Что такое математическое ожидание в теории вероятности
Математическое ожидание
Математическое ожидание — это ожидаемый результат от какого-то действия.
Например, можно рассчитать ожидаемую стоимость инвестиции в определённый момент в будущем. Рассчитывая математическое ожидание перед тем, как инвестировать, можно выбрать наилучший сценарий который, по мнению инвестора, даст наилучший результат.
Случайная величина может быть двух типов:
Математическое ожидание дискретной случайной величины рассчитывается этой формулой:
Математическое ожидание дискретной случайной величины рассчитывается:
1. Сначала нужно умножить каждое из возможных результатов на свою вероятность (например: вероятность, что выпадет «1» — 1/6, «2» — 1/3, значит умножаем 1 на 1/6, 2 на 1/3, и т.д.),
2. Затем суммируем все эти значения (1 × 1/6 + 2 × 1/3 и т.д.).
Для непрерывной случайной величины используется эта формула:
В этом случае рассчитывается интеграл в заданном интервале.
Примеры вычисления математического ожидания
Пример 1
Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:
xi | −1 | 1 | 2 | 3 | 4 |
pi | 0,1 | 0,2 | 0,3 | 0,1 | 0,3 |
Используется формула для дискретной случайной величины:
M(X) = ∑ xi×pi = −1×0,1+ 1×0,2 + 2×0,3 + 3×0,1 + 4×0,3 = −0,1 + 0,2 + 0,6 + 0,3 + 1,2 = 2,2
Пример 2
Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = 2x, при x∈(0,1) и f(x) = 0 в остальных точках.
Используется формула для непрерывной случайной величины:
Пример 3
Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:
xi | 1 | 2 | 3 | 4 | 5 |
pi | 0,3 | 0,3 | 0,1 | 0,1 | 0,2 |
Используется формула для дискретной случайной величины:
M(X) = ∑ xi×pi = 1×0,3 + 2×0,3 + 3×0,1 + 4×0,1 + 5×0,2 = 0,3 + 0,6 + 0,3 + 0,4 + 1 = 2,6
Пример 4
Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = (1/10).(3x²+1), при x∈(0,2) и f(x) = 0 в остальных точках.
Используется формула для непрерывной случайной величины:
Математическое ожидание случайной величины
Содержание
Математическое ожидание случайной величины [ править ]
Определение: |
Математическое ожидание (англ. mean value) [math] \left( E\xi \right) [/math] — мера среднего значения случайной величины, равная [math]E\xi = \sum \xi(\omega) \cdot p(\omega)[/math] |
Пример [ править ]
Пусть наше вероятностное пространство — «честная кость»
[math] E\xi = 1\cdot \dfrac<1><6>+2\cdot \dfrac<1> <6>\dots +6\cdot \dfrac<1> <6>= 3.5[/math]
Свойства математического ожидания [ править ]
Утверждение (о матожидании случайной величины на событии вероятности нуль): | |
Линейность математического ожидания [ править ]Использование линейности [ править ]Рассмотрим три задачи. Пример 1 [ править ]Найти математическое ожидание суммы цифр на случайной кости домино. Получаем ответ [math]E(\xi+\eta)=2E(\xi)=6[/math] Пример 2 [ править ]Итоговый результат: [math]E(\xi)=<\sum_^n \limits>E(\xi^i)=\dfrac Пример 3 [ править ]Пусть [math] \xi [/math] — случайная величина, которая возвращает количество инверсий в перестановке. Очевидно, что вероятность любой перестановки равна [math] \dfrac<1> Докажем, что количество инверсий в этих двух перестановках равно [math] \dfrac Примеры распределений [ править ]Распределение Бернулли [ править ]Случайная величина [math]\xi[/math] имеет распределение Бернулли, если она принимает всего два значения: [math]1[/math] и [math]0[/math] с вероятностями [math]p[/math] и [math]q \equiv 1-p[/math] соответственно. Таким образом: [math]P(\xi = 1) = p[/math] [math]P(\xi = 0) = q[/math] Тогда несложно догадаться, чему будет равно математическое ожидание: [math]E(\xi) = 1 \cdot p + 0 \cdot q = p[/math] Гипергеометрическое распределение [ править ]Гипергеометрическое распределение в теории вероятностей моделирует количество удачных выборок без возвращения из конечной совокупности. Пусть имеется конечная совокупность, состоящая из [math]N[/math] элементов. Предположим, что [math]D[/math] из них обладают нужным нам свойством. Оставшиеся [math]N-D[/math] этим свойством не обладают. Случайным образом из общей совокупности выбирается группа из [math]n[/math] элементов. Пусть [math]a[/math] — случайная величина, равная количеству выбранных элементов, обладающих нужным свойством. Тогда функция вероятности [math]a[/math] имеет вид: где [math]C_n^k \equiv \dfrac Формула математического ожидания для гипергеометрического распределения имеет вид: Основы теории вероятностей. Математическое ожидание величины.Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме. К таким величинам относят в первую очередь математическое ожидание и дисперсия. Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как . Самым простым способом математическое ожидание случайной величины Х(w), находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей РХ величины X: где — множество всех возможных значений X. при этом интегрируемость X в смысле (*) соответствует конечности интеграла если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х), то при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла. Свойства математического ожидания случайной величины.Алгоритм вычисления математического ожидания.Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность. 2. Складываем произведение каждой пары xipi. Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак. Пример: Найти математическое ожидание по формуле: Найти математическое ожидание по формуле: |
Математическое ожидание M[X] равно:
Теория вероятностей и антропогенный фактор
Введение
Общая информация
Я все же введу пару определений, чтобы хоть немного формализовать написанное.
1) Если имеется несколько возможных случайных исходов, «равновозможных» между собой, то классическая вероятность — это отношение количества «хороших» случайных (элементарных) событий к их общему количеству. Например, если у вас есть 5 шариков, 2 из которых белые, то вероятность взять именно белый шар будет равняться 2/5.
2) Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причем появление того или иного значения этой величины до ее измерения нельзя точно предсказать. Классический пример — игральная кость. Кидая ее, можно случайно получить одно из шести возможных значений.
3) Математическое ожидание случайной величины — это сумма всех возможных ее значений, помноженных на их вероятность. Говоря простым языком, это «среднее значение» принимаемой случайной величины. Для игральной кости оно равно (1+2+3+4+5+6)*1/6=3.5. Что нам это дает? То, что кидая кость много (например 100) раз, в среднем каждый раз будет выпадать 3.5, а в сумме выпадет примерно 100*3.5=350. При увеличении количества бросков, относительная погрешность реального результата и его математического ожидания, помноженного на количество бросков, будет уменьшаться все сильнее.
Теперь суть того, что я, собственно, хотел рассказать: математические подсчеты довольно хорошо прогнозируют разные события, если они напрямую не зависят от выбора человека. Если же вмешивается антропогенный фактор, то строить какие-то планы, опираясь только на теорию вероятности нужно с осторожностью. Приведу пару простых примеров. Возможно они немного надуманные, но зато простые и понятные.
Монетка
Случай раз
Вам во время пары в универе (урока в школе, рабочего дня) стало скучно и Вы предложили соседу по парте (коллеге по работе) сыграть в следующую игру: подбрасываете монетку; если выпал орел — Ваш друг платит вам 5 рублей, если же выпала решка, то Вы платите 5 рублей. От скуки человек может и согласиться. Вы будете играть так весь день, а в конечном итоге оба останетесь практически при тех же деньгах, что были изначально. Вероятность выпадения любой стороны монетки 1/2 и, как следствие, математическое ожидание Вашего выигрыша равно нулю. Так что в среднем выигрыш/проигрыш будет в районе плюс-минус 10 рублей. Ну, может быть, немногим больше. В любом случае, для бюджета не критично.
Случай два
Ситуация та же, но вы предложили за проигрыш платить не по 5, а по 1000 рублей. Скорее всего ваш друг/коллега откажется. Ибо не хочется просто так потерять ощутимую сумму денег.
Что же изменилось? Математическое ожидание выигрыша по-прежнему равно нулю. С точки зрения математики все практически то же самое. А тут уже вмешался человеческий фактор, и Ваш план скоротать скучный день провалился.
Лотерея
Вы меняете условия и делаете лотерею практически благотворительной. Теперь выигрыш 25 рублей. Математическое ожидание выигрыша минус стоимость билета — 2.5 рубля! Вы даже останетесь в убытке! Но народ в большинстве своем по-прежнему не будет жаловать Вашу лотерею, ибо выигрыш немногим больше цены билета. В лотерею будут играть разве что школьники, которым не хватает мелочи на мороженное.
Читатель может решить, что дело просто в количественном размере выигрыша. Но это далеко не обязательно. Приведу еще один довольно надуманный, но показательный пример:
Очень крупная лотерея
Вам предлагают подарок неслыханной щедрости. «Супер-лотерею». Одну из двух, на выбор. Сыграть в нее можно только один раз. В первой «лотерее» Вам гарантированно выплачивают миллион долларов. А во второй с 50% шансом Вы получите 2 миллиона, с 40% шансом миллион и с 10% шансом уйдете ни с чем. Математическое ожидание выигрыша в первой «лотерее» 1 миллион. Во второй — 1.4 миллиона. Но что же Вы выберете? Может кто-то и выберет второй вариант, но проведение опроса среди некоторого количества людей покажет, что большинство наверняка выберет первый вариант. Ведь, как говорится, лучше синица в руках… Тем более, если синица — это миллион, а во второй «лотерее» есть шанс не получить ничего. И гипотетические 2 миллиона ничего не решают.
Последний пример
Ну и что в итоге?
В итоге, с одной стороны, математические подсчеты могут дать не совсем очевидные с точки зрения математики результаты. Человек может из почти одинаковых условий выбирать строго одно, а среди нескольких предложений брать более невыгодное для себя. Почему? Так устроен человек. Выгода одного конкретного человека не всегда может быть просто так подсчитана.
С другой стороны, если смотреть с точки зрения различных фирм, корпораций и т.д., то имея множество клиентов, можно получать неплохие деньги, даже если с точки зрения математики предложение для клиента не самое выгодное. Именно поэтому существуют банки, лотереи, страховые компании. И люди берут кредиты под дикие проценты, покупают сомнительные лотерейные билеты и страхуют вещи, с которыми, скорее всего, все будет в порядке.
А значит, пытаясь применить по отношению к людям какие-то подсчеты «в тупую», мысля как робот, скорее всего, ничего путного и полезного не выйдет. Но ежели действовать с умом, представить себя на месте других людей, то можно горы свернуть и миллиарды заработать с помощью математики.
В общем, думайте как люди, но про математику тоже не забывайте.
Случайные величины. Дискретная случайная величина.
Математическое ожидание
Второй раздел по теории вероятностей посвящён случайным величинам, которые незримо сопровождали нас буквально в каждой статье по теме. И настал момент чётко сформулировать, что же это такое:
Случайной называют величину, которая в результате испытания примет одно и только одно числовое значение, зависящее от случайных факторов и заранее непредсказуемое.
Случайные величины, как правило, обозначают через *, а их значения – соответствующими маленькими буквами с подстрочными индексами, например, .
* Иногда используют , а также греческие буквы
Пример встретился нам на первом же уроке по теории вероятностей, где мы фактически рассмотрели следующую случайную величину:
– количество очков, которое выпадет после броска игрального кубика.
В результате данного испытания выпадет одна и только грань, какая именно – не предсказать (фокусы не рассматриваем); при этом случайная величина может принять одно из следующий значений:
.
– количество мальчиков среди 10 новорождённых.
Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:
, либо мальчиков – один и только один из перечисленных вариантов.
И, дабы соблюсти форму, немного физкультуры:
– дальность прыжка в длину (в некоторых единицах).
Её не в состоянии предугадать даже мастер спорта 🙂
Тем не менее, ваши гипотезы?
Коль скоро речь идёт о множестве действительных чисел, то случайная величина может принять несчётно много значений из некоторого числового промежутка. И в этом состоит её принципиальное отличие от предыдущих примеров.
Таким образом, случайные величины целесообразно разделить на 2 большие группы:
1) Дискретная (прерывная) случайная величина – принимает отдельно взятые, изолированные значения. Количество этих значений конечно либо бесконечно, но счётно.
…нарисовались непонятные термины? Срочно повторяем основы алгебры!
2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.
Примечание: в учебной литературе популярны аббревиатуры ДСВ и НСВ
Сначала разберём дискретную случайную величину, затем – непрерывную.
Закон распределения дискретной случайной величины
– это соответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:
Довольно часто встречается термин ряд распределения, но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».
А теперь очень важный момент: поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:
или, если записать свёрнуто:
Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:
Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:
Некоторая игра имеет следующий закон распределения выигрыша:
Найти
…наверное, вы давно мечтали о таких задачах 🙂 Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля.
Решение: так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу, а значит, сумма их вероятностей равна единице:
Разоблачаем «партизана»:
– таким образом, вероятность выигрыша условных единиц составляет 0,4.
Контроль: , в чём и требовалось убедиться.
Ответ:
Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности, теоремы умножения / сложения вероятностей событий и другие фишки тервера:
В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.
Решение: как вы заметили, значения случайной величины принято располагать в порядке их возрастания. Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.
Всего таковых билетов 50 – 12 = 38, и по классическому определению:
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.
С остальными случаями всё просто. Вероятность выигрыша рублей составляет:
И для :
Проверка: – и это особенно приятный момент таких заданий!
Ответ: искомый закон распределения выигрыша:
Следующее задание для самостоятельного решения:
Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.
…я знал, что вы по нему соскучились 🙂 Вспоминаем теоремы умножения и сложения. Решение и ответ в конце урока.
Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики.
Математическое ожидание дискретной случайной величины
Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:
или в свёрнутом виде:
Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:
очка
В чём состоит вероятностный смысл полученного результата? Если подбросить кубик достаточно много раз, то среднее значение выпавших очков будет близкО к 3,5 – и чем больше провести испытаний, тем ближе. Собственно, об этом эффекте я уже подробно рассказывал на уроке о статистической вероятности.
Теперь вспомним нашу гипотетическую игру:
Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:
, таким образом, математическое ожидание данной игры проигрышно.
Не верь впечатлениям – верь цифрам!
Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры 🙂 Ну, может, только ради развлечения.
Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.
Творческое задание для самостоятельного исследования:
Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?
Справка: европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино
Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь дисперсия, о которой мы узнаем во 2-й части урока.
Но прежде будет полезно размять пальцы на клавишах калькулятора:
Случайная величина задана своим законом распределения вероятностей:
Найти , если известно, что . Выполнить проверку.
Тогда переходим к изучению дисперсии дискретной случайной величины, и по возможности, ПРЯМО СЕЙЧАС!! – чтобы не потерять нить темы.
Пример 3. Решение: по условию – вероятность попадания в мишень. Тогда:
– вероятность промаха.
Составим – закон распределения попаданий при двух выстрелах:
– ни одного попадания. По теореме умножения вероятностей независимых событий:
– одно попадание. По теоремам сложения вероятностей несовместных и умножения независимых событий:
– два попадания. По теореме умножения вероятностей независимых событий:
Проверка: 0,09 + 0,42 + 0,49 = 1
Ответ:
Примечание: можно было использовать обозначения – это не принципиально.
Пример 4. Решение: игрок выигрывает 100 рублей в 18 случаях из 37, и поэтому закон распределения его выигрыша имеет следующий вид:
Вычислим математическое ожидание:
Таким образом, с каждой поставленной сотни игрок в среднем проигрывает 2,7 рубля.
Пример 5. Решение: по определению математического ожидания:
поменяем части местами и проведём упрощения:
таким образом:
Выполним проверку:
, что и требовалось проверить.
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам
6>