Что такое математическое равенство

Равенство (математика)

0123456789
0×××××××××
1×××××××××
2×××××××××
3×××××××××
4×××××××××
5×××××××××
6×××××××××
7×××××××××
8×××××××××
9×××××××××
Равенство десятичных цифр как бинарное отношение: • истина, × ложь

Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.

Определения равенства

Равенство является интуитивно очевидным отношением: значение двух выражений одно и то же. При его формальном определении возникает разнобой.

Теория множеств, по определению, считает два объекта (то есть, два множества) равными, если они состоят из одних и тех же элементов:

Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенство

В теориях с типизацией объектов отношение равенства имеет смысл лишь между элементами одного типа (попросту говоря, внутри определённого множества). Логицисты (сначала в логике предикатов Фреге, затем в рамках теории типов) опирались на определение равенства, похожее на теоретико-множественное, но рассматривающее отношения с другой стороны:

Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенство

То есть, для равенства двух объектов необходимо и достаточно, чтобы любой предикат, который может быть построен на данном типе, давал на них одинаковое логическое значение. Впрочем, не логицисты это определение придумали — оно было известно ещё Лейбницу.

Некоторые формальные теории уклоняются от определения равенства, считая его изначально заданным отношением эквивалентности.

Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенство

Связанные определения

Формальное определение и интуитивное понимание равенства иногда конфликтуют. Равно ли (целое) число 1 (действительному) числу Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенство? С точки зрения интуиции — да, а с точки зрения теории типов вопрос неверно поставлен (ср. с проблемой приведения типов в программировании). В математике в подобных случаях подразумевается каноническое вложение одного множества (пространства, типа) в другое, большее. Вопрос о равенстве целого числа действительному можно понимать как равенство собственно действительного и другого действительного числа, соответствующего нашему целому. То есть, работа с интуитивно «очевидными» фактами типа всякое целое число является рациональным, а рациональное — действительным, требует в рамках некоторых формальных подходов специальных оговорок.

Уравнение — построенное при помощи равенства логическое высказывание, в которое входит переменная. Оно задаёт подмножество предметной области переменной — множество корней уравнения.

Определение величины или переменной записывается с помощью равенства: Пусть переменная равна выражению.

Тождество — высказывание, верное при любых значениях переменных. Оно часто (хотя вовсе не обязательно) строится на основе отношения равенства.

См. также

Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенство

Полезное

Смотреть что такое «Равенство (математика)» в других словарях:

Равенство — может означать: Равенство в Викисловаре … Википедия

МАТЕМАТИКА — Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера

Равенство классов P и NP — Задачи тысячелетия Равенство классов P и NP Гипотеза Ходжа Гипотеза Пуанкаре Гипотеза Римана Квантовая теория Янга Миллса Существование и гладкость решений уравнений Навье Стокса Гипотеза Бёрча Свиннертон Дайера В теории алгоритмов… … Википедия

Функция (математика) — У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения … Википедия

Пропорция (математика) — Пропорция (лат. proportio соразмерность, выровненность частей), равенство двух отношений, т. е. равенство вида a : b = c : d, или, в других обозначениях, равенство (часто читается как: «a относится к b так же, как c относится к d») … Википедия

Портал:Математика — Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия … Википедия

Конструктивная математика — абстрактная наука о конструктивных процессах, человеческой способности осуществлять их и о их результатах конструктивных объектах. Абстрактность К. м. проявляется прежде всего в том, что в ней систематически применяются две абстракции:… … Большая советская энциклопедия

Ротор (математика) — У этого термина существуют и другие значения, см. Ротор. Ротор, или вихрь векторный дифференциальный оператор над векторным полем. Обозначается (в русскоязычной[1] литературе) или (в англоязычной литературе), а также как векторное умножение … Википедия

Группа (математика) — Теория групп … Википедия

Источник

Числовые равенства, свойства числовых равенств

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Что такое числовое равенство

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Источник

Понятие равенства, знак равенства, связанные определения

Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

Что такое равенство

Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенствои Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенство. А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенствои Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенство. Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

Запись равенств, знак равно

Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

Верные и неверные равенства

Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

Свойства равенств

Запишем три основных свойства равенств:

Буквенно сформулированные свойства запишем так:

Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

Двойные, тройные и т.д. равенства

При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

Источник

Равенство и неравенство. Знаки: больше, меньше, равно

Что такое математическое равенство. Смотреть фото Что такое математическое равенство. Смотреть картинку Что такое математическое равенство. Картинка про Что такое математическое равенство. Фото Что такое математическое равенство

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Математические знаки

Скорее всего, к первому классу ребенок уже отличает на слух и визуально, что горстка из десяти ягод больше трех штук. Чтобы внедрить в жизнь новые обозначения, посмотрим на знаки «больше», «меньше», «равно» в картинках.

Символ больше (>) — это когда острый нос галочки смотрит направо. Его нужно использовать, когда первое число больше второго:

Символ меньше (

Символ равенства (=) — это когда два коротких отрезка записаны горизонтально и параллельны друг другу. Используем его при сравнении двух одинаковых чисел:

Чтобы ребенку было легче запомнить схожие между собой знаки, можно применить игровой метод. Для этого нужно сравнить числа и определить в каком порядке они стоят. Далее ставим одну точку у наименьшего числа и две — рядом с наибольшим. Соединяем точки и получаем нужный знак. Вот так просто:

Равенство и неравенство

Что такое равенство в математике — это когда одно подобно по количеству другому и между ними можно поставить знак =.

Для примера посмотрим на картинку с изображением геометрических фигур. Справа и слева количество одинаковое, значит можно поставить символ «равно».

Наглядный пример неравенства изображен на картинке ниже. Слева видим три фигуры, а справа — четыре. При этом мы знаем, что три не равно четырем или еще так: три меньше четырех.

Урок в школе зачастую проходит перед учебником, тетрадью и доской. Дома же можно использовать компьютер и некоторые задания выполнять в онлайн-формате. Как найти знаки на клавиатуре? Ответ на картинке:

Типы неравенств

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *