия сил электростатического взаимодействия зарядов внутри атомов (положительных ядер и отрицательных электронов). В результате, в деформированной части тела возникает сила электромагнитной природы, «старающаяся» вернуть тело в первоначальное состояние — силой упругости.
Если после прекращения действия на тело внешней силы оно под действием силы упругости полностью восстанавливает свою форму и размеры, то такая деформация называется упругой деформацией, если же это не происходит, пластической деформацией.
Различают следующие виды деформации: растяжение-сжатие, изгиб, кручение и сдвиг. При деформации растяжение-сжатие изменяется расстояние между частями тела, а при деформации сдвига части тела сдвигаются параллельно друг другу. Деформация изгиб состоит из комбинации деформации сжатия и растяжения частей твердого тела, а деформация кручения из комбинации деформации сдвига (b).
Закон Гука
Деформация растяжение-сжатие твердого тела характеризуется величинами, называемыми абсолютным удлинением и относительным удлинением.
Здесь — начальная, а — конечная длина твердого тела, — его абсолютное удлинение, а — относительное удлинение (если то наблюдается упругая деформация). В СИ — безразмерная величина.
Твердое тело, находящееся в деформированном состоянии, характеризуется механическим напряжением.
Механическое напряжение — это физическая величина, равная отношению модуля силы упругости возникшей во время деформации, к площади поперечного сечения тела
Закон Гука: При малых деформациях механическое напряжение прямо пропорционально относительному удлинению:
— коэффициент пропорциональности, называемый модулем Юнга.
Приняв во внимание уравнения (2.24) и (2.25) в законе Гука (2.26), получим:
называется коэффициентом упругости или жесткостью стержня.
Жесткость, являясь коэффициентом пропорциональности между силой упругости и абсолютным удлинением, зависит от материала, из которого изготовлено тело, и его геометрических размеров.
Приняв во внимание формулу (2.28) в формуле (2.27), закон Гука можно записать следующим образом:
Обычно закон Гука имеет вид:
Где выражает абсолютное удлинение, а знак минус показывает, что сила упругости направлена против направления смещения частиц тела (против удлинения).
Единица измерения жесткости в СИ:
Диаграмма растяжения
Максимальное значение механического спряжения, при котором еще выполняется закон Гука, называется пределом пропорциональности
На участке графика выше цифры 1 закон Гука нарушается, наблюдается нелинейная деформация;
b) участок 1-2 — соответствует участку, на котором упругая деформация сохраняется, то есть после прекращения внешнего воздействия образец возвращается к своим первоначальным размерам.
Максимальное напряжение, при котором еще возникает упругая деформация, называется пределом упругости Механическое напряжение больше предела упругости вызывает пластическую деформацию;
d) участок 3-4 — это участок «текучести» образца. Механическое напряжение имеет постоянное значение, относительное удлинение увеличивается;
e) участок 4—5 — это участок с резким увеличением механического напряжения, соответствует разрушению тела.
Максимальное механическое напряжение, приводящее к разрушению тела, называется пределом прочности
Силы упругости и упругие деформации
Сила упругости (реакции) возникает в ответ на действие деформирующей силы. Она противоположна по направлению и равна по модулю деформирующей силе. Сила упругости приложена к телу, находящемуся на опоре или подвесе.
Силы упругости обусловлены взаимодействиями между атомами и, как и силы трения, являются по своей природе электромагнитными силами. Они возникают при смещении атомов вещества из положений равновесия. В результате деформации силы электрических взаимодействий стремятся возвратить атомы в первоначальные положения.
Деформация — изменение формы или размеров тела, обусловленное изменением взаимного расположения атомов тела под действием внешних сил или при изменении температуры тела.
Если после прекращения действия сил размер и форма тела полностью восстанавливаются, то деформация называется упругой, а если нет — пластической.
Деформации бывают нескольких видов: растяжение или сжатие (рис. 40); сдвиг (рис. 41); кручение (рис. 42); изгиб (рис. 43).
Упругое тело — одна из механических моделей физических тел, используемая для описания в тех случаях, когда деформацией тела пренебречь нельзя.
Силы упругости возникают между телами только в том случае, если тела деформированы. Движение упругого тела или его взаимодействие с другими телами сопровождается такими изменениями формы, что при прекращении взаимодействия или возврате к исходному механическому состоянию его первоначальная форма восстанавливается. Это означает, что в упругом теле можно пренебречь остаточной деформацией, т. е. изменениями формы и размеров тел после прекращения их взаимодействия.
Особенности сил упругости:
модуль силы упругости возникающей в теле при упругих деформациях, прямо пропорционален его абсолютному удлинению (сжатию)
где k — жесткость тела, — длина недеформированного тела, l — длина деформированного тела.
Из соотношения (1) определим жесткость тела:
Единицей жесткости в СИ является ньютон на метр
Жесткость k не зависит от приложенных сил и величины деформации и определяется только размером деформируемого тела и веществом, из которого оно состоит.
Впервые свой закон Роберт Гук опубликовал в 1676 г. в виде анаграммы ut tension sic vis — как напряжение, так сила.
Деформации характеризуют двумя величинами: абсолютное удлинение (сжатие) и относительное удлинение (сжатие)
Пружина является моделью деформируемого тела, деформации которого подчиняются закону Гука. Она обладает пренебрежимо малой массой и описывается двумя параметрами — длиной в недеформированном состоянии и жесткостью k.
Со стороны опоры на тело действует сила нормальной реакции опоры (рис. 44), которая возникает вследствие деформации опоры. Со стороны тела на опору действует сила давления Со стороны подвеса на тело действует сила упругости нити Со стороны тела на подвес действует сила натяжения подвеса направленная вниз.
Для тонкого однородного упругого стержня, деформированного некоторой силой направленной вдоль него, модуль абсолютного удлинения (сжатия) прямо пропорционален длине стержня обратно пропорционален площади его поперечного сечения S и определяется упругими свойствами вещества, задаваемыми модулем упругости или модулем Юнга E:
Для выяснения физического смысла модуля Юнга и определения единицы его измерения выразим Е из приведенной формулы:
Если предположить, что в этом соотношении то модуль Юнга численно равен силе, способной увеличить длину образца вдвое, если площадь его поперечного сечения равна единице. На практике такое удлинение возможно только для резины или искусственно создаваемых материалов.
Единицей модуля упругости Е в СИ является ньютон на метр квадратный
Модули Юнга некоторых веществ приведены в таблице 1.
Модули Юнга Е некоторых веществ
Еще одной из основных величин, характеризующих механические свойства тел, является механическое напряжение которое позволяет записать закон
Гука с использованием модуля Юнга и относительного удлинения. Из формулы для модуля упругости следует, что
Откуда, с учетом определения относительного удлинения и напряжения, находим
Жесткость стержня k определяется через модуль упругости (модуль Юнга) Е, его длину и площадь поперечного сечения S соотношением
Сила упругости и вес тела
Первый в мире космонавт Ю. А. Гагарин вспоминал: «я почувствовал, что какая-то непреодолимая сила все больше вжимает меня в кресло. И хотя оно было расположено так, чтобы минимизировать влияние гигантского веса, который навалился на мое тело, было трудно пошевелить рукой и ногой».
Нажмем на кнопку авторучки — пружина в корпусе сожмется, и ее длина уменьшится; помнем в руке кусочек пластилина — изменится его форма; надавим пальцем на губку — одновременно изменятся и форма, и размеры губки.
Изменение формы и (или) размеров тела называют деформацией.
Если прекратить сжимать пружину, давить на губку, то есть устранить действие внешних сил, и пружина, и губка полностью восстановят свои форму и размеры, то есть перестанут быть деформированными (рис. 12.1). А вот форма кусочка пластилина не восстановится — пластилин ее «не помнит» и останется деформированным.
Рис. 12.1. После прекращения действия силы упругие тела восстанавливают свои форму и размеры
Деформации, которые полностью исчезают после прекращения действия на тело внешних сил, называют упругими; деформации, которые сохраняются, называют пластическими.
Причина возникновения и упругой, и пластической деформаций в том, что под действием сил, приложенных к телу, его различные части смещаются относительно друг друга. По характеру смещения частей различают деформации сжатия, растяжения, сдвига, изгиба, кручения. Остановимся на упругой деформации сжатия и растяжения. Для этого воспользуемся механической моделью твердого тела (рис. 12.2).
Рис. 12.2. Механическая модель твердого тела: параллельные пластины (1), имитирующие слои молекул, соединены пружинами (2), имитирующими взаимодействия между молекулами
Нажмем на модель твердого тела сверху рукой: верхние пластины начнут смещаться вниз, нижние же останутся почти неподвижными, и в результате модель изменит размеры — деформируется. Примерно так же при сдавливании твердого тела смещаются в направлении действия силы слои его молекул, в результате чего размеры тела уменьшаются. Такую деформацию называют деформацией сжатия — ее испытывают ножки столов и стульев, фундаменты домов и т. п. (см. рис. 12.3, а).
Если же тело растягивать, слои молекул раздвинутся и тело также изменит свои размеры. Такую деформацию называют деформацией растяжения — ее испытывают тросы, цепи в подъемных устройствах, стяжки между вагонами и т. д. (см. рис. 12.3, б).
Физическую величину, равную изменению длины тела при деформации растяжения или сжатия, называют удлинением ∆l (или x):
где l — длина деформированного тела; — начальная длина тела (рис. 12.4).
Когда возникает сила упругости
Если вы сгибаете ветку дерева, сжимаете эспандер, натягиваете тетиву лука, то есть деформируете эти тела, вы чувствуете их сопротивление: со стороны тел начинает действовать сила, стремящаяся восстановить то состояние тела, в котором тело находилось до деформации. Эту силу называют силой упругости (рис. 12.5).
Сила упругости — это сила, которая возникает при деформации тела и стремится вернуть тело в недеформированное состояние. Изучая деформацию тонких длинных стержней, английский естествоиспытатель Роберт Гук (1635–1703) установил закон, позже получивший название закон Гука:
При малых упругих деформациях растяжения или сжатия сила упругости прямо пропорциональна удлинению тела:
Знак «–» показывает, что сила упругости направлена в сторону, противоположную удлинению.
Закон Гука можно записать и для модулей: , где x = ∆l — удлинение. Поскольку сила упругости прямо пропорциональна удлинению тела, график зависимости — прямая (рис. 12.6).
Коэффициент пропорциональности k называют жесткостью тела (стержня, балки, шнура, пружины). Жесткость тела можно определить, воспользовавшись законом Гука:
Единица жесткости в СИ — ньютон на метр: .
Какова природа силы упругости
Известно, что все тела состоят из атомов (молекул, ионов), а те, в свою очередь, — из ядра, имеющего положительный заряд, и электронного облака, заряд которого отрицательный. Между заряженными составляющими частиц вещества существуют силы электромагнитного притяжения и отталкивания.
Если тело не деформировано, силы притяжения равны силам отталкивания. При деформации взаимное расположение частиц в теле изменяется. Если расстояние между частицами увеличивается, то электромагнитные силы притяжения становятся больше, чем силы отталкивания, и частицы начинают притягиваться друг к другу. Если расстояние между частицами уменьшается, то больше становятся силы отталкивания. Другими словами, частицы вещества «стремятся» вернуться к состоянию равновесия. Таким образом, сила упругости — результат электромагнитного взаимодействия частиц вещества.
Некоторые виды сил упругости
Обычно силу упругости обозначают символом . Однако есть силы упругости, для обозначения которых используются отдельные символы. Если тело расположено на опоре, то опора деформируется (прогибается).
Деформация опоры вызывает появление силы упругости, действующей на тело перпендикулярно поверхности опоры. Эту силу называют силой нормальной реакции опоры и обозначают символом (рис. 12.7).
Если тело закрепить на подвесе (нити, жгуте, шнуре), то подвес деформируется (растягивается) и будет действовать на тело с определенной силой упругости, направленной вдоль подвеса, — силой натяжения подвеса (рис. 12.8).
Все тела вследствие гравитационного притяжения сдавливают или прогибают опору либо растягивают подвес. Силу, характеризующую такое действие тел, называют весом и обозначают символом .
На рис. 12.9, 12.10 показано, как возникает эта сила, если тело находится вблизи поверхности Земли и действует на горизонтальную опору или вертикальный подвес. В таких случаях согласно третьему закону Ньютона вес тела по модулю равен силе нормальной реакции опоры или силе натяжения подвеса и направлен противоположно им: .
Именно такие случаи возникновения веса тела мы будем рассматривать далее. Обратите внимание! Если тело находится в состоянии покоя или равномерного прямолинейного движения, то вес тела по модулю равен силе тяжести ( ) и совпадает с ней по направлению.
Действительно, в таком случае сила тяжести и сила нормальной реакции опоры (или сила натяжения подвеса) скомпенсированы, поэтому они равны по модулю и противоположны по направлению:; так как Но, в отличие от силы тяжести, которая приложена к телу, вес приложен к опоре или подвесу.
Вес тела и сила тяжести различаются и по своей природе: сила тяжести — это гравитационная сила, а природа веса тела — электромагнитная.
При каких условиях вес тела изменяется
Нам кажется, что в невесомости находятся только космонавты на орбите, а перегрузки испытывают только летчики при выполнении фигур высшего пилотажа и космонавты. Но это не так.
Увеличение веса (перегрузка) | Увеличение веса (перегрузка) Уменьшение веса |
---|---|
Рассмотрим тело, которое находится на опоре и вместе с ней движется в гравитационном поле Земли с ускорением . На тело действуют две силы: сила тяжести и сила нормальной реакции опоры . Свяжем систему координат с Землей и направим ось ОY вертикально вверх. Согласно второму закону Ньютона: . Запишем это уравнение в проекциях на ось ОY для двух случаев. | |
Вес тела, которое движется с ускорением, направленным вертикально вверх, больше, чем вес этого же тела в состоянии покоя. Когда есть перегрузки, не только тело сильнее давит на опору, но и части тела сильнее давят друг на друга. | Вес тела, которое движется с ускорением, направленным вертикально вниз, меньше, чем вес этого же тела в состоянии покоя. Если в этом случае ускорение движения тела равно ускорению свободного падения вес тела равен нулю. |
Как испытать состояние невесомости
Состояние тела, при котором вес тела равен нулю, называют состоянием невесомости. В состоянии невесомости на тело действует только сила тяжести (тело свободно падает), и наоборот: если тело движется только под действием силы тяжести, оно находится в состоянии невесомости. В состоянии невесомости тело не давит на опору и части тела не давят друг на друга; космонавт на орбите (вспомните: на орбите космический корабль движется только под действием силы тяжести) не чувствует своего веса, предмет, выпущенный из его рук, не падает. Дело в том, что сила тяжести сообщает каждому телу и любой части тела одинаковое ускорение.
Чтобы испытать состояние невесомости, достаточно подпрыгнуть. А вот для тренировки космонавтов используют тот факт, что из-за действия силы тяжести траектория тела, брошенного под углом к горизонту, — параболическая. Если в верхних слоях атмосферы самолет направить по восходящей траектории («бросить» под углом к горизонту) и существенно уменьшить тягу двигателей, то некоторое время все тела в самолете будут находиться в состоянии невесомости.
Пример №5
Самолет делает «мертвую петлю», описывая в вертикальной плоскости окружность радиусом 250 м. Во сколько раз вес летчика в нижний части траектории больше силы тяжести, если скорость движения самолета 100 м/с?
Анализ физической проблемы. Самолет движется по окружности, а значит, летчик имеет центростремительное ускорение. На пояснительном рисунке изобразим силы, действующие на летчика, и направление его ускорения. Выберем одномерную систему координат, которую свяжем с точкой на поверхности Земли, ось ОY направим вертикально вверх.
Решение:
По второму закону Ньютона: .
В проекциях на ось ОY:
Окончательно:
Найдем значения искомых величин:
Анализ результата. Вес летчика в 5 раз больше силы тяжести — это реальный результат.
Ответ: = 5.
Алгоритм решения задач на движение тела под действием нескольких сил
Выводы:
Физика в цифрах:
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.