Что такое невырожденный треугольник
SPMISCIENCE
Треугольник
Треугольник
[править] Свойства и особенности треугольников
Трём точкам пространства, не лежащим на одной прямой (и образуемому ими невырожденному треугольнику), обязательно соответствует одна и только одна плоскость. Это весьма уникально — так как меньшему количеству точек соответствуют прямая и точка, а уже четыре точки могут находится вне единой плоскости. [1]
Треугольник — это часть плоскости, ограниченная минимально возможным количеством сторон. Любой многоугольник можно точно разбить на треугольники, лишь связав его вершины отрезками, не пересекающими его стороны. С некоторым приближением, на треугольники можно разбить поверхность любой формы, как на плоскости так и в пространстве. Процесс разбиения на треугольники называется триангуляция.
Существует раздел математики, целиком посвящённый изучению закономерностей треугольников — Тригонометрия.
Треугольник, когда не вырожден — всегда выпуклый многоугольник.
Для треугольника всегда существует одна вписанная и одна описанная окружность.
[править] Обозначения
Точки вершин треугольника традиционно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами (α, β, γ), а длины противоположных сторон — прописными латинскими буквами (a, b, c).
[править] Признаки равенства треугольников
Треугольник однозначно (с точностью до конгруэнтности) можно определить по следующим тройкам основных элементов:
Признаки равенства прямоугольных треугольников:
[править] Типы треугольников
Типы треугольников | ||
---|---|---|
Остроугольный | Тупоугольный | Прямоугольный |
Разносторонний | Равнобедренный | Равносторонний |
[править] По величине углов
сумма углов треугольника равна 180°.
Поскольку сумма углов треугольника равна 180°, то не менее двух углов в треугольнике должны быть острыми (меньшими 90°). Выделяют следующие виды треугольников:
[править] По числу равных сторон
[править] Определения, связанные с треугольником
[править] Окружности
[править] Лучи, отрезки и точки
В равнобедренном треугольнике биссектриса, медиана и высота, проведённые к основанию, совпадают. Верно и обратное: если биссектриса, медиана и высота, проведённые из одной вершины, совпадают, то треугольник равнобедренный. Если треугольник разносторонний, то для любой его вершины биссектриса, проведённая из неё, лежит между медианой и высотой, проведёнными из той же вершины.
Серединные перпендикуляры(медиатриссы) к сторонам треугольника также пересекаются в одной точке, которая совпадает с центром описанной окружности.
Середины трёх сторон треугольника, основания трёх его высот и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат на одной окружности, называемой окружностью девяти точек.
В любом треугольнике центр тяжести, ортоцентр, центр описанной окружности и центр окружности девяти точек лежат на одной прямой, называемой прямой Эйлера.
Ортоцентр, инцентр, центроид (центр тяжести), а также некоторые другие точки называются замечательными точками треугольника.
[править] Соотношения в треугольнике
[править] Неравенство треугольника
В невырожденном треугольнике сумма длин двух его сторон больше длины третьей стороны, в вырожденном — равна. Иначе говоря, длины сторон невырожденного треугольника связаны следующими неравенствами.
[править] Теорема о сумме углов треугольника
[править] Теорема синусов
где R — радиус окружности, описанной вокруг треугольника. Из теоремы следует, что если a
[править] Прочие соотношения
Метрические соотношения в треугольнике приведены для треугольника :
[править] Площадь треугольника
Для площади справедливы неравенства:
[править] Вычисление площади треугольника в пространстве с помощью векторов
Пусть вершины треугольника находятся в точках , , .
Введём вектор площади . Длина этого вектора равна площади треугольника, а направлен он по нормали к плоскости треугольника:
Положим , где , , — проекции треугольника на координатные плоскости. При этом
Площадь треугольника равна .
Альтернативой служит вычисление длин сторон (по теореме Пифагора) и далее по формуле Герона.
[править] См. также
В Викисловаре есть статья «треугольник»
Треугольник
Содержание
Элементы треугольника
Треугольник с вершинами A, B и C обозначается как (см. рис.). Треугольник имеет три стороны:
Длины сторон треугольника обозначаются строчными латинскими буквами (a, b, c):
Треугольник имеет следующие углы:
Величины углов при соответствующих вершинах традиционно обозначаются греческими буквами (α, β, γ).
Признаки равенства треугольников
Равенство по двум сторонам и углу между ними
Равенство по стороне и двум прилежащим углам
Равенство по трем сторонам
Треугольник на евклидовой плоскости однозначно (с точностью до конгруэнтности) можно определить по следующим тройкам основных элементов:
Признаки равенства прямоугольных треугольников:
В сферической геометрии и в геометрии Лобачевского существует признак равенства треугольников по трём углам.
Типы треугольников
Типы треугольников | ||
---|---|---|
Остроугольный | Тупоугольный | Файл:Triangle-right.svg Прямоугольный |
Разносторонний | Равнобедренный | Файл:Triangle-equilateral.svg Равносторонний |
По величине углов
сумма углов треугольника равна 180°.
Поскольку в евклидовой геометрии сумма углов треугольника равна 180°, то не менее двух углов в треугольнике должны быть острыми (меньшими 90°). Выделяют следующие виды треугольников:
В геометрии Лобачевского сумма углов треугольника всегда меньше 180°, а на сфере — всегда больше. Разность суммы углов треугольника и 180° называется дефектом. Дефект пропорционален площади треугольника, таким образом, у бесконечно малых треугольников на сфере или плоскости Лобачевского сумма углов будет мало отличаться от 180°.
По числу равных сторон
Определения, связанные с треугольником
Все факты, изложенные в этом разделе, из евклидовой геометрии.
Лучи, отрезки и точки
В равнобедренном треугольнике медиана, высота и биссектриса, проведённые к основанию, совпадают. Верно и обратное: если биссектриса, медиана и высота, проведённые из одной вершины, совпадают, то треугольник равнобедренный. Если треугольник разносторонний, то для любой его вершины биссектриса, проведённая из неё, лежит между медианой и высотой, проведёнными из той же вершины.
Некоторые точки в треугольнике — «парные». Например, существует две точки, из которых все стороны видны либо под углом в 60°, либо под углом в 120°. Они называются точками Торричелли. Также существует две точки, проекции которых на стороны лежат в вершинах правильного треугольника. Это — точки Аполлония. Точки и такие, что и называются точками Брокара.
Прямые
Прямая, проходящая через центр описанной окружности и точку Лемуана, называется осью Брокара. На ней лежат точки Аполлония. Также на одной прямой лежат точки Торричелли и точка Лемуана. Основания внешних биссектрис углов треугольника лежат на одной прямой, называемой осью внешних биссектрис. На одной прямой лежат также точки пересечения прямых, содержащих стороны ортотреугольника, с прямыми, содержащими стороны треугольника. Эта прямая называется ортоцентрической осью, она перпендикулярна прямой Эйлера.
Если на описанной окружности треугольника взять точку, то её проекции на стороны треугольника будут лежать на одной прямой, называемой прямой Симсона данной точки. Прямые Симсона диаметрально противоположных точек перпендикулярны.
Треугольники
Окружности
Треугольник АВС и его окружности: вписанная (синяя), описанная (красная) и три вневписанных (зеленые)
Середины трёх сторон треугольника, основания трёх его высот и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат на одной окружности, называемой окружностью девяти точек или окружностью Эйлера. Центр окружности девяти точек лежит на прямой Эйлера. Окружность девяти точек касается вписанной окружности и трёх вневписанных. Точка касания вписанной окружности и окружности девяти точек называется точкой Фейербаха.
Если от каждой вершины отложить наружу треугольника на прямых, содержащих стороны, отрезки, равные по длине противоположным сторонам, то получившиеся шесть точек лежат на одной окружности — окружности Конвея.
В любой треугольник можно вписать три окружности таким образом, что каждая из них касается двух сторон треугольника и двух других окружностей. Такие окружности называются окружностями Мальфатти.
Центры описанных окружностей шести треугольников, на которые треугольник разбивается медианами, лежат на одной окружности, которая называется окружностью Ламуна.
Эллипсы, параболы и гиперболы
Вписанная коника (эллипс) и её перспектор
В треугольник можно вписать бесконечно много коник (эллипсов, парабол или гипербол). Если в треугольник вписать произвольную конику и соединить точки касания с противоположными вершинами, то получившиеся прямые пересекутся в одной точке, называемой перспектором коники. Для любой точки плоскости, не лежащей на стороне или на её продолжении существует вписанная коника с перспектором в этой точке. [1]
Описанный эллипс Штейнера и чевианы, проходящие через его фокусы
В треугольник можно вписать эллипс, который касается сторон в серединах. Такой эллипс называется вписанным эллипсом Штейнера (его перспектором будет центроид треугольника). [2] Описанный эллипс, который касается прямых, проходящих через вершины параллельно сторонам, называется описанным эллипсом Штейнера. Если аффинным преобразованием («перекосом») перевести треугольник в правильный, то его вписанный и описанный эллипс Штейнера перейдут во вписанную и описанную окружности. Чевианы, проведённые через фокусы описанного эллипса Штейнера (точки Скутина), равны (теорема Скутина). Изо всех описанных эллипсов описанный эллипс Штейнера имеет наименьшую площадь, а изо всех вписанных наибольшую площадь имеет вписанный эллипс Штейнера. [3]
Эллипс Брокара и его перспектор — точка Лемуана
Эллипс с фокусами в точках Брокара называется эллипсом Брокара. Его перспектором служит точка Лемуана. [4]
Свойства вписанной параболы
Перспекторы вписанных парабол лежат на описанном эллипсе Штейнера. [5] Фокус вписанной параболы лежит на описанной окружности, а директриса проходит через ортоцентр. [6] Парабола, вписанная в треугольник, имеющая директрисой прямую Эйлера, называется параболой Киперта. Её перспектор — четвёртая точка пересечения описанной окружности и описанного эллипса Штейнера, называемая точкой Штейнера.
Если описанная гипербола проходит через точку пересечения высот, то она равносторонняя (то есть её асимптоты перпендикулярны). [7] Точка пересечения асимптот равносторонней гиперболы лежит на окружности девяти точек. [7]
Преобразования
Если прямые, проходящие через вершины и некоторую точку, не лежащую на сторонах и их продолжениях, отразить относительно соответствующих биссектрис, то их образы также пересекутся в одной точке, которая называется изогонально сопряжённой исходной (если точка лежала на описанной окружности, то получившиеся прямые будут параллельны). Изогонально сопряжёнными являются многие пары замечательных точек : центр описанной окружности и ортоцентр, центроид и точка Лемуана, точки Брокара. Точки Аполлония изогонально сопряжены точкам Торричелли, а центр вписанной окружности изогонально сопряжён сам себе. Под действием изогонального сопряжения прямые переходят в описанные коники, а описанные коники — в прямые. Так, изогонально сопряжены гипербола Киперта и ось Брокара, гипербола Енжабека и прямая Эйлера, гипербола Фейербаха и линия центров вписанной о описанной окружностей. Описанные окружности подерных треугольников изогонально сопряжённых точек совпадают. Фокусы вписанных эллипсов изогонально сопряжены.
Если продолжить стороны чевианного треугольника некоторой точки и взять их точки пересечения с соответствующими сторонами, то полученные точки пересечения будут лежать на одной прямой, называемой трилинейной полярой исходной точки. Ортоцентрическая ось — трилинейная поляра ортоцентра; трилинейной полярой центра вписанной окружности служит ось внешних биссектрис. Трилинейные поляры точек, лежищих на описанной конике, пересекаются в одной точке (для описанной окружности это точка Лемуана, для описанного эллипса Штейнера — центроид). Композиция изогонального (или изотомического) сопряжения и трилинейной поляры является преобразованием двойственности (если точка, изогонально (изотомически) сопряжённая точке , лежит на трилинейной поляре точки , то трилинейная поляра точки, изогонально (изотомически) сопряжённой точке лежит на трилинейной поляре точки ).
Кубики
Кубика — это кривая третьего порядка (задающаяся уравнением третьей степени). Многие замечательные кубики, связанные с треугольником, строятся следующим образом: фиксируется точка в плоскости (возможно, бесконечно удалённая). Тогда множество таких точек , что прямая проходит через эту точку, является описанной около треугольника кубикой (здесь — точка, изогонально сопряжённая ). Такие кубики проходят также через центры вписанной и вневписанных окружностей, а также через саму фиксированную точку и изогонально сопряжённую ей. [10]
Соотношения в треугольнике
Примечание: в данном разделе , , — это длины трёх сторон треугольника, и , , — это углы, лежащие соответственно напротив этих трёх сторон (противолежащие углы).
Неравенство треугольника
В невырожденном треугольнике сумма длин двух его сторон больше длины третьей стороны, в вырожденном — равна. Иначе говоря, длины сторон треугольника связаны следующими неравенствами:
Теорема о сумме углов треугольника
Теорема синусов
где R — радиус окружности, описанной вокруг треугольника. Из теоремы следует, что если a Теорема косинусов
Теорема тангенсов
Прочие соотношения
Метрические соотношения в треугольнике приведены для :
Решение треугольников
Площадь треугольника
Для площади справедливы неравенства:
Вычисление площади треугольника в пространстве с помощью векторов
Пусть вершины треугольника находятся в точках , , .
Введём вектор площади . Длина этого вектора равна площади треугольника, а направлен он по нормали к плоскости треугольника:
Положим , где , , — проекции треугольника на координатные плоскости. При этом
Площадь треугольника равна .
Теоремы о треугольниках
Теорема Дезарга : если два треугольника перспективны (прямые, проходящие через соответственные вершины треугольников, пересекаются в одной точке), то их соответственные стороны пересекаются на одной прямой.
Теорема Сонда́ : если два треугольника перспективны и ортологичны (перпендикуляры, опущенные из вершин одного треугольника на стороны, противоположные соответственным вершинам треугольника, и наоборот), то оба центра ортологии (точки пересечения этих перпендикуляров) и центр перспективы лежат на одной прямой, перпендикулярной оси перспективы (прямой из теоремы Дезарга).
История изучения
Свойства треугольника, изучающиеся в школе, за редким исключением, известны с античности.