Что такое некрахмальные полисахариды
Полисахариды. Крахмал, гликоген, некрахмальные полисахариды.
Главный полисахарид, который хорошо усваивается организмом человека – это крахмал. Основным его поставщиком являются: картофель, хлеб, макароны, зерновые и бобовые.
Молекула крахмала – полимер, состоящий из нескольких молекул глюкозы, которая в данном случае является мономером. В состав крахмала входит две фракции: линейный полимер амилозу (состоит из 200 – 2000 мономеров) и разветвленный полимер амило-пектин (состоит из 1000 – 1000000 мономеров).
Различные соотношения амилозы и амило-пектина в составе крахмала являются причиной разных физико-химических свойств крахмала в разных пищевых источниках (например, крахмал, полученный из разных продуктов, растворяется при разной температуре)
Как усваивается крахмал
Для того, чтобы крахмал лучше усваивался, содержащие его пищевые продукты подвергаются тепловой обработке, в результате которой образуется крахмальный клейстер. В чистой форме клейстер можно увидеть в киселе, а в скрытой форме клейстер образуется в каше, макаронах, хлебе и т.д.
Поступающие с пищей крахмальные полисахариды начинают расщепляться ферментами уже в ротовой полости. В процессе расщепления крахмала образуются мальтодекстрины, мальтоза, глюкоза, которые полностью усваиваются.
В отличии от моносахаридов и дисахаридов крахмал усваивается дольше, поэтому не вызывает резкого повышения уровня глюкозы в крови. Кроме того, с продуктами поставщиками крахмала, в организм поступают большое количество аминокислот, минеральных веществ и витаминов и при этом минимальное количество жира.
Сахар же, напротив, не только не содержит эссенциальных нутриентов, но и затрачивает их в процессе усвоения, а кроме этого, большая часть продуктов кондитерского производства являются еще источниками скрытого жира.
Крахмал который не усваивается
При термической обработке продуктов частично образуется крахмал устойчивый к перевариванию. Образующееся количество этого крахмала зависит от степени тепловой обработки и от того, сколько в крахмале содержится амилозы.
Крахмалы, резистентные к перевариванию содержатся также в продуктах натуральных, например, больше всего их содержат картофель и бобовые.
Устойчивые к перевариванию крахмалы входят в группу пищевых волокон вместе некрахмальными полисахаридами и олигосахаридами.
Модифицированные крахмалы
Эти крахмалы применяются пищевой промышленностью. От природных форм их отличает более хорошая растворимость, которая не зависит от температуры. Подобные свойства достигаются за счет предварительной обработки крахмала ферментами.
С помощью модифицированных крахмалов продуктам придают необходимый внешний вид и стабильную форму, а также достигают требуемой вязкости и однородности.
Гликоген – второй усваиваемый полисахарид
С пищей его поступает немного, в основном с печенью, мясом и рыбой. В процессе созревания мяса из гликогена образуется молочная кислота.
В то же время гликоген образуется в организме человека из глюкозы, поэтому часть излишков глюкозы, поступившей с пищей, превращается в гликоген, а остальная часть – в жир.
Гликоген является единственным углеводом, который в животных тканях используется в качестве резервного. Всего в человеческом организме содержится примерно 500 г гликогена, из них треть – в печени и две трети – в мышцах. В случае глубокого дефицита углеводов в питании, начинается использоваться гликоген печени и мышц. При длительной нехватке гликогена в печени развивается нарушение функции гепатоцитов и в конечном итоге – жировая инфильтрация печени.
Именно поэтому полностью исключать углеводы из своего рациона ни в коем случае нельзя. Это следует учесть тем, кто придерживается низкоуглеводных диет типа диеты Аткинса и Кремлевской диеты.
Некрахмальные полисахариды
Некрахмальные полисахариды имеют растительную природу и достаточно широко распространены. В химическом составе некрахмальных полисахаридов оказываются полисахариды, содержащие гексозы, пентозы и уроновые кислоты.
В природе некрахмальные полисахариды выполняют несколько функций: некоторые в качестве структурных компонентов входят в состав клеточных стенок, а некоторые составляют слизи и камеди на поверхности и внутри клеток растений.
Некрахмальные полисахариды классифицируются на:
— гидроколлоиды (слизи и камеди).
Некрахмальные полисахариды не способны перевариваться в тонком кишечнике человека, потому, что для этого нет необходимых ферментов. В связи с этим некрахмальные полисахариды ранее считались балластными веществами и удалялись из продуктов в процессе переработки, но в настоящее время, их важность для метаболизма и нормального функционирования организма не ставится под сомнение, более того, некрахмальные полисахариды причислены к группе незаменимых пищевых факторов.
Неперевариваемыми полисахаридами животного происхождения являются хитин и хитозан. Пищевыми источниками этих веществ являются панцири лобстеров и крабов.
Идентичными свойствами также обладает лигнин — соединение полифенольной неуглеводной природы, который не растворяется в воде и входит в состав клеточных оболочек многих растений и семян.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Структурно-функциональные свойства некрахмальных полисахаридов.
Существует группа полисахаридов, отличных от крахмала, которые не перевариваются пищеварительными ферментами и не усваиваются. В физиологическом смысле они объединяются в группу пищевых волокон.
При созревании и хранении плодов нерастворимые формы пектина переходят в растворимые, с этим связано размягчение плодов при созревании и хранении. Переход нерастворимых форм пектина в растворимые происходит при тепловой обработке растительных продуктов.
Пектиновые вещества способны образовывать гели в присутствии кислоты и сахара, на чем основано использование пектина в качестве студнеобразующего вещества для производства мармелада, пастилы, желе и джемов, а также в хлебопечении, сыроделии.
Некрахмальные полисахариды не перевариваются ферментами, секретируемыми в желудочно-кишечном тракте. Однако они рассматриваются не как балластные и бесполезные вещества пищи, а как имеющие важное значение для нормальной функции желудочно-кишечного тракта и профилактики многих заболеваний человека.
Типы гидролиза углеводов
Гидролиз углеводов
Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (дисахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием моносахаридов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов), а в процессе гидролитического расщепления образуют сотни и тысячи молекул моносахаридов[2].
Моносахариды
Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.
В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза, C6H12O6) — шестиатомный сахар (гексоза), структурная единица (мономер) многих полисахаридов (полимеров) — дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].
Дисахариды
Дисахари́ды (от di — два, sacchar — сахар) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединённы друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].
Олигосахариды
О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2 — 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.
Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].
Полисахариды
Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].
Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].
Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.
Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].
Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.
Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].
Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозиюными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].
Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот спосбны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].
Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].
Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2]
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Полисахариды
Из Википедии — свободной энциклопедии
Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.
Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде. [1] [2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном. [3] [4]
Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.
Целлюлоза и хитин — структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле. [6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.
Некрахмальные полисахариды
Полисахариды, которые в отличие от крахмала не перевариваются пищеварительными ферментами и не усваиваются, объединены в группупищевых волокон. Однако некрахмальные полисахариды рассматриваются не как баластные и бесполезные вещества, а как часть пищи, имеющая важное значение для нормальной функции желудочно-кишечного тракта и профилактики сердечно-сосудистых заболеваний, сахарного диабета, некоторых форм рака.
Гемицеллюлозы образуют совместно с целлюлозой клеточные стенки растительных тканей. Присутствуют в оболочках зерна, кукурузных початках, подсолнечной лузге. Растворимы в щелочных растворах и гидролизуются кислотами легче, чем целлюлозы. К гемицеллюлозам иногда относят агар-агар, присутствующий в агароносных морских водорослях и применяемый в кондитерской промышленности как желирующий агент (пищевая добавка).
Пектины входят в состав клеточных стенок и межклеточных образований растений наряду с целлюлозой, гемицеллюлозой, лигнином. Содержатся также в клеточном соке. Больше всего пектиновых веществ в плодах и корнеплодах. Получают пектины из яблочных выжимок, свеклы, корзинок подсолнечника, цитрусовых. Различают нерастворимые пектины (протопектины), которые входят в состав первичной клеточной стенки и межклеточного вещества, и растворимые, содержащиеся в клеточном соке. При созревании и хранении плодов нерастворимые формы пектина переходят в растворимые. Размягчение плодов происходит и при тепловой обработке растительных продуктов.
На способности пектинов образовывать гели в присутствии кислоты и сахара основано использование их в качестве студнеобразующего вещества для производства мармелада, пастилы, желе и джемов.
ПОТРЕБНОСТЬ В УГЛЕВОДАХ.
Как уже говорилось, главная функция углеводов – обеспечение организма энергией. Хотя углеводы как источники энергии могут заменяться белками и жирами, тем не менее отсутствие углеводов в пище неблагоприятно сказывается на здоровье и проявляется симптомами, напоминающими голодание. Наблюдается быстрая потеря воды и натрия. Именно этим фактором (но не потерей жира) объясняется снижение массы тела при использовании диеты, бедной углеводами. Люди на низко- или безуглеводной диете страдают слабостью, повышенной утомляемостью, обезвоживанием.
Рацион взрослого человека должен предусматривать не менее 100 г углеводов при рекомендуемом потреблении 250-350 г. Потребность в углеводах более правильно выражать в процентах от общей калорийности рациона, т.е. учитывать долю энергии, поставляемой за счет углеводов. Потребление углеводов должно составлять 55-75% общей калорийности. Потребление чистого сахара должно быть ограничено до 10% общей калорийности. Для взрослого это около 50-60 г сахара, с учетом сахара, который мы добавляем в блюда, а также содержащегося в кондитерских изделиях, конфетах и других продуктах.
Повышение потребности в энергии при больших физических нагрузках удовлетворяется путем увеличения количества потребляемых углеводов, а также их пропорции в общей калорийности рациона. При избыточном потреблении углеводов в большем количестве, чем может окислиться и отложиться в виде гликогена, глюкоза обычно превращается в жир. Это значит, что любое переедание приводит к отложению жира и увеличению массы тела.
Одно из весьма нежелательных действий чистого сахара или содержащих его продуктов — развитие кариеса, приводящего к разрушению и потере зубов.
Таким образом, как дефицит углеводов, так и их избыток неблагоприятно сказываются на здоровье. Здоровое питание подразумевает определенное соотношение основных пищевых веществ в потребляемых нами продуктах.
• Источниками углеводов являются продукты растительного происхождения: продукты из зерна и муки (хлебобулочные изделия, крупы, макароны), столовый сахар, овощи, фрукты. Из животных продуктов только молоко содержит сахар лактозу.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Что относится к полисахаридам: химические свойства, состав, применение. Что такое полисахариды: понимание вашего питания
Полисахарид — это что? Применение полисахаридов и их значение
Существует четыре основных класса сложных биоорганических веществ: белки, жиры, нуклеиновые кислоты и углеводы. Полисахариды принадлежат к последней группе. Несмотря на «сладкое» название, большинство из них выполняет совсем не кулинарные функции.
Основные функции полисахаридов в организме человека
Функция | Полисахариды (примеры) | Особенности |
ЭНЕРГЕТИЧЕСКАЯ | Крахмал и гликоген | Накопление углеводов, обеспечение организма энергией. |
ЗАПАСАЮЩАЯ | Гликоген, крахмал | Откладывание углеводов про запас, находится преимущественно в жировой ткани, формируется в клетках мышц, печени и желудка, отчасти в головном мозге. |
КОФАКТОРНАЯ | Гепарин и синтетические аналоги | Являются кофакторами ферментативных соединений, отвечают за снижение свертываемости крови. |
ОПОРНАЯ | Целлюлоза, хондроитинсульфат | Целлюлоза является стеблеобразующей тканью растений, а хондроитинсульфаты выполняют ту же функцию в костной ткани живых организмов. |
ГИДРООСМОТИЧЕСКАЯ | Кислые гетерополисахариды | Способствуют сохранению влаги и ионов с положительным зарядом в клетках. |
СТРУКТУРНАЯ | Кислые гетерополисахариды | Выполняют роль цементирующего состава, дополняют собой межклеточное вещество. |
ЗАЩИТНАЯ | Кислые гетерополисахариды (в том числе мукополисахариды) | Благодаря образованию особого слоя вокруг клеток защищают ткани от различных механических воздействий, внешних вибраций, трения. |
Полисахариды и их роль для сохранения энергии
Есть два типа полисахаридов, которые организм использует для хранения энергии: крахмал и гликоген.
Крахмалы служат в качестве краткосрочных хранилищ энергии и сделаны из смеси амилозы и амилопектина. Некоторые общие диетические крахмалы включают рис, картофель, пшеницу и кукурузу.
Гликоген, с другой стороны, действует больше как вариант долгосрочного хранения. Гликоген главным образом произведен печенью и мышцами, но его можно также сделать во время вызванного процесса гликогенезом, что происходит как в головном мозге, так и в желудке.
Полисахариды и их роль в питании
Полисахариды имеют решающее значение, когда дело доходит до правильного питания, потому что они содержат сложные углеводы, которые для многих служат основным источником энергии организма.
Каждая функция организма зависит от углеводов для получения энергии. Но, в то время как тело может производить некоторую энергию, это, конечно, не достаточно, чтобы поддерживать себя.
Если мы не принимаем в достаточном количестве углеводы, то мы должны будем дополнить энергию из прочих источников. Когда вы не получаете достаточно углеводов, вы подвергаете свое тело риску физических симптомов.
Примеры этого включают падение уровня сахара в крови, чувство слабости и головокружение.
Полисахариды, однако, могут помочь вам преодолеть усталость, поддерживать здоровое кровяное давление и уровень сахара в крови, поощрять позитивное настроение, успокаивать раздражение, поддерживать иммунную функцию, способствовать сердечно-сосудистому здоровью и даже увеличивать либидо.
Какие вещества относятся к полисахаридам, физические, химические свойства, примеры, что такое
Что такое полисахариды, можно легко понять с точки зрения структуры.
Гликаны – обширная группа органических веществ, вырабатываемых растениями и животными. С точки зрения структуры они бывают линейные и разветвленные. Делятся на две больших подгруппы:
полиозы (синонимы – полисахариды/гликаны);
Все эти субстанции – природные полимеры, цепочки которых построены из моносахаридов.
Если в основе моновеществ глюкоза, то полимер называется глюканом (целлюлоза). Если мономером является глюкозамин (в основе хитина насекомых), то природный полимер называется гликаном.
Существует терминологическая особенность: слово гликан еще используется для наименования веществ, где собственно гликан входит в состав молекул белка (биологические жидкости, ткани) – протеогликаны.
Некоторые из них синтезируются в организме человека (локализуются в коже), выполняют функцию сдерживания процессов увядания кожи с возрастом. Они активные участники клеточного метаболизма. Поэтому широко применяются в косметической промышленности.
В «ведении» этих соединений, производимых живыми организмами, находится регенерация дермы, увеличение процента белка коллагена, снижение количества морщин. Полиозы – высокомолекулярные углеводы.
Характеристика и особенности полисахаридов
Еще одной разновидностью углеводов являются полисахариды. Это наиболее сложный тип соединений. Состоят они из большого количества моносахаридов (основной их компонент — глюкоза). В ЖКТ полисахариды не усваиваются – предварительно осуществляется их расщепление.
Особенности этих веществ таковы:
К химическим свойствам этих веществ относится гидролиз, который осуществляется под влиянием катализаторов. Результатом реакции становится распад соединения на структурные элементы – моносахариды.
Еще одно свойство – образование производных. Полисахариды могут вступать в реакцию с кислотами.
Продукты, образующиеся в ходе этих процессов, очень разнообразны. Это ацетаты, сульфаты, сложные эфиры, фосфаты и пр.
Образовательный видео-материал о функциях и классификации углеводов:
Эти вещества важны для полноценного функционирования организма целиком и клеток по отдельности. Они снабжают организм энергией, участвуют в образовании клеток, оберегают внутренние органы от повреждений и неблагоприятного воздействия. Также они играют роль запасных веществ, которые нужны животным и растениям на случай сложного периода
Структура
Полисахариды пищи — общие источники энергии. Много организмов могут легко сломать крахмалы в глюкозу; однако, большинство организмов не может усвоить целлюлозу или другие полисахариды как хитин и arabinoxylans. Эти типы углевода могут быть усвоены некоторыми бактериями и протестами. Жвачные животные и термиты, например, используют микроорганизмы, чтобы обработать целлюлозу.
Даже при том, что они, комплекс к углеводам не очень удобоваримый, они предоставляют важные диетические элементы людям. Названное диетическое волокно, эти углеводы увеличивают вываривание среди других преимуществ.
Главное действие диетического волокна должно изменить природу содержимого желудочно-кишечного тракта, и измениться, как поглощены другие питательные вещества и химикаты.
Разрешимое волокно связывает с желчными кислотами в тонкой кишке, делая их менее вероятно, чтобы войти в тело; это в свою очередь понижает уровни холестерина в крови.
Разрешимое волокно также уменьшает поглощение сахара, уменьшает сахарный ответ после еды, нормализует уровни липида крови и, когда-то волнуемый в двоеточии, производит жирные кислоты короткой цепи как побочные продукты со всесторонними физиологическими действиями (обсуждение ниже). Хотя нерастворимое волокно связано со сниженным риском диабета, механизм, которым это происходит, неизвестен.
Еще формально предложенный как существенное макропитательное вещество (с 2005), диетическое волокно, тем не менее, расценено как важное для диеты с контролирующими органами во многих развитых странах, рекомендующих увеличения потребления волокна.
Химические свойства полисахаридов
Полисахариды считают полигликозидами и полиацеталями.
Основные химические свойства полисахаридов:
Перечисленные свойства позволяют использовать полисахариды в различных видах промышленности, при получении новой продукции.
Обратите внимание: Вещества имеют полностью природное возникновение, поэтому получили довольно широкое распространение. Они являются одним из основных участников процессов обмена в организмах.
Физические свойства
В зависимости от разновидности веществ их физические свойства могут отличаться. Большая часть имеет белый цвет, порошкообразную консистенцию, молекулярный вес начинается от 2 млн.
Строение преобладающего большинства – это разветвленные молекулы. Именно эти вещества при контакте с водой увеличиваются в объемах, но не растворяются. Другая группа – линейные молекулы, например амилоза, которые легко растворяются в воде.
Биологическая роль
Полисахариды в клетке и организме могут выполнять следующие функции:
Защитная функция заключается прежде всего в том, что из полисахаридов состоят клеточные стенки живых организмов. Так, клеточная стенка растений состоит из целлюлозы, грибов – из хитина, бактерий – из муреина.
Кроме того, защитная функция полисахаридов в организме человека выражается в том, что железами выделяются секреты, обогащенные этими углеводами, которые защищают стенки таких органов как желудок, кишечник, пищевод, бронхи и т. д. от механических повреждений и проникновения болезнетворных бактерий.
Структурная функция полисахаридов в клетке заключается в том, что они входят в состав плазматической мембраны. Также они являются компонентами мембран органоидов.
Следующая функция заключается в том, что основные запасные вещества организмов являются именно полисахаридами. Для животных и грибов это гликоген. У растений запасным полисахаридом является крахмал.
Последняя функция выражается в том, что полисахарид – это важный источник энергии для клетки. Получить ее из такого углевода клетка может путем его расщепления на моносахариды и дальнейшего окисления до углекислого газа и воды. В среднем при расщеплении одного грамма полисахаридов клетка получает 17,6 кДж энергии.
Классификация полисахаридов по числу и строению моносахаридных остатков
В структуру полиозов входит от двух до двадцати моносахаридов в двух разных формах (пиранозной или фуранозной).
Таблица №2. Структурные единицы полиозов
Различаются гомогликаны (еще называют гомополисахариды), они имеют в цепочке идентичные углеводные составляющие. И, соответственно, когда звенья углеводов разные, вещество получает название гетерополисахарида.
гомополисахариды (или гомополимеры)
гетерополисахариды (или гетерополимеры)
Высокий уровень структурной организации макромолекул, есть вторичная структура с характерным пространственным расположением макромолекулярной цепи. Отсюда еще одна классификация: с разветвленной молекулой и линейной макромолекулярной цепью.
Существующие виды полисахаридов
Понять, что такое полисахариды, какие функции они выполняют в жизни, можно на примере простых и доступных многим веществ.
Крахмал
Его состав: около двадцати процентов амилозы и восьмидесяти процентов амилопектина.
Является продуктом жизнедеятельности растительных организмов. Локализуется в зернах злаков, корнях/клубнях или семенах.
Это порошкообразное белое вещество, на ощупь мягкое, при растирании между пальцами характерное поскрипывание. Под микроскопом видна зернообразная структура, выпадает в осадок в холодной воде, при нагревании воды и равномерном помешивании зерна набухают, затем образуют киселеобразную массу.
Особенность вещества – способность хорошо гидролизоваться при подогревании в растворе H2SO4. Что приводит к образованию α-D-глюкозы.
Растительные источники: картошка (до двадцати процентов), зерна пшеницы.
Молекулы амилозы спиралеобразные, в одном витке шесть фрагментов моносахарида. Амилопектин имеет ответвления в структуре молекулы.
Чтобы химически определить крахмал, в аналитике используют его реакцию с йодом. Появляется сине-фиолетовый цвет раствора или аналогичного цвета пятно на поверхности порошка.
Картофельный крахмал – пищевой продукт. Его используют в кулинарии, на кондитерских фабриках, в производстве колбас. Это промышленный источник глюкозы, сырье для бумкомбинатов, текстильного производства, медпрепаратов.
Гликоген
Животный аналог крахмала. Похож по разветвленной структуре на амилопектин, имеет больше (до 12) звеньев в цепочках. Масса одной молекулы гликогена достигает ста млн у.е. Биохимики называют его «резервным углеводом». Локализуется в клетке живого организма, образуя своеобразное энергетическое депо.
При анализе из клеток тканей его извлекают горячим NaOH, осаждают спиртовым раствором. Затем гидролизуют в растворе разбавленной кислотой (серной). Методом титрования определяют процентное содержание в растворе глюкозы.
Клетчатка (растительная целлюлоза)
Ее отличает прочность. Не случайно она основной компонент «скелета» растений. Промышленный источник клетчатки (от 50 до 70 процентов) – древесина, кукуруза, сено.
В молекуле природного полимера содержится D-глюкопираноза, соединенная посредством гликозидных связей. Молекулы линейные, вес одной до двух млн у.е.
Высокопрочность обеспечивается наличием водородных связей в цепочках, которые объединяются в пучок. Так формируется волокнистость. Вещество инертно, не растворимо в нейтральных средах, не поддается воздействию ферментов пищеварительного тракта. Для большинства животных необходимо в качестве балластного кормового компонента. Жвачные (коровы), кони используют целлюлозу как питательный компонент.
Растворима в смеси растворов гидроксида меди и нашатыря; в хлористом цинке и некоторых концентрированных кислотах.
Способна к гидролизу и реакции образования сложных эфиров (пироксилина – бездымного пороха). При обработке азотной кислотой получается сырье для получения целлулоида, некоторых видов пороха и топлива для ракет (твердого).
В основном древесную целлюлозу используют в производстве бумаги.
Гепарин
Гепарин внешне напоминает аморфное вещество порошкового типа белого окраса. Гепарин является антикоагулянтом кислым гликозаминогликаном, содержащим серу. Структура молекул гепарина позволяет ему быть хорошо растворимым в воде веществом, устойчивым к нагреваниям. Выполняет функцию регулятора свертываемости крови, стабилизации уровня холестерина и давления.
В медицине гепарин применяется:
Пектины
Клейкие вещества, использование которых практикуется в кулинарии как кондитерская добавка. Иначе их называют желирующие.
Содержатся во фруктах, растительном сырье.
Чаще всего используют порошок пектина, реже – жидкую форму. Имеет промышленное обозначение E440.
Получают из растительного (чаще свекольного или фруктового) жмыха. Отличная консервирующая добавка, увеличивает срок хранения консервов.
Есть пектин с низким уровнем этерификации (менее 50 процентов) и высоким(более 50 процентов).
Человек получает пектиновые соединения с продуктами растительного происхождения. Больше пектина в овощах и фруктах вырабатывается в засушливый жаркий период. Он выполняет функцию очищения всех систем организма, сохраняя бактериальный баланс, омолаживает, приводит к норме метаболизм, улучшает гемодинамику.
Это вяжущее вещество, обволакивает слизистую пищеварительного тракта, улучшает деятельность полезной микрофлоры.
Считается, что применение пектиновых препаратов способствует оздоровлению человека. Норма потребления – около пятнадцати граммов в сутки. Обладает эффектом сжигания жира в организме. Замечено, что при поглощении около 25 гр этого полисахарида, извлеченного из цельных яблок, человек теряет приблизительно 0,3 кг жира в сутки.
В поварской практике его используют как загуститель. Это качественная природная желирующая добавка.
Пектиновое вещество, в том числе, косметологический компонент – гелеобразующая основа для кремообразных препаратов. Разглаживает морщины, хорошая тонизирующая добавка повышает впитываемость ингредиентов в кожу, обладает отбеливающим эффектом, защита от ультрафиолета.
Хитин
Хитин – это компонент, без которого не продержится скелет ракообразных и насекомых. Также его можно найти в клетках пивных дрожжей и различных грибов. Хитин способен в несколько раз увеличить запах продукта и вкус готового блюда, внешне его преобразовать и улучшить. В кулинарии также используется как консервант, входит в состав пищевых добавок.
Хитин используется в медицине благодаря многообразию терапевтических свойств, таких как:
Применение полисахаридов
Эти вещества широко используются в промышленности и медицине. Большинство из них добываются в лабораториях путем полимеризации простых углеводов.
Наиболее широко используемыми полисахаридами являются крахмал, целлюлоза, декстрин, агар-агар.
Применение полисахаридов в промышленности
Теперь вы знаете, что такое полисахариды, для чего они используются, какова их роль в организме, какими физическими и химическими свойствами они обладают.
Использование в области здравоохранения
Зачастую в медицинской практике полисахариды используются в качестве диагностических препаратов при обнаружении кандидозов и сальмонеллезов. Декстраны, которые вырабатываются некоторыми бактериями, являются плазмозаменителями. Сульфат декстрана заменяет гепарин как антикоагулянт. Особой популярностью пользуются препараты, которые имеют в основе хитин. Также хитин применяется при производстве наполнителей и основ различных лекарственных средств. В последнее время стали изготавливаться ферментативные лекарства с пролонгированным действием, которые имеют в составе декстраны. Гликаны являются активным компонентами, которые используются для изготовления высококачественных зубных паст.
Применение в пищевой промышленности
Полисахариды, которые получают из бактерий, применяются для изготовления пищевых пленок. Они предотвращают высыхание продуктов, противостоят попаданию на них грязи, стабилизируют мороженую массу, соки, заправки, сиропы. Ксантин широко используется при изготовлении кисломолочной продукции. Для повышения качества хлебобулочных изделий на производстве добавляются экзополисахариды, они делают хлеб более пышным и мягким. Полисахариды имеют важное значение для биологии в целом. Они принимают участие в важных процессах, оказывают влияние на работу организмов живых существ, способствуют полноценному синтезу питательных веществ в растениях. Кроме этого, данные элементы активно применяются в разных областях промышленности, из них производят пищевые продукты, препараты, химические вещества и растворы, бумагу и другие элементы.
Промышленность и инновационные направления
Выше уже упоминалось, что полисахариды применяются на предприятиях, где ведется синтез ядерного топлива.
Заменители агара лежат в основе синтеза составов для фотопленок.
На заводах переработки нефти и газа, а также при их добыче распространено применение стабилизаторов и жидкостей для промывки механизмов в процессе бурения скважин. Важной составной частью этих смесей являются гликаны.
Научные исследования по изучениям свойств полисахаридов и их производных приоритетны: они расширяют горизонты инновационного развития в активно развивающейся микробиологической отрасли промышленности.
Гидролиз полисахаридов
Это процесс получения производных гликанов:
Направление реакций идет по гидроксильным группам в растворах кислот под воздействием ферментных соединений.
Промышленные сферы применения процесса:
получение этилового спирта;
производство молочной кислоты;
заводской синтез масляной и лимонной кислот;
производство многоатомных спиртов (бутанол);
производство ацетона для лакокрасочной промышленности;
производство глюкозы из крахмала.
Осахаривание крахмала или целлюлозы – это процесс полного гидролиза.
Неполный гидролиз – это процесс получения олигосахаридов (в частности, состоящих из двух моносахаридов).
Как подобрать полисахариды в вашу диету и польза Алоэ вера
Большинству людей не удается удовлетворить все свои потребности в питании только за счет диеты. Здесь важны осознанная еда и добавки.
Но когда дело доходит до добавок, вы должны понимать, что вам на самом деле нужно, и просто как его найти. По этой причине мы настоятельно рекомендуем проверить все ингредиенты, прежде чем принимать что-либо.
И, так как рынок наводнен компаниями, которые срезают углы просто для того, чтобы заработать деньги, это также отличная идея, чтобы немного узнать о производителе.
Если вы хотите улучшить свою диету, продукты из алоэ вера и сам алоэ вера, являются отличным источником полисахаридов.
Польза алоэ вера: содержит один ключевой полисахарид, называемый ацеманнан, который действительно отличает его от других растений с точки зрения пищевой ценности. Ацеманнан содержит больше, чем просто энергетические свойства.
Этот конкретный полисахарид укрепляет иммунную систему, улучшает здоровье зубов и может даже использоваться для поддержки заживления ран.
Как будто этого недостаточно, алоэ вера полна других важных витаминов, минералов и питательных веществ — настолько, что это действительно считается супер-пищей.
Польза алоэ вера: настолько богато важными питательными веществами, в том числе уникальными для вида, такими как ацеманнан, оно поддерживает общее состояние здоровья несколькими способами.
Конечно, добавить алоэ вера в свой рацион не так просто, как оторвать лист и откусить кусочек.
Мукополисахаридоз
Мукополисахаридозы – это группа генетически обусловленных заболеваний, возникающих вследствие нарушения обмена кислых мукополисахаридов (гликозаминогликанов). Характерны системные поражения скелета и задержка физического развития. При некоторых формах наблюдается умственная отсталость. Возможны нарушения сердечной деятельности, патология органов зрения, образование грыж, неврологические нарушения, гипертрихоз, увеличение печени и селезенки. Диагноз выставляется на основании клинических признаков, данных рентгенографии и других исследований. Лечение симптоматическое.
Общие сведения
Мукополисахаридозы – группа генетических заболеваний, сопровождающихся накоплением кислых мукополисахаридов в органах и тканях. Причиной развития является передающаяся по наследству неполноценность лизосомных ферментов. Впервые мукополисахаридоз был описан Гурлер в 1917 году. Лечение мукополисахаридоза осуществляют травматологи-ортопеды при участии кардиологов, офтальмологов, неврологов, отоларингологов и других специалистов.
Диагностика
Диагноз мукополисахаридоза устанавливается на основании характерной клинической и рентгенологической картины, выявлении гликозаминогликанов в моче и изучении активности ферментов в клеточных культурах. В ходе обследования больным мукополисахаридозом назначаются консультации различных специалистов: кардиолога, гастроэнтеролога, офтальмолога, отоларинголога, невролога, психиатра и т. д., проводятся инструментальные исследования для оценки состояния различных органов и систем.
Лечение мукополисахаридоза
Патогенетическая терапия не разработана. Лечение симптоматическое, может быть как консервативным, так и оперативным. Осуществляется профилактика и лечение респираторных инфекций, проводится коррекция нарушений зрения и слуха. При необходимости выполняются грыжесечение и герниопластика, операции по устранению контрактур и коррекции деформаций скелета.
Прогноз и профилактика
Прогноз при всех типах мукополисахаридоза неблагоприятный – продолжающееся накопление продуктов обмена в тканях приводит к усугублению патологических изменений со стороны всех органов и систем. Использование любых лечебных средств (переливания крови, введение гормонов и т. д.) при мукополисахаридозе обеспечивает лишь временное улучшение. Рекомендуется пренатальная профилактика.