Что такое линейное неравенство

Линейные неравенства (ЕГЭ 2022)

Раз уж ты читаешь эту тему, то ты наверняка уже знаком с темой «Линейные уравнения».

Если нет, то лучше скорей отправляйся исправлять это недоразумение.

Без усвоенной этой темы спокойное плавание в линейных неравенствах не гарантировано.

А если тебе все с ними понятно, вперед, покорять неравенства.

Линейные неравенства — коротко о главном

Линейными неравенствами называются неравенства вида:

где \( \displaystyle a\) и \( \displaystyle b\) – любые числа, причем \( \displaystyle a\ne 0\); \( \displaystyle x\) — неизвестная переменная.

Правила преобразования неравенств:

Правило 1. Любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный (т.е. при переносе через знак неравенства знаки при слагаемых меняются на противоположные).

Правило 2. Обе части неравенства можно умножить/разделить на одно и то же положительное число, при этом получится неравенство, равносильное данному.

Правило 3. Обе части неравенства можно умножить/разделить на одно и то же отрицательное число, меняя знак неравенства на противоположный (т.е. знак \( \displaystyle >\) на знак \( \displaystyle 12\)

Дальше мы делим обе части составленного неравенства на \( \displaystyle 3\) и получаем:

Таким образом, каждый друг щедрого Васи получит больше, чем \( \displaystyle 4\) яблока.

Ну вот и справились с неравенством! Сейчас я введу формализованное определение линейного неравенства и будем разбираться с ним дальше.

Определение линейного неравенства:

Линейные неравенства — это неравенства вида:

Источник

Линейные неравенства

Знаки неравенств

Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x b a x ≤ b a x > b a x ≥ b

Примеры линейных неравенств:

3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0

x c x ≤ c x > c x ≥ c

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

Смысл выколотой точки в том, что сама точка в ответ не входит.

Смысл жирной точки в том, что сама точка входит в ответ.

Таблица числовых промежутков

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Алгоритм решения линейного неравенства

a x b a x ≤ b a x > b a x ≥ b

Примеры решения линейных неравенств:

№1. Решить неравенство 3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Особые случаи при решении линейных неравенств

№3. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

№4. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

x + 6 − 9 x > − 8 x + 48

Спасибо за просмотр этого урока! Если у вас остались вопросы, напишите их в комментариях.

Источник

Решение линейных неравенств

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.

Линейные неравенства — это неравенства вида:

где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит сделать так, чтобы в левой части осталось только неизвестное в первой степени с коэффициентом равном единице.

Типы неравенств

Линейные неравенства: свойства и правила

Вспомним свойства числовых неравенств:

Если же а b и c > d, то а + c > b + d.

Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.

Если а d, то а – c b, m — положительное число, то mа > mb и

Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).

Если же а > b, n — отрицательное число, то nа

Обе части можно умножить или разделить на одно отрицательное число, при этом знак поменять на противоположный.

Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>

Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.

Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.

Свойства выше помогут нам использовать следующие правила.

Правила линейных неравенств

Решение линейных неравенств

Со школьных уроков мы помним, что у неравенств нет ярко выраженных различий, поэтому рассмотрим несколько определений.

Неравенства ax + b > 0 и ax > c равносильные, так как получены переносом слагаемого из одной части в другую.

Определение 3. Линейные неравенства с одной переменной x выглядят так:

где a и b — действительные числа. А на месте x может быть обычное число.

Равносильные преобразования

Рассмотрим пример: 0 * x + 5 > 0.

Как решаем:

Метод интервалов

Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.

Метод интервалов это:

Если a ≠ 0, тогда решением будет единственный корень — х₀;

Для этого найдем значения функции в точках на промежутке;

Как решаем:

Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.

Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.

По чертежу делаем вывод, что решение имеет вид (−∞, 4) или x

Графический способ

Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.

Алгоритм решения y = ax + b графическим способом

Рассмотрим пример: −5 * x − √3 > 0.

Как решаем

Ответ: (−∞, −√3 : 5) или x

Источник

Линейные неравенства, примеры, решения

После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.

Что такое линейное неравенство?

В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.

Их различия заключаются в:

Считается, что неравенства a · x + b > 0 и a · x > c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0 · x + 5 > 0 приведет к тому, что его необходимо будет решить, причем случай а = 0 не подойдет.

Как решить линейное неравенство

Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.

Используя равносильные преобразования

Рассмотрим применение данного алгоритма на решении примеров.

Весь выше прописанный алгоритм записывается так:

Весь алгоритм запишем в краткой форме:

Ответ: неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Методом интервалов

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов – это:

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Графическим способом

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Алгоритм решения линейных неравенств графическим способом.

Построение графика функции y = a · x + b производится:

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

Источник

Решение линейных неравенств

Прежде чем перейти к определению и решению неравенств давайте вспомним, какие знаки используют в математике для сравнения величин.

НеравенствоГрафическое решениеФорма записи ответа
x c
СимволНазваниеТип знака
>большестрогий знак
(число на границе не включается )
строгий знак
(число на границе не включается )
больше или равнонестрогий знак
(число на границе включается )
меньше или равнонестрогий знак
(число на границе включается )

Теперь мы можем разобраться, что называют линейным неравенством и чем неравенство отличается от уравнения.

В отличии от уравнения в неравенстве вместо знака равно « = » используют любой знак сравнения: « > », « », « ≤ » или « ≥ ».

Линейным неравенством называют неравенство, в котором неизвестное стоит только в первой степени.

Рассмотрим пример линейного неравенства.

Как решить линейное неравенство

Чтобы решить неравенство, нужно чтобы в левой части осталось только неизвестное в первой степени с коэффициентом « 1 ».

При решении линейных неравенств используют правило переноса и правило деления неравенства на число.

Правило переноса в неравенствах

Также как и в уравнениях, в неравенствах можно переносить любой член неравенства из левой части в правую и наоборот.

Вернемся к нашему неравенству и используем правило переноса.

Для того, чтобы понять, что получается при решении неравенства, нам нужно вспомнить, понятие числовой оси.

Нарисуем числовую ось для неизвестного « x » и отметим на ней число « 14 ».

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

При нанесении числа на числовую ось соблюдаются следующие правила:

Заштрихуем на числовой оси по полученному ответу « x » все решения неравенства, то есть область слева от числа « 14 ».

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Рисунок выше говорит о том, что любое число из заштрихованной области при подстановке в исходное неравенство « x − 6 » даст верный результат.

Возьмем, например число « 12 » из заштрихованной области и подставим его вместо « x » в исходное неравенство « x − 6 ».

Что такое линейное неравенство. Смотреть фото Что такое линейное неравенство. Смотреть картинку Что такое линейное неравенство. Картинка про Что такое линейное неравенство. Фото Что такое линейное неравенство

Другими словами, можно утверждать, что любое число из заштрихованной области будет являться решением неравенства.

Решить неравенство — это значит найти множество чисел, которые при подстановке в исходное неравенство дают верный результат.

Решением неравенства называют множество чисел из заштрихованной области на числовой оси.

В нашем примере ответ « x » можно понимать так: любое число из заштрихованной области (то есть любое число меньшее « 14 ») будет являться решением неравенства « x − 6 ».

Правило умножения или деления неравенства на число

Рассмотрим другое неравенство.

Используем правило переноса и перенесём все числа без неизвестного, в правую часть.

Теперь нам нужно сделать так, чтобы при неизвестном « x » стоял коэффициент « 1 ». Для этого достаточно разделить и левую, и правую часть на число « 2 ».

При умножении или делении неравенства на число, на это число умножается (делится) и левая, и правая часть.

Разделим « 2x > 16 » на « 2 ». Так как « 2 » — положительное число, знак неравенства останется прежним.

Рассмотрим другое неравенство.

Разделим неравенство на « −3 ». Так как мы делим неравенство на отрицательное число, знак неравенства поменяется на противоположный.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *