Что такое луч лазера

Лазерный мир

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Что такое лазер? И зачем он нужен?

Лазер – одно из наиболее ярких и полезных изобретений XX века, открывшее перед человечеством огромное количество новых направлений деятельности.

Сегодня лазеры получили такое широкое распространение в нашей жизни, что тяжело представить, что с момента их изобретения прошло всего 50 лет!

А если быть точнее, то первый лазер был создан 16 мая 1960 года физиком из Калифорнии Теодором Мейнманом (Theodore H. Maiman). Этот лазер работал на кристалле рубина с резонатором Фабри-Перо, а в качестве источника накачки использовалась лампа-вспышка. Лазер работал в импульсном режиме на длине волны 694,3 нм.

В основу этого изобретения легла теория вынужденного излучения, выдвинутая Эйнштейном в 1917 г. Согласно теории, кроме процессов спонтанного поглощения и излучения света существует возможность вынужденного (или стимулированного) излучения, когда можно «заставить» электроны излучить свет определенной длины волны одновременно.

Так что же такое лазер?

Ла́зер (от англ. LASER — Light Amplification by Stimulated Emission of Radiation, что в переводе на русский означает «усиление света посредством вынужденного излучения»), или опти́ческий ква́нтовый генера́тор — это устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

То есть, это луч света, испускаемый синхронными источниками, в узком направленном диапазоне. Такой чрезвычайно сконцентрированный световой поток.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Как работает лазер?

Принцип работы лазера основан на явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Типы лазеров:

Лазеры могут определяться на основе множества признаков, но чаще всего используется классификация

по принципу агрегатного состояния лазерного вещества:

По способу возбуждения лазерного вещества:

Применение лазеров.

С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё неизвестных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту.

Источник

Что такое лазер в физике простыми словами

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Обновлено: 02 Июня 2021

Еще 30-40 лет назад слово «лазер» ассоциировалось с фантастическими фильмами и голливудскими спецэффектами. Сейчас эта технология прочно вошла в повседневную жизнь людей. Рассказываем, как и где она применяется.

Что такое лазер

Лазер, или оптический квантовый генератор — это устройство, которое предназначено для преобразования электрической, тепловой и других видов энергии в узконаправленное излучение, характеризующееся когерентностью, монохроматичностью и поляризованностью.

Названа эта технология по первым буквам англоязычного выражения — Light Amplification by Stimulated Emission of Radiation (LASER) и переводится как «усиление света с помощью вынужденного излучения».

Изобретение лазера — это не одномоментное открытие, над ним работали многие ученые с начала XX века. Самые известные из них — Эйнштейн, Майман, Басов, Прохоров, Таунс.

Альберт Эйнштейн в 1917 году презентовал научную работу, в которой предсказал основной принцип работы оптического квантового генератора — вынужденное излучение. Гений был уверен в возможности заставить электроны излучать свет необходимой человеку длины волны.

Теодору Майману, калифорнийскому физику, в мае 1960 года удалось претворить эту идею в жизнь. Лазер, в работе которого использовались кристалл рубина и резонатор Фабри — Перо работал импульсно, длина волны составляла 694,3 нм.

В СССР также активно велись исследования на эту тему. В 1952 году два советских академика Александр Прохоров и Николай Басов выяснили, что возможно создание лазера, который будет работать на аммиаке. В 1954 году американец Чарлз Таунс создал такой генератор и показал принцип его работы.

Принцип работы лазера

Заключается в создании интенсивного светового луча, который имеет одинаковую длину волны в одно и то же время. Чтобы понять, как этот процесс происходит, рассмотрим конструкцию устройства.

Любой оптический квантовый генератор состоит из 3-х частей:

Как создается лазерный луч

Лазерный луч создается внутри корпуса генератора. Так называется трубка, закрытая с одной стороны обычным зеркалом, с другой — не полностью прозрачным зеркалом. Внутри корпуса находится твердый кристалл (чаще всего используют рубин). Под воздействием электрообмотки атомы кристалла создают световые волны. Эти волны двигаются внутри корпуса от одного зеркала к другому до тех пор, пока не наберут такую интенсивность, которой будет достаточно, чтобы пройти через не полностью прозрачное зеркало.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Свойства лазерного излучения

Основными свойствами являются:

Типы лазеров

Существует классификация оптических квантовых генераторов по агрегатному состоянию лазерного вещества и способу его возбуждения. Так, лазеры делятся на:

Твердотельные появились самыми первыми. В них активная среда состояла из кристаллов, а источником энергии служила импульсная лампа. В настоящее время твердотельные оптические квантовые генераторы бывают:

Газовыми называют генераторы, в которых активная среда формируется из газов или их смесей с очень низким давлением. Источником энергии выступает разряд электричества, производимый генератором высоких частот. Газовый генератор характеризуется непрерывностью излучения. В таких лазерах используется длинный стержень активной среды, это связано с невысокой плотностью газов. Интенсивность излучения обеспечивает масса активного вещества.

Газовые лазеры подразделяются на:

Современные газовые лазеры бывают:

В жидкостных генераторах для создания активной среды применяют растворы органических соединений. Их плотность выше, чем плотность газа, и ниже, чем плотность твердых тел. Такие лазеры могут создавать излучение до 20 Вт, при этом объем активного вещества остается сравнительно небольшим. Лазеры данного типа работают как в импульсном, так и в непрерывном режимах. В качестве источника энергии используют импульсные лампы или другие лазеры.

Для полупроводниковых лазеров в качестве активной среды используют кристалл со свойствами полупроводника (чаще всего, арсенид галлия GaAs). От твердотельных они отличаются тем, что излучательные переходы здесь происходят не на уровне атомов, а между зонами кристалла. Источником энергии таких генераторов является постоянный электрический ток. Кристалл-полупроводник выполняет роль резонатора.

Области применения лазерных технологий

Открытие лазерного излучения имеет огромное значение для человечества. Благодаря уникальным свойствам, использовать лазеры можно в разных сферах жизни:

Технологические лазеры непрерывного действия активно используют в промышленности, чтобы разрезать или спаивать детали. Благодаря применению технологии стало возможным сваривание металла и керамики, в результате чего получился новый материал — металлокерамика. Также лазерный луч активно используют в изготовлении микросхем.

В медицине технология уже много лет применяется в офтальмологии, при проблемах пациентов с сетчаткой глаза и коррекции зрения. В хирургии доктора используют лазерные скальпели, которые наносят минимальные повреждения живым тканям. Освоила технологию косметология.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Лазерные шоу — неотъемлемая часть концерта, выступления звезды и других праздничных мероприятий. Эти технологии давно и активно используют в сфере развлечений.

Сами того не осознавая, мы каждый день пользуемся лазерами, которые вывели на новый уровень технику записи информации. Именно при помощи луча записываются и воспроизводятся файлы на компакт-дисках с музыкой, фото и фильмами.

Строение и назначение лазеров — сложная тема. Поэтому важно, чтобы в любой момент можно было обратиться за помощью к надежному источнику. Как раз такими качествами и обладает сервис Феникс.Хелп.

Источник

Все о Лазерах

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазераВы все любите лазеры. Я то знаю, я от них тащусь больше вашего. А если кто не любит – то он просто не видел танец сверкающих пылинок или как ослепи- тельный крошечный огонек прогрызает фанеру Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

А началось все со статьи из Юного техника за 91-й год о создании лазера на красителях – тогда повторить конструкцию для простого школьника было просто нереально… Сейчас к счастью с лазерами ситуация проще – их можно доставать из сломанной техники, их можно покупать готовые, их можно собирать из деталей… О наиболее приближенных к реальности лазерах и пойдет сегодня речь, а также о способах их применения. Но в первую очередь о безопасности и опасности.

Почему лазеры опасны

Проблема в том, что параллельный луч лазера фокусируется глазом в точку на сетчатке. И если для зажигания бумаги надо 200 градусов, для повреждения сетчатки достаточно всего 50, чтобы кровь свернулась. Вы можете точкой попасть в кровеносный сосуд и закупорить его, можете попасть в слепое пятно, где нервы со всего глаза идут в мозг, можете выжечь линию «пикселей»… А потом поврежденная сетчатка может начать отслаиваться, и это уже путь к полной и необратимой потере зрения. И самое неприятное –вы не заметите по началу никаких повреждений: болевых рецепторов там нет, мозг достраивает предметы в поврежденных областях (так сказать ремапинг битых пикселей), и лишь когда поврежденная область становится достаточно большой вы можете заметить, что предметы пропадают при попадании в неё. Никаких черных областей в поле зрения вы не увидите – просто кое-где не будет ничего, но это ничего и не заметно. Увидеть повреждения на первых стадиях может только офтальмолог.

Опасность лазеров считается исходя из того, может ли он нанести повреждения до того как глаз рефлекторно моргнет – и считается не слишком опасной мощность в 5мВт для видимого излучения. Потому инфракрасные лазеры крайне опасны (ну и отчасти фиолетовые – их просто очень плохо видно) – вы можете получить повреждения, и так и не увидеть, что вам прямо в глаз светит лазер.

Потому, повторюсь, лучше избегать лазеров мощнее 5мВт и любых инфракрасных лазеров.

Также, никогда и ни при каких условиях не смотрите «в выход» лазера. Если вам кажется что «что-то не работает» или «как-то слабовато» — смотрите через вебкамеру/мыльницу (только не через зеркалку!). Это также позволит увидеть ИК излучение.

Есть конечно защитные очки, но тут много тонкостей. Например на сайте DX есть очки против зеленого лазера, но они пропускают ИК излучение- и наоборот увеличивают опасность. Так что будьте осторожны.

PS. Ну и я конечно отличился один раз – нечаянно себе бороду лазером подпалил 😉

650нм – красный

Это пожалуй наиболее распространенный на просторах интернета тип лазера, а все потому, что в каждом DVD-RW есть такой, мощностью 150-250мВт (чем больше скорость записи – тем выше). На 650нм чувствительность глаза не очень, потому хоть точка и ослепительно яркая на 100-200мВт, луч днем лишь едва видно (ночью видно конечно лучше). Начиная с 20-50мВт такой лазер начинает «жечь» — но только в том случае, если можно менять его фокус, чтобы сфокусировать пятно в крошечную точечку. На 200 мВт жгет очень резво, но опять же нужен фокус. Шарики, картон, серая бумага…

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазераПокупать их можно готовые (например такой на первом фото красный). Там же продаются мелкие лазерчики «оптом» — настоящие малютки, хотя у них все по взрослому – система питания, настраиваемый фокус — то что нужно для роботов, автоматики.

И главное – такие лазеры можно аккуратно доставать из DVD-RW (но помните, что там еще инфракрасный диод есть, с ним нужно крайне аккуратно, об этом ниже). (Кстати, в сервис-центрах бывает негарантийные DVD-RW кучами лежат — я себе унес 20 штук, больше не донести было). Лазерные диоды очень быстро дохнут от перегрева, от превышения максимального светового потока – мгновенно. Превышение номинального тока вдвое (при условии не превышения светового потока) сокращает срок службы в 100-1000 раз (так что аккуратнее с «разгоном»).

Питание: есть 3 основных схемы: примитивнейшая, с резистором, со стабилизатором тока (на LM317, 1117), и самый высший пилотаж – с использованием обратной связи через фотодиод.

В нормальных заводских лазерных указках применяется обычно 3-я схема – она дает максимальную стабильность выходной мощности и максимальный срок службы диода.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазераВторая схема – проста в реализации, и обеспечивает хорошую стабильность, особенно если оставлять небольшой запас по мощности (

10-30%). Именно её я бы и рекомендовал делать – линейный стабилизатор – одна из наиболее популярных деталей, и в любом, даже самом мелком радиомагазине есть аналоги LM317 или 1117.

И на последок, отлаживать схему стоит с обычным красным светодиодом, а припаивать лазерный диод в самом конце. Охлаждение обязательно! Диод «на проводочках» сгорит моментально! Также не протирайте и не трогайте руками оптику лазеров (по крайней мере >5мВт) — любое повреждение будет «выгорать», так что продуваем грушей если нужно и все.

А вот как выглядит лазерный диод вблизи в работе. По вмятинам видно, как близок я был к провалу, доставая его из пластикового крепления. Это фото также не далось мне легко Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера
Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

532нм – зеленый

Устроены они сложно – это так называемые DPSS лазеры: Первый лазер, инфракрасный на 808nm, светит в кристалл Nd:YVO4 – получается лазерное излучение на 1064нм. Оно попадает на кристалл «удвоителя частоты» — т.н. KTP, и получаем 532нм. Кристаллы все эти вырастить непросто, потому долгое время DPSS лазеры были чертовски дороги. Но благодаря ударному труду китайских товарищей, теперь они стали всполне доступны — от 7$ штука. В любом случае, механически это сложные устройства, боятся падений, резких перепадов температур. Будьте бережными.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазераОсновной плюс зеленых лазеров – 532нм очень близко к максимальной чувствительности глаза, и как точка, так и сам луч очень хорошо видны. Я бы сказал, 5мВт зеленый лазер светит ярче, чем 200мВт красный (на первой фото как раз 5мВт зеленый, 200мВт красный и 200мВт фиолетовый). Потому, я бы не рекомендовал покупать зеленый лазер мощнее чем 5мВт: первый зеленый я купил на 150мВт и это настоящая жесть – с ним ничего нельзя сделать без очков, даже отраженный свет слепит, и оставляет неприятные ощущения.

Также у зеленых лазеров есть и большая опасность: 808 и особенно 1064нм инфракрасное излучение выходит из лазера, и в большинстве случаев его больше чем зеленого. В некоторых лазерах есть инфракрасный фильтр, но в большинстве зеленых лазеров до 100$ его нет. Т.е. «поражающая» способность лазера для глаза намного больше, чем кажется — и это еще одна причина не покупать зеленый лазер мощнее чем 5 мВт.

Жечь зелеными лазерами конечно можно, но нужны мощности опять же от 50мВт + если вблизи побочный инфракрасный луч будет «помогать», то с расстоянием он быстро станет «не в фокусе». А учитывая как он слепит – ничего веселого не выйдет.

405нм – фиолетовый

Это уже скорее ближний ультрафиолет. Большинство диодов – излучают 405нм напрямую. Проблема с ними в том, что глаз имеет чувствительность на 405нм около 0.01%, т.е. пятнышко 200мВт лазера кажется дохленьким, а на самом деле оно чертовски опасное и ослепительно-яркое – сетчатку повреждает на все 200мВт. Другая проблема – глаз человека привык фокусироваться «под зеленый» свет, и 405нм пятно всегда будет не в фокусе – не очень приятное ощущение. Но есть и хорошая сторона – многие предметы флуоресцируют, например бумага – ярким голубым светом, только это и спасает эти лазеры от забвения массовой публики. Но опять же, с ними не так весело. Хоть 200мВт жгут будь здоров, из-за сложности фокусировки лазера в точку это сложнее чем с красными. Также, к 405нм чувствительны фоторезисты, и кто с ними работает, может придумать зачем это может понадобиться 😉

780нм – инфракрасный

Такие лазеры в CD-RW и как второй диод в DVD-RW. Проблема в том, что глаз человека луч не видит, и потому такие лазеры очень опасны. Можно сжечь себе сетчатку и не заметить этого. Единственный способ работать с ними – использовать камеру без инфракрасного фильтра (в веб камерах её легко достать например) – тогда и луч, и пятно будет видно. ИК лазеры применять пожалуй можно только в самодельных лазерных «станочках», баловаться с ними я бы крайне не рекомендовал.

Также ИК лазеры есть в лазерных принтерах вместе со схемой развертки — 4-х или 6-и гранное вращающееся зеркало + оптика.

10мкм – инфракрасный, CO2

Это наиболее популярный в промышленности тип лазера. Основные его достоинства – низкая цена(трубки от 100-200$), высокая мощность (100W — рутина), высокий КПД. Ими режут металл, фанеру. Гравируют и проч. Если самому хочется сделать лазерный станок – то в Китае(alibaba.com) можно купить готовые трубки нужной мощности и собрать к ним только систему охлаждения и питания. Впрочем, особые умельцы делают и трубки дома, хоть это очень сложно (проблема в зеркалах и оптике – стекло 10мкм излучение не пропускает – тут подходит только оптика из кремния, германия и некоторых солей).

Применения лазеров

В основном – используют на презентациях, играют с кошками/собаками (5мвт, зеленый/красный), астрономы указывают на созвездия (зеленый 5мВт и выше). Самодельные станки – работают от 200мВт по тонким черным поверхностям. CO2 лазерами режут почти все, что угодно. Вот только печатную плату резать трудно – медь очень хорошо отражает излучение длиннее 350нм (потому на производстве, если очень хочется – применяют дорогущие 355nm DPSS лазеры). Ну и стандартное развлечение на YouTube – лопание шариков, нарезка бумаги и картона – любые лазеры от 20-50мВт при условии возможности фокусировки в точку.

Из более серьёзного — целеуказатели для оружия(зеленый), можно дома делать голограммы (полупроводниковых лазеров для этого более чем достаточно), можно из пластика, чувствительного к УФ печатать 3Д-объекты, можно экспонировать фоторезист без шаблона, можно посветить на уголковый отражатель на луне, и через 3 секунды увидеть ответ, можно построить лазерную линию связи на 10Мбит… Простор для творчества неограничен Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Так что, если вы еще думаете, какой-бы купить лазер – берите 5мВт зеленый 🙂 (ну и 200мВт красный, если хочется жечь)

Источник

23 реинкарнации лазера, которые нас окружают в повседневной жизни

Под катом — научно-популярная лекция о современном применении лазеров и принципах работы лазерных устройств, тех самых, которые помогают победить рак и идентифицировать коронавирус, определять строение тканей, передавать данные и строить города, сводить татуировки и делать мышей счастливыми.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Ну и, надеюсь, вы уже видели самую большую в мире лазерную установку длиной 130 метров, установленную в Сарове в ВНИИЭФ. Она предназначена в том числе для изучения термоядерного(!) синтеза.

Эта статья — расшифровка лекции Дмитрия Артемьева, старшего преподавателя кафедры лазерных и биотехнических систем Самарского университета и м.н.с. научно-исследовательской лаборатории «Фотоника». Дмитрий прочитал эту лекцию в нашей самарской Точке кипения прямо перед введением режима всеобщей самоизоляции.

Что такое свет

Для полноты картины начнем с азов. Из курса физики известно, что свет — это электромагнитная волна или поток фотонов. Поскольку одна из характеристик электромагнитных волн — длина волны, под светом (излучением) мы будем подразумевать электромагнитную волну длиной от 1 нанометра до нескольких сантиметров. Таким образом, наше определение покрывает диапазон от рентгеновского до инфракрасного излучения.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Видимый для нашего глаза диапазон занимает очень маленький интервал, порядка 300 нанометров.

Если говорить про диковинные диапазоны, такие, как рентгеновские, то, например, в прошлом году создание лазера на свободных электронах, который работает в рентгеновском диапазоне, стало одной из главных тем и было номинировано на Нобелевскую премию по физике. Интересно, что победитель в этой номинации тоже был связан с лазерной техникой: премию присудили за создание сверхкоротких и сверхмощных импульсов. Кстати, часть исследований проводили в России, в Нижегородском институте общей физики.

Чем лазер отличается от обычной лампочки

На картинке — сравнение основных характеристик. Особо отметим, что максимальная мощность лазера многократно выше мощности источников, которые применяются в лампах. Но не каждому лазеру это нужно: часто для применения достаточно долей ватта, милливатта или микроватта, чтобы получить просто какое-то определенное излучение.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Вспомним, что ширина видимого диапазона излучения — порядка 400 нанометров. Примерно такой же по ширине спектр имеет лампа накаливания, поэтому при перемешивании цветов мы видим белый свет. В свою очередь, ширина диапазона лазера может составлять 0,1 нанометра. Это уникальное свойство лазера используется при проведении некоторых спектральных исследований и точных прецизионных измерений.

Если посветить лазерной указкой из одной стороны комнаты в другую, мы увидим на противоположной стене лишь небольшое пятно, демонстрирующее узкую направленность излучения и малую расходимость пучка лазера. А у лампы дневного света или накаливания излучение практически изотропно, т.е. направлено во все стороны.

У естественного света отсутствует определенная направленность вектора электрического поля, это означает, что свет не поляризован. То есть у света обычной лампочки вектор E (напряженность) направлен в различные стороны. В случае лазерного излучения вектор E имеет определенное направление, колебания происходят в одной плоскости. Такая поляризация тоже делает лазерное излучение в какой-то степени уникальным.

Физика процесса

Лазер изобрели в конце 50-х прошлого столетия. В 1964 году за открытие лазерного излучения американец Чарльз Таунс и советские ученые Александр Михайлович Прохоров и Николай Геннадьевич Басов получили Нобелевскую премию. Причем Прохоров и Басов открыли не лазер, не усиление света, а усиление излучения микроволнового диапазона, так называемый мазер.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Лазер — аббревиатура из пяти латинских букв: Light Amplification by Simulated Emission of Radiation. В переводе с английского это означает «усиление света под действием вынужденного излучения». Ниже представлены три диаграммы. Сначала, чтобы произошло излучение, необходимо, чтобы электрон или частица перешли в возбужденное состояние. Для этого частица должна получить энергию. После этого она перейдет на более высокий энергетический уровень.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Дальше возможны два сценария. Если частица случайным образом перейдет на более низкие энергетические уровни, то мы получим спонтанное излучение. Однако если на частицу, находящуюся на верхнем энергетическом уровне, воздействовать определенным фотоном, то есть направить на нее свет определенной длины волны, то произойдет уже вынужденное излучение. И фотон, рожденный в результате такого внешнего воздействия, будет тождествен тому фотону, с которым он провзаимодействовал. Так получается когерентное излучение, при котором волны равны друг другу.

Как устроен лазер

Перед вами — схема первого лазера. Это классический рубиновый лазер, созданный в 1960 году американским ученым Теодором Мейманом. Для работы прибора нужна активная среда, в данном случае — кристалл рубина, и два зеркала. Одно зеркало — глухое, с коэффициентом отражения, близким к единице. Второе — полупрозрачное, в зависимости от типа лазеров коэффициент отражения у него может отличаться как на доли процента, так и на десятки процентов относительно глухого зеркала.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

В качестве оптической накачки для твердотельных лазеров, как правило, используется другое оптическое излучение. В первом лазере на кристалле рубина применялись лампы белого света, которые содержали синий и зеленый спектры — именно их кристалл рубина поглощает лучше всего.

Итак, классическая схема лазера: это активное вещество (рубин), резонатор (два зеркала) и система накачки. В других схемах накачка может происходить не только от оптического излучения, но и, например, при помощи электрического разряда (в газовых лазерах). Но в первую очередь лазеры отличаются по типу активной среды: твердотельные лазеры, газовые лазеры, лазеры на парах металлов. Выше мы упоминали лазер на свободных электронах, сейчас он активно разрабатывается и модернизируется. Также сейчас популярны диодные (полупроводниковые) лазеры и волоконные, где в качестве активной среды используется оптическое волокно.

Где применяется лазерное излучение

Лазерное излучение можно использовать в медицине, промышленности, связи, военном деле и науке. На картинке ниже — примеры медицинских инструментов. Так, сейчас очень популярны лазерные скальпели для коррекции зрения. Они помогают скорректировать геометрию хрусталика, чтобы избавить от близорукости или дальнозоркости, исправить астигматизм и так далее. Лазер идеален для операций на глазе не только из-за очень маленьких размеров пучка — важно и то, что время воздействия таким скальпелем можно сократить до фемтосекунд. Различные типы излучений используются для косметических операций. А в стоматологии ультрафиолетовое излучение применяют для затвердевания зубного клея, который очень хорошо его поглощает.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

В промышленности с помощью лазеров производится точнейшая обработка стали: гравировка, вырезание отверстий с очень тонкой и чистой кромкой. Свойства лазерного излучения используют для закаливания некоторых металлов. Чаще всего в современной промышленности применяется волоконный лазер.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

В строительной сфере лазеры применяют, чтобы определять расстояния или выстраивать геометрию. Сейчас лазерные уровни продаются во всех строительных магазинах, причем стоят недорого.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Военные и охотники уже давно используют лазерные прицелы. При этом лазер редко используют для прямого нанесения ущерба: пока такие аппараты слишком громоздки. Например, в американских вооруженных силах проводился эксперимент, в ходе которого лазерная установка устанавливалась на самолете. Для чего понадобился целый самолет? Несмотря на небольшой по размерам излучатель, система накачки потребляла огромное количество электроэнергии, а активная среда сильно нагревалась. Так что почти все пространство самолета занимали системы питания и охлаждения лазера.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Такие лазеры могут занимать большие пространства: для термоядерной реакции нужен серьезный источник излучения, размеры которого могут достигать сотен метров.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера
Лазерная установка УФЛ-2М в Сарове

Наряду с такими гигантами, сравнимыми по габаритам с футбольными стадионами, в последнее время набирают популярность миниатюрные лазеры на так называемых наноструктурах.
Лазеры активно используются в системах связи, в том числе спутниковых. Одно из самых полезных для связистов свойств — распространение излучения в оптическом волокне: оптоволоконные системы позволяют передавать до сотен гигабайт в секунду на огромные расстояния.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Как устроено оптоволокно

Принцип работы оптического волокна основан на эффекте полного внутреннего отражения. Посмотрите на картинку ниже: у нас есть струя воды, и если на вход подать излучение, то при изгибе струи оно не выходит наружу, а распространяется внутри.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Именно так и распространяется излучение по среде с более высоким показателем преломления относительно его оболочки. Этот принцип позволяет передавать данные на десятки, сотни и тысячи километров с минимальными потерями.

В качестве источника оптического излучения используются либо светодиоды, либо лазерные диоды. У лазерного диода более высокие характеристики, но и стоит он дороже.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

В телекоммуникационной технике, как правило, применяют полупроводниковые лазеры с длиной волны 1,3 или 1,55 микрометра. Эти длины волн не попадает в полосу поглощения различных гидроксильных групп, которые есть в составе волокна. Таким образом, сигнал не поглощается и не затухает на протяжении многих километров.

В качестве детекторов можно использовать фотодиоды, PIN-диод и лавинный фотодиод. Они отличаются по чувствительности. Если нужно зарегистрировать очень слабый сигнал, берут лавинный фотодиод. Если сигнал на десятки–сотни ватт, то можно применить любые другие типы фотодиодов.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Лазерное излучение и биологические объекты

При падении лазерного пучка на биоткань может произойти поглощение этого излучения, а также пропускание, рассеяние или флуоресценция. Еще один из возможных вариантов — абляция, сгорание верхних слоев ткани. При этом внутренние слои не повреждаются.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

При поглощении имеет место коагуляция различных частиц, то есть их слипание. Этот эффект применяется при использовании лазера в хирургии — в качестве лазерного скальпеля. В отличие от механического скальпеля, разрез сосуда или ткани происходит практически бескровно. К тому же лазерный луч может быть значительно тоньше, чем острие металлического скальпеля.

На графике ниже — элементы, которые могут находиться в сосудах, в крови, в тканях кожи. Как мы знаем, человек более чем на 70% состоит из воды. Вода также присутствует в каждой биологической ткани. Есть меланин, который окрашивает нашу ткань. Если мы загорели летом, то меланина в тканях кожи становится существенно больше. А имеющийся у всех нас гемоглобин может быть в двух состояниях — насыщенный кислородом (оксигемоглобин) и без кислорода (дезоксигемоглобин).

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

График показывает, насколько активно различные элементы поглощают излучение с разными длинами волн. Таким образом, при использовании лазера с определенной длиной волны мы можем добиться селективного поглощения.

Или, к примеру, возьмем два источника излучения с разными длинами волн: один попадает в максимум поглощения, другой — в минимум. При дифференциальном контрасте можно получить концентрацию определенных веществ. Мы видим, что максимумы спектров окси- и дезоксигемоглобина разнесены между собой. Таким образом мы можем определить концентрацию, например, оксигемоглобина.

Это очень важно при проведении хирургических операций. Сейчас в любом хирургическом отделении стоит прибор, который отслеживает насыщенность крови кислородом. Этот датчик позволяет в режиме реального времени определять, что происходит с тканью пациента в нужном месте.

Диагностика, визуализация, лечение рака.

В некоторых диагностических системах используют несколько лазеров с разными длинами волн. Они помогают проводить исследования по различным клеточным структурам: как они себя ведут, какую дают реакцию на препараты.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Выше упоминалось, что лазер может счищать верхние слои кожи. Это используется, в частности, для удаления татуировок. Косметологические салоны сводят «наколки» твердотельным лазером с длиной волны 1064 нанометра.

Еще одно распространенное применение лазеров — фотодинамическая терапия, которая часто применяется при лечении онкологических заболеваний. Вначале в ткань человека вводится фотосенсибилизатор — вещество, которое накапливается в агрессивных раковых клетках. После этого на опухоль — она, как правило, окружена здоровой тканью — воздействует лазер с длиной волны, попадающей в максимум поглощения данного фотосенсибилизатора. В результате излучение поглощается только раковыми клетками. Таким образом, мы выжигаем раковую опухоль, не задевая здоровую ткань.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Лазер применяется в медицине для визуализации. Например, в оптической томографии он служит источником света (см. схему). В качестве источника света также можно использовать суперлюминесцентный диод: он также излучает за счет вынужденного рассеивания, но не имеет такой степени когерентности.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Источник света направлен на светоделитель. Часть излучения отражается на зеркало, а другая направляется на объект, отражаясь от которого обе волны могут взаимодействовать между собой. Если две когерентные длины волны взаимодействуют между собой, происходит интерференция. И на детекторе мы регистрируем набор интерференционных полос, после обработки которых можно получить картинку среза ткани.

Оптический когерентный томограф, принцип действия которого показан на схеме, есть во всех крупных городах. Данная технология позволяет построить трехмерную картину объекта, в данном случае — глаза. И пространственное разрешение, где мы можем отделить один пиксель от другого, может составлять единицы микрон. Аналог данной технологии — ультразвуковое исследование. Только для УЗИ используется не оптическое излучение, а ультразвуковая волна. У ультразвука глубина проникновения выше, чего не скажешь о точности: пространственное разрешение измеряется в миллиметрах, а не в микронах.

Почему нужно комбинировать методы

В Самарском университете данный подход использовали для исследования тканей кожи и легкого с онкологическими образованиями. На фото слева — восстановленное 3D-изображение тканей легкого. А справа — фотография участка, с которого происходила регистрация сигнала.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

На картинке слева заметно различие структур между собой. Черное — это воздух, оттуда сигнал не приходил. Пористая структура, похожая на губку, — это здоровая ткань легкого. При переходе вправо можно наблюдать, как возникают слои. Они более плотные и имеют определенную структуру, которая характерна для онкологических новообразований в тканях легкого. Это пример плоскоклеточного рака, удаленного в результате операции в Самарском онкологическом центре.

Такой же подход применялся для исследования тканей кожи. С его помощью легко определить базально-клеточную карциному, однако другие типы рака часто бывают похожи между собой, и диагностировать конкретный тип заболевания становится невозможно. Поэтому оптические методы исследования необходимо дополнять спектральными.

На следующей иллюстрации представлена диаграмма комбинационного (неупругого) рассеяния света, так называемое рамановское рассеяние. Здесь мы снова наблюдаем энергетические уровни, с которыми познакомились при рассмотрении вынужденного рассеяния.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

На картинке показано, как лазерное излучение возбуждает колебания в молекуле. При этом 99,999% этого излучения не изменяет длины волны. Но некоторая часть излучения после взаимодействия с молекулой может измениться. Эта доля изменения энергии соответствует колебанию связей, на которые было направлено лазерное излучение.

В результате комбинационного рассеяния света мы получаем набор полос, положение которых привязано к конкретному колебанию нашего объекта. С помощью этих данных мы можем определить, какие колебания у нас есть. В свою очередь, по интенсивности колебаний определяется количественный состав этих компонент.

На фото — момент исследования в Самарском онкологическом центре. Так происходит визуализация образца ткани при помощи дерматоскопа, разработанного там же.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

На следующем слайде — характерные графики спектров комбинационного рассеяния для кожи и новообразований. В определенных полосах спектра интенсивность может увеличиваться либо уменьшаться. Так, в полосе №2 интенсивность для злокачественной меланомы увеличивается на 100%. И за увеличение этой интенсивности отвечает изменение компонентного состава в этой области. В частности, если речь идет о биохимических изменениях в ткани, то меняется соотношение ДНК и РНК в клетке. Также может меняться соотношение белков и липидов в ткани.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Подобное исследование проводилось и для тканей легкого. Мы видим, что можно отличить злокачественные образования от доброкачественных. Также для анализа данных могут применяться различные математические подходы — например, регрессионные модели, которые позволяют быстро находить спектральные отличия в большом массиве данных.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

Итак, исследование биологического объекта при помощи лазеров и спектральной техники позволяет получить огромный набор данных. Для их обработки приходится прибегать к математическим методам, которые, в свою очередь, надо реализовать на компьютере с использованием специального ПО.

Подведем итоги

Биофотоника дает широкие возможности для диагностики состояния тканей в режиме реального времени, позволяет осуществлять лазерную абляцию — очищение верхних слоев кожи. Лазерный скальпель широко применяется в хирургии. Также при облучении лазером в организме могут ускоряться какие-то процессы, например выработка кислорода в сосудах или каких-то тканях. Либо замедляться, если это необходимо.

Все оптические технологии используются для неинвазивных исследований — без непосредственного контакта инструмента с тканью. Для более точного исследования в различных диапазонах можно использовать сразу несколько лазеров. Но это далеко не все возможности. Мы не упомянули такое интересное направление, как оптогенетика — воздействие лазерного или оптического излучения на когнитивные функции. Исследователи воздействуют на нейроны в определенных областях мозга, пытаясь улучшать настроение, стимулировать выработку гормонов и так далее. Пока такие опыты проводятся на животных. На фото — мышь, в череп которой вживлено оптическое волокно для соответствующих исследований.

Что такое луч лазера. Смотреть фото Что такое луч лазера. Смотреть картинку Что такое луч лазера. Картинка про Что такое луч лазера. Фото Что такое луч лазера

В связи с текущей пандемией стоит отметить, что упомянутая выше рамановская спектроскопия — технология, которая может использоваться для исследования вирусов. Здесь снова междисциплинарный подход: вирусы — частицы размером 20–200 нанометров, нужно их как-то уловить. Вирусы содержатся в крови, которая движется по некоему капилляру. Следовательно, в капилляр устанавливаются специальные наноловушки — наноструктуры, способные поймать и захватить частицы определенного размера. После захвата частиц проводим их облучение лазером и регистрацию рамановского рассеяния — вот теперь мы можем точно сказать, что это. Преимущество оптических технологий в данном случае в том, что вирусы обнаруживаются даже при минимальной их концентрации.

На наш взгляд, мы перечислили большинство наиболее интересных областей применения лазеров. Хотя наверняка могли что-то забыть. Так что, если кто-то подкинет интересных фактов в комментариях, с удовольствием поплюсуем.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *