Что такое нулевая гипотеза
Нулевая гипотеза
Из Википедии — свободной энциклопедии
Нулевая гипотеза — принимаемое по умолчанию предположение о том, что не существует связи между двумя наблюдаемыми событиями, феноменами. Так, нулевая гипотеза считается верной, пока нельзя доказать обратное. Опровержение нулевой гипотезы, то есть приход к заключению о том, что связь между двумя событиями, феноменами существует, — главная задача современной науки. Статистика как наука даёт чёткие условия, при наступлении которых нулевая гипотеза может быть отвергнута.
Часто в качестве нулевой гипотезы выступают предположения об отсутствии взаимосвязи или корреляции между исследуемыми переменными, об отсутствии различий (однородности) в распределениях (параметрах распределений) в двух и/или более выборках. Для обозначения нулевой гипотезы часто используют символ H0.
При статистическом выводе исследователь пытается показать несостоятельность нулевой гипотезы, несогласованность её с имеющимися опытными данными, то есть отвергнуть гипотезу. При этом подразумевается, что должна быть принята другая, альтернативная (конкурирующая) гипотеза, исключающая нулевую гипотезу. Если же данные, наоборот, подтверждают нулевую гипотезу, то она не отвергается. Это похоже на принцип презумпции невиновности, когда подозреваемого считают невиновным (подразумевается нулевая гипотеза), пока не будет доказано обратное (нулевая гипотеза отвергнута) сверх необходимых сомнений (то есть в статистически значимой степени).
Что такое нулевая гипотеза
Поскольку статистика как метод исследования имеет дело с данным, в которых интересующие исследователя закономерности искажены различными случайными факторами, большинство статистических вычислений сопровождается проверкой некоторых предположений или гипотез об источнике этих данных.
Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным. Примеры статистических гипотез в педагогических исследованиях:
Гипотеза 1. Успеваемость класса стохастически (вероятностно) зависит от уровня обучаемости учащихся.
Гипотеза 3. Проблемное обучение в первом классе эффективнее по сравнению с традиционной методикой обучения в отношении общего развития учащихся.
Нулевая гипотеза – это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п. Примером нулевой гипотезы в педагогике является утверждение о том, что различие в результатах выполнения двумя группами учащихся одной и той же контрольной работы вызвано лишь случайными причинами.
Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующей или альтернативной гипотезой. Так, для упомянутого выше примера гипотезы Н0 в педагогике одна из возможных альтернатив Н1 будет определена как: уровни выполнения работы в двух группах учащихся различны и это различие определяется влиянием неслучайных факторов, например, тех или других методов обучения.
Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость проверить ее. Так как проверку производят статистическими методами, то данная проверка называется статистической.
При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:
— можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода );
— можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода ).
Ошибка, состоящая в принятии нулевой гипотезы, когда она ложна, качественно отличается от ошибки, состоящей в отвержении гипотезы, когда она истинна. Эта разница очень существенна вследствие того, что различна значимость этих ошибок. Проиллюстрируем вышесказанное на следующем примере.[2]
Пример 1. Процесс производства некоторого медицинского препарата весьма сложен. Несущественные на первый взгляд отклонения от технологии вызывают появление высокотоксичной побочной примеси. Токсичность этой примеси может оказаться столь высокой, что даже такое ее количество, которое не может быть обнаружено при обычном химическом анализе, может оказаться опасным для человека, принимающего это лекарство. В результате, прежде чем выпускать в продажу вновь произведенную партию, ее подвергают исследованию на токсичность биологическими методами. Малые дозы лекарства вводятся некоторому количеству подопытных животных, например, мышей, и результат регистрируют. Если лекарство токсично, то все или почти все животные гибнут. В противном случае норма выживших велика.
Исследование лекарства может привести к одному из возможных способов действия: выпустить партию в продажу (а1), вернуть партию поставщику для доработки или, может быть, для уничтожения (а2).
Рассмотрим случай когда предпринимается действие а2, в то время когда а1 является более предпочтительным. Это означает, что вследствие неточностей в проведении эксперимента партия нетоксичного лекарства классифицировалась как опасная. Последствия ошибки могут выражаться в финансовом убытке и в увеличении стоимости лекарства. Однако случайное отвержение совершенно безопасного лекарства, очевидно, менее нежелательно, чем, пусть даже изредка происходящие гибели пациентов. Отвержение нетоксичной партии лекарства – ошибка второго рода.
Допустимая вероятность ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).
Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).
Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия, скажем, в средних арифметических экспериментальной и контрольной групп настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:
первый уровень — 5% (р=5%); где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе испытуемых для каждого эксперимента;
второй уровень — 1%, т. е. соответственно допускается риск ошибиться только в одном случае из ста;
третий уровень — 0,1%, т. е. допускается риск ошибиться только в одном случае из тысячи.
Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов эксперимента и потому редко используется. В педагогических исследованиях, не нуждающихся в очень высоком уровне достоверности, представляется разумным принять 5% уровень значимости.
Статистика критерия (Т) — некоторая функция от исходных данных, по значению которой проверяется нулевая гипотеза. Чаще всего статистика критерия является числовой функцией, но она может быть и любой другой функцией, например, многомерной функцией.
Всякое правило, на основе которого отклоняется или принимается нулевая гипотеза называется критерием для проверки данной гипотезы. Статистический критерий (критерий) – это случайная величина, которая служит для проверки статистических гипотез.
4.2 Общие принципы проверки статистических гипотез
Процедура проверки нулевой гипотезы в общем случае включает следующие этапы:
1. задается допустимая вероятность ошибки первого рода (Ркр=0,05)
2. выбирается статистика критерия (Т)
3. ищется область допустимых значений
4. по исходным данным вычисляется значение статистики Т
5. если Т (статистика критерия) принадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. [1] Это о сновной принцип проверки всех статистических гипотез.
Обычно первые три этапа выполняют профессиональные математики, а последние два – пользователи для своих частных данных.
При проверке статистических гипотез с помощью статистических пакетов, программа выводит на экран вычисленное значение уровня значимости Р и подсказку о возможности принятия или неприятия нулевой гипотезы.
Если вычисленное значение Р превосходит выбранный уровень Ркр,
то принимается нулевая гипотеза, а в противном случае — альтернативная гипотеза. Чем меньше вычисленное значение Р, тем более исходные данные противоречат нулевой гипотезе.
Число степеней свободы у какого-либо параметра определяют как число опытов, по которым рассчитан данный параметр, минус количество одинаковых значений, найденных по этим опытам независимо друг от друга.
Величина Ф называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, то есть вероятность правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше Ф, тем вероятность ошибки 2-го рода меньше.
4.3 Понятие гипотезы в педагогике
Гипотеза исследования – методологическая характеристика исследования, научное предположение, выдвигаемой для объяснения какого-либо явления и требующее проверки на опыте для того, чтобы стать достоверным научным знанием. От простого предположения гипотеза отличается рядом признаков. К ним относят:
— соответствие фактам, на основе которых и для обоснования которых она создана
— приложимость к возможно более широкому кругу явлений
В гипотезе органически сливаются два момента: выдвижение некоторого положения и последующее логическое и практическое доказательство. [2]
Педагогическая гипотеза (научное предположен ие о преимуществе того или иного метода) в процессе статистического анализа переводится на язык статистической науки и заново формулируется, по меньшей мере, в виде двух статистических гипотез.
Возможны два типа гипотез:[4] первый тип — описательные гипотезы, в которых описываются причины и возможные следствия. Второй тип — объяснительные : в них дается объяснение возможным следствиям из определенных причин, а также характеризуются условия, при которых эти следствия обязательно последуют, т. е. объясняется, в силу каких факторов и условий будет данное следствие. Описательные гипотезы не обладают предвидением, а объяснительные обладают таким свойством. Объяснительные гипотезы выводят исследователей на предположения о существовании определенных закономерных связей между явлениями, факторами и условиями.
Гипотезы в педагогических исследованиях могут предполагать, что одно из средств (или группа их) будет более эффективным, чем другие средства. Здесь гипотетически высказывается предположение о сравнительной эффективности средств, способов, методов, форм обучения.
Более высокий уровень гипотетического предсказания состоит в том, что автор исследования высказывает гипотезу о том, что какая-то система мер будет не только лучше другой, но и из ряда возможных систем она кажется оптимальной с точки зрения определенных критериев. Такая гипотеза нуждается в еще более строгом и оттого более развернутом доказательстве.
[2] Психолого-педагогический словарь для учителей и руководителей общеобразовательных учреждений. – Ростов-н/ Д: Феникс, 1998, стр. 92
Нулевая гипотеза в статистике: пример. Проверка нулевой гипотезы
Статистика — сложная наука об измерении и анализе различных данных. Как и во многих других дисциплинах, в этой отрасли существует понятие гипотезы. Так, гипотеза в статистике — это какое-либо положение, которое нужно принять или отвергнуть. Причём в данной отрасли есть несколько видов таких допущений, схожих между собой по определению, но отличающихся на практике. Нулевая гипотеза — сегодняшний предмет изучения.
От общего к частному: гипотезы в статистике
От основного определения предположений отходит ещё одно, не менее важное, — статистическая гипотеза есть изучение генеральной совокупности важных для науки объектов, относительно коих учёными делаются выводы. Ее можно проверить с помощью выборки (части генеральной совокупности). Приведём несколько примеров статистических гипотез:
1. Успеваемость всего класса, возможно, зависит от уровня образования каждого учащегося.
2. Начальный курс математики в равной степени усваивается как детьми, пришедшими в школу в 6 лет, так и детьми, пришедшими в 7.
Простой гипотезой в статистике называют такое предположение, которое однозначно характеризует определённый параметр величины, взятой учёным.
Сложная состоит из нескольких или бесконечного множества простых. Указывается некоторая область или нет точного ответа.
Полезно понимать несколько определений гипотез в статистике, чтобы не путать их на практике.
Концепция нулевой гипотезы
Нулевая гипотеза — это теория о том, что есть некие две совокупности, которые не различаются между собой. Однако на научном уровне нет понятия «не различаются», но есть «их сходство равно нулю». От этого определения и было образовано понятие. В статистике нулевая гипотеза обозначается как Н0. Причём крайним значением невозможного (маловероятного) считается от 0.01 до 0.05 или менее.
Лучше разобрать, что такое нулевая гипотеза, пример из жизни поможет. Педагог в университете предположил, что различный уровень подготовки учащихся двух групп к зачётной работе вызван незначительными параметрами, случайными причинами, не влияющими на общий уровень образования (разница в подготовке двух групп студентов равна нулю).
Однако встречно стоит привести пример альтернативной гипотезы — допущения, опровергающего утверждение нулевой теории (Н1). Например: директор университета предположил, что различный уровень в подготовке к зачётной работе у учащихся двух групп вызван применением педагогами разных методик обучения (разница в подготовке двух групп существенна и на то есть объяснение).
Теперь сразу видна разница между понятиями «нулевая гипотеза» и «альтернативная гипотеза». Примеры иллюстрируют эти понятия.
Проверка нулевой гипотезы
Создать предположение — это ещё полбеды. Настоящей проблемой для новичков считается проверка нулевой гипотезы. Именно тут многих и ожидают трудности.
Используя метод альтернативной гипотезы, утверждающей нечто обратное нулевой теории, можно сравнить оба варианта и выбрать верный. Так действует статистика.
Пусть нулевая гипотеза Н0, а альтернативная Н1, тогда:
Здесь c — это некое среднее значение генеральной совокупности, которое предстоит найти, а c0 — данное изначально значение, по отношению к которому проверяется гипотеза. Также есть некоторое число Х — среднее значение выборки, по которому определяется c0.
«Доверительный» способ проверки
Существует наиболее действенный способ, с помощью которого нулевая статистическая гипотеза легко проверяется на практике. Он заключается в построении диапазона значений до 95% точности.
Итак, предположим ситуацию. До ремонта конвейер в день выпускал 32.1 кг конечной продукции, а после ремонта, как утверждает предприниматель, коэффициент полезного действия вырос, и конвейер, по недельной проверке, начал выпускать 39.6 кг в среднем.
Нулевая гипотеза будет утверждать, что ремонт никак не повлиял на КПД конвейера. Альтернативная гипотеза скажет, что ремонт коренным образом изменил КПД конвейера, поэтому производительность его повысилась.
По таблице находим n=7, t = 2,447, откуда формула примет следующий вид:
39,6 – 2,447*4,2 ≤ с ≤ 39,6 + 2,447*4,2;
Разновидности отрицания
До этого рассматривался такой вариант построения гипотезы, где Н0 утверждает что-либо, а Н1 это опровергает. Откуда можно было составить подобную систему:
Но существует ещё два родственных способа опровержения. К примеру, нулевая гипотеза утверждает, что средняя оценка успеваемости класса больше 4.54, а альтернативная тогда скажет, что средняя успеваемость того же класса менее 4.54. И выглядеть в виде системы это будет так:
Объясняем p-значения для начинающих Data Scientist’ов
Я помню, когда я проходил свою первую зарубежную стажировку в CERN в качестве практиканта, большинство людей все еще говорили об открытии бозона Хиггса после подтверждения того, что он соответствует порогу «пять сигм» (что означает наличие p-значения 0,0000003).
Тогда я ничего не знал о p-значении, проверке гипотез или даже статистической значимости.
Я решил загуглить слово — «p-значение», и то, что я нашел в Википедии, заставило меня еще больше запутаться…
При проверке статистических гипотез p-значение или значение вероятности для данной статистической модели — это вероятность того, что при истинности нулевой гипотезы статистическая сводка (например, абсолютное значение выборочной средней разницы между двумя сравниваемыми группами) будет больше или равна фактическим наблюдаемым результатам.
— Wikipedia
Хорошая работа, Википедия.
Ладно. Я не понял, что на самом деле означает р-значение.
Углубившись в область науки о данных, я наконец начал понимать смысл p-значения и то, где его можно использовать как часть инструментов принятия решений в определенных экспериментах.
Поэтому я решил объяснить р-значение в этой статье, а также то, как его можно использовать при проверке гипотез, чтобы дать вам лучшее и интуитивное понимание р-значений.
Также мы не можем пропустить фундаментальное понимание других концепций и определение p-значения, я обещаю, что сделаю это объяснение интуитивно понятным, не подвергая вас всеми техническими терминами, с которыми я столкнулся.
Всего в этой статье четыре раздела, чтобы дать вам полную картину от построения проверки гипотезы до понимания р-значения и использования его в процессе принятия решений. Я настоятельно рекомендую вам пройтись по всем из них, чтобы получить подробное понимание р-значений:
1. Проверка гипотез
Прежде чем мы поговорим о том, что означает р-значение, давайте начнем с разбора проверки гипотез, где р-значение используется для определения статистической значимости наших результатов.
Наша конечная цель — определить статистическую значимость наших результатов.
И статистическая значимость построена на этих 3 простых идеях:
Другими словами, мы создадим утверждение (нулевая гипотеза) и используем пример данных, чтобы проверить, является ли утверждение действительным. Если утверждение не соответствует действительности, мы выберем альтернативную гипотезу. Все очень просто.
Чтобы узнать, является ли утверждение обоснованным или нет, мы будем использовать p-значение для взвешивания силы доказательств, чтобы увидеть, является ли оно статистически значимым. Если доказательства подтверждают альтернативную гипотезу, то мы отвергнем нулевую гипотезу и примем альтернативную гипотезу. Это будет объяснено в следующем разделе.
Давайте воспользуемся примером, чтобы сделать эту концепцию более ясной, и этот пример будет использоваться на протяжении всей этой статьи для других концепций.
Пример. Предположим, что в пиццерии заявлено, что время их доставки составляет в среднем 30 минут или меньше, но вы думаете, что оно больше чем заявленное. Таким образом, вы проводите проверку гипотезы и случайным образом выбираете время доставки для проверки утверждения:
Одним из распространенных способов проверки гипотез является использование Z-критерия. Здесь мы не будем вдаваться в подробности, так как хотим лучше понять, что происходит на поверхности, прежде чем погрузиться глубже.
2. Нормальное распределение
Нормальное распределение — это функция плотности вероятности, используемая для просмотра распределения данных.
Нормальное распределение имеет два параметра — среднее (μ) и стандартное отклонение, также называемое сигма (σ).
Среднее — это центральная тенденция распределения. Оно определяет местоположение пика для нормальных распределений. Стандартное отклонение — это мера изменчивости. Оно определяет, насколько далеко от среднего значения склонны падать значения.
Нормальное распределение обычно связано с правилом 68-95-99.7 (изображение выше).
Классно. Теперь вы можете задаться вопросом: «Как нормальное распределение относится к нашей предыдущей проверке гипотез?»
Поскольку мы использовали Z-тест для проверки нашей гипотезы, нам нужно вычислить Z-баллы (которые будут использоваться в нашей тестовой статистике), которые представляют собой число стандартных отклонений от среднего значения точки данных. В нашем случае каждая точка данных — это время доставки пиццы, которое мы получили.
Обратите внимание, что когда мы рассчитали все Z-баллы для каждого времени доставки пиццы и построили стандартную кривую нормального распределения, как показано ниже, единица измерения на оси X изменится с минут на единицу стандартного отклонения, так как мы стандартизировали переменную, вычитая среднее и деля его на стандартное отклонение (см. формулу выше).
Изучение стандартной кривой нормального распределения полезно, потому что мы можем сравнить результаты теста с ”нормальной» популяцией со стандартизированной единицей в стандартном отклонении, особенно когда у нас есть переменная, которая поставляется с различными единицами.
Z-оценка может сказать нам, где лежат общие данные по сравнению со средней популяцией.
Мне нравится, как Уилл Кёрсен выразился: чем выше или ниже Z-показатель, тем менее вероятным будет случайный результат и тем более вероятным будет значимый результат.
Но насколько высокий (или низкий) показатель считается достаточно убедительным, чтобы количественно оценить, насколько значимы наши результаты?
Кульминация
Здесь нам нужен последний элемент для решения головоломки — p-значение, и проверить, являются ли наши результаты статистически значимыми на основе уровня значимости (также известного как альфа), который мы установили перед началом нашего эксперимента.
3. Что такое P-значение?
Наконец… Здесь мы говорим о р-значении!
Все предыдущие объяснения предназначены для того, чтобы подготовить почву и привести нас к этому P-значению. Нам нужен предыдущий контекст и шаги, чтобы понять это таинственное (на самом деле не столь таинственное) р-значение и то, как оно может привести к нашим решениям для проверки гипотезы.
Если вы зашли так далеко, продолжайте читать. Потому что этот раздел — самая захватывающая часть из всех!
Вместо того чтобы объяснять p-значения, используя определение, данное Википедией (извини Википедия), давайте объясним это в нашем контексте — время доставки пиццы!
Напомним, что мы произвольно отобрали некоторые сроки доставки пиццы, и цель состоит в том, чтобы проверить, превышает ли время доставки 30 минут. Если окончательные доказательства подтверждают утверждение пиццерии (среднее время доставки составляет 30 минут или меньше), то мы не будем отвергать нулевую гипотезу. В противном случае мы опровергаем нулевую гипотезу.
Поэтому задача p-значения — ответить на этот вопрос:
Если я живу в мире, где время доставки пиццы составляет 30 минут или меньше (нулевая гипотеза верна), насколько неожиданными являются мои доказательства в реальной жизни?
Р-значение отвечает на этот вопрос числом — вероятностью.
Чем ниже значение p, тем более неожиданными являются доказательства, тем более нелепой выглядит наша нулевая гипотеза.
И что мы делаем, когда чувствуем себя нелепо с нашей нулевой гипотезой? Мы отвергаем ее и выбираем нашу альтернативную гипотезу.
Если р-значение ниже заданного уровня значимости (люди называют его альфа, я называю это порогом нелепости — не спрашивайте, почему, мне просто легче понять), тогда мы отвергаем нулевую гипотезу.
Теперь мы понимаем, что означает p-значение. Давайте применим это в нашем случае.
P-значение в расчете времени доставки пиццы
Теперь, когда мы собрали несколько выборочных данных о времени доставки, мы выполнили расчет и обнаружили, что среднее время доставки больше на 10 минут с p-значением 0,03.
Это означает, что в мире, где время доставки пиццы составляет 30 минут или меньше (нулевая гипотеза верна), есть 3% шанс, что мы увидим, что среднее время доставки, по крайней мере, на 10 минут больше, из-за случайного шума.
Чем меньше p-значение, тем более значимым будет результат, потому что он с меньшей вероятностью будет вызван шумом.
В нашем случае большинство людей неправильно понимают р-значение:
Р-значение 0,03 означает, что есть 3% (вероятность в процентах), что результат обусловлен случайностью — что не соответствует действительности.
Р-значение ничего не *доказывает*. Это просто способ использовать неожиданность в качестве основы для принятия разумного решения.
— Кэсси Козырков
Вот как мы можем использовать p-значение 0,03, чтобы помочь нам принять разумное решение (ВАЖНО):
По моему мнению, p-значения используются в качестве инструмента для оспаривания нашего первоначального убеждения (нулевая гипотеза), когда результат является статистически значимым. В тот момент, когда мы чувствуем себя нелепо с нашим собственным убеждением (при условии, что р-значение показывает, что результат статистически значим), мы отбрасываем наше первоначальное убеждение (отвергаем нулевую гипотезу) и принимаем разумное решение.
4. Статистическая значимость
Наконец, это последний этап, когда мы собираем все вместе и проверяем, является ли результат статистически значимым.
Недостаточно иметь только р-значение, нам нужно установить порог (уровень значимости — альфа). Альфа всегда должна быть установлена перед экспериментом, чтобы избежать смещения. Если наблюдаемое р-значение ниже, чем альфа, то мы заключаем, что результат является статистически значимым.
Основное правило — установить альфа равным 0,05 или 0,01 (опять же, значение зависит от вашей задачи).
Как упоминалось ранее, предположим, что мы установили альфа равным 0,05, прежде чем мы начали эксперимент, полученный результат является статистически значимым, поскольку р-значение 0,03 ниже, чем альфа.
Для справки ниже приведены основные этапы всего эксперимента:
Если вы хотите узнать больше о статистической значимости, не стесняйтесь посмотреть эту статью — Объяснение статистической значимости, написанная Уиллом Керсеном.
Последующие размышления
Здесь много чего нужно переваривать, не так ли?
Я не могу отрицать, что p-значения по своей сути сбивают с толку многих людей, и мне потребовалось довольно много времени, чтобы по-настоящему понять и оценить значение p-значений и то, как они могут быть применены в рамках нашего процесса принятия решений в качестве специалистов по данным.
Но не слишком полагайтесь на p-значения, поскольку они помогают только в небольшой части всего процесса принятия решений.
Я надеюсь, что мое объяснение p-значений стало интуитивно понятным и полезным в вашем понимании того, что в действительности означают p-значения и как их можно использовать при проверке ваших гипотез.
Сам по себе расчет р-значений прост. Трудная часть возникает, когда мы хотим интерпретировать p-значения в проверке гипотез. Надеюсь, что теперь трудная часть станет для вас немного легче.
Если вы хотите узнать больше о статистике, я настоятельно рекомендую вам прочитать эту книгу (которую я сейчас читаю!) — Практическая статистика для специалистов по данным, специально написанная для data scientists, чтобы разобраться с фундаментальными концепциями статистики.
Узнайте подробности, как получить востребованную профессию с нуля или Level Up по навыкам и зарплате, пройдя платные онлайн-курсы SkillFactory: