Что такое корень уравнения 6 класс математика

Что такое уравнение и корни уравнения? Как решить уравнение?

Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.

Что такое уравнение? Смысл и понятия.

Узнаем сначала все понятия, связанные с уравнением.

Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.

Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.

Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.

Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.

Рассмотрим теперь, все термины на простом примере:
x+1=3

В данном случае x – переменная или неизвестное значение уравнения.

Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.

Получили верное равенство. Значит, правильно нашли корни уравнения.

Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.

Правила уменьшения или увеличения уравнения на определенное число.

Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7

Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.

Что такое корень уравнения 6 класс математика. Смотреть фото Что такое корень уравнения 6 класс математика. Смотреть картинку Что такое корень уравнения 6 класс математика. Картинка про Что такое корень уравнения 6 класс математика. Фото Что такое корень уравнения 6 класс математика

Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.

Проверка:
Вместо переменной x подставим 5.

x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.

Разберем следующий пример:
Решите уравнение x-4=12.

Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:

Что такое корень уравнения 6 класс математика. Смотреть фото Что такое корень уравнения 6 класс математика. Смотреть картинку Что такое корень уравнения 6 класс математика. Картинка про Что такое корень уравнения 6 класс математика. Фото Что такое корень уравнения 6 класс математика

Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16

Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.

Рассмотрим пример:
Решите уравнение 4+3x=2x-5

Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9

Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.

Правила уменьшения или увеличения уравнения в несколько раз.

Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.

Рассмотрим пример:
Решите уравнение 5x=20.

Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.

5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4

Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.

Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.

Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.

7=7 получено верное равенство.

Ответ: корень уравнения равен x=21.

Следующий пример:
Найдите корни уравнения

Далее делим все уравнение на 3.

Сделаем проверку. Подставим в уравнение найденный корень.

Как решать уравнения? Алгоритм действий.

Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:

Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.

Источник

Корень уравнения

Что такое корень уравнения 6 класс математика. Смотреть фото Что такое корень уравнения 6 класс математика. Смотреть картинку Что такое корень уравнения 6 класс математика. Картинка про Что такое корень уравнения 6 класс математика. Фото Что такое корень уравнения 6 класс математика Что такое корень уравнения 6 класс математика. Смотреть фото Что такое корень уравнения 6 класс математика. Смотреть картинку Что такое корень уравнения 6 класс математика. Картинка про Что такое корень уравнения 6 класс математика. Фото Что такое корень уравнения 6 класс математика

Всего получено оценок: 132.

Всего получено оценок: 132.

Тема уравнения сопровождает учеников на протяжении всей школьной программа. Немного странно, что большая часть учащихся 6 класса математики забывают, что же такое корень и решают уравнения, не понимая своих действий. Чтобы не допускать этой ошибки поговорим обо всех особенностях корней уравнения

Неизвестное

Чтобы говорить об уравнениях, нужно вспомнить, что такое неизвестное. Под неизвестным понимается буквенное выражение, которое в общем случае может принимать абсолютно любое значение.

Неизвестные могут перемножаться с числом или друг с другом. Таким образом, получается классический одночлен. Например, выражение 3 а*в является одночленом.

Если одночлены складываются, вычитаются или делятся друг на друга, получается многочлен. Многочлен, приравненный к какому-то числу, называется тождеством.

После того, как многочлен приравняли к какому-то числу, превратив его в тождество, появляются некоторые ограничения. Этих ограничений может быть недостаточно для того, чтобы точно определить значения неизвестных, но они есть.

Функция

Именно такие ограничения и называются функцией. Функцией зовется зависимость одной неизвестной от другой или других неизвестных. Например, в выражении:

х+у=12 – от выбранного значения х зависит значение у и наоборот.

Число у зовется функцией, а число х аргументом. При этом у функции может быть множество аргументов, но у аргумента может быть только одна функция. Например, в функции у=x+z+n – 3 аргумента. Такие функции не используются в школьной программе, но нельзя забывать, что они существуют.

Функции часто изображаются в виде графиков. На плоскости можно отобразить зависимость функции лишь от одного аргумента. Но в пространстве можно отобразить изменение функции в зависимости от двух аргументов.

Существую типовые функции, поведение которых на графике изучено. Каждая из таких функций имеет свое название. Например:

Большую часть типовых функций ученики изучают в математике старших классов.

Корень уравнения

Важно понять, что любое уравнение это частный случай функции. Уравнение это точка или точки пересечения двух функций. Задачей любого уравнения является нахождение координат точки пересечения этих функций. Так как график функции может быть не только прямой линией, то количество корней уравнения может быть разным. Если количество корней определено, то их называют простыми корнями уравнения.

Корнем уравнения называют значение х, при котором тождество выполняется. То есть это значение, при котором не нарушается равенство правой и левой сторон. Приведем пример:

х+10=5 – это уравнение, как и любое другое, представляет собой равенство двух функций:

В любом степенном уравнении количество корней равняется старшей степени многочлена. Корни могут быть одинаковыми. Линейное уравнение является частным случаем степенного, со старшей степенью равной 1. По этой же причине, в линейных уравнениях всегда один корень.

Что такое корень уравнения 6 класс математика. Смотреть фото Что такое корень уравнения 6 класс математика. Смотреть картинку Что такое корень уравнения 6 класс математика. Картинка про Что такое корень уравнения 6 класс математика. Фото Что такое корень уравнения 6 класс математика

Что мы узнали?

Мы подробно разобрали определение корня уравнения. Рассмотрели обозначения неизвестных и узнали, что такое функция.

Источник

Математика. 6 класс

Конспект урока

Перечень рассматриваемых вопросов:

Уравнение – равенство содержащее букву, значение которой надо найти.

Решить уравнение – значит найти все его корни.

Корнем уравнения называют такое число, при подстановке которого в уравнение вместо неизвестного, получается верное числовое равенство.

1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Как решаются уравнения? Чем уравнение отличается от буквенного выражения? На эти и другие вопросы, связанные с уравнениями, мы сегодня и будем отвечать.

Дадим определение уравнению. Уравнением называют равенство, содержащее букву, значение которой надо найти.

Решить уравнение – значит найти все его корни.

В нашем случае x=11.

Корнем уравнения называют такое число, при подстановке которого в уравнение вместо неизвестного, получается верное числовое равенство.

Подставим в уравнение корень

Получается, что левая и правая части равны семнадцати.

При решении уравнений можно использовать следующие приёмы:

– переносить числа из одной части уравнения в другую, меняя их знак на противоположный.

– делить или умножать обе части уравнения на одно и тоже число отличное от нуля.

Равенство не изменится, если к обеим частям уравнения прибавить по числу три икс:

Перенесём число 7 из левой части в правую часть уравнения с противоположным знаком:

Применим распределительный закон для правой части:

Упростим левую и правую части уравнения:

Равенство не изменится, если обе части уравнения разделить на 5:

2 ∙ (– 3) + 7 = – 3 ∙ (– 3) – 8,

Значит, корень уравнения найден верно.

Перенесём число 3 в правую часть уравнения с противоположным знаком:

Что такое корень уравнения 6 класс математика. Смотреть фото Что такое корень уравнения 6 класс математика. Смотреть картинку Что такое корень уравнения 6 класс математика. Картинка про Что такое корень уравнения 6 класс математика. Фото Что такое корень уравнения 6 класс математика

Где используются уравнения?

Ответ на этот вопрос достаточно прост. Уравнения используются практически везде. В школе мы решаем с помощью уравнений текстовые задачи. В окружающем нас мире все природные и жизненные процессы протекают по определённым закономерностям, большинство из которых можно описать с помощью уравнений. Например, если нужно определить во сколько должен выехать автомобиль, чтобы прибыть вовремя из пункта А в пункт В, необходимо использовать уравнения движения. Для точного расчёта затрат и прибыли на предприятиях используют экономические уравнения. В медицине для обработки данных ультразвуковых исследований организма тоже используются уравнения.

Итак, уравнения – это универсальный инструмент для решения самых разных прикладных задач.

Разбор заданий тренировочного модуля

Тип 1.Найдите корни уравнения.

Перенесём – 5 в правую часть уравнения с противоположным знаком:

Вычислим отдельно левую и правую части уравнения.

Это и есть корень уравнения.

Тип 2. Будет ли являться корнем данного уравнения число 7?

Чтобы выполнить данное задание нужно подставить число 7 вместо неизвестного х и проверить, будут лиравны правая и левая части уравнения. Если будут равны, то число является корнем уравнения, если правая и левая части уравнения не равны, то число не является корнем уравнения.

Видно, что при подстановке в уравнение числа 7 верное равенство не получилось. Следовательно, число 7не является корнем уравнения.

Источник

Уравнение и его корни: определения, примеры

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Источник

Корень уравнения – определение (6 класс, математика)

Тема уравнения сопровождает учеников на протяжении всей школьной программа. Немного странно, что большая часть учащихся 6 класса математики забывают, что же такое корень и решают уравнения, не понимая своих действий. Чтобы не допускать этой ошибки поговорим обо всех особенностях корней уравнения

Что такое корень уравнения 6 класс математика. Смотреть фото Что такое корень уравнения 6 класс математика. Смотреть картинку Что такое корень уравнения 6 класс математика. Картинка про Что такое корень уравнения 6 класс математика. Фото Что такое корень уравнения 6 класс математика

Неизвестное

Чтобы говорить об уравнениях, нужно вспомнить, что такое неизвестное. Под неизвестным понимается буквенное выражение, которое в общем случае может принимать абсолютно любое значение.

Неизвестные могут перемножаться с числом или друг с другом. Таким образом, получается классический одночлен. Например, выражение 3 а*в является одночленом.

Если одночлены складываются, вычитаются или делятся друг на друга, получается многочлен. Многочлен, приравненный к какому-то числу, называется тождеством.

После того, как многочлен приравняли к какому-то числу, превратив его в тождество, появляются некоторые ограничения. Этих ограничений может быть недостаточно для того, чтобы точно определить значения неизвестных, но они есть.

Функция

Именно такие ограничения и называются функцией. Функцией зовется зависимость одной неизвестной от другой или других неизвестных. Например, в выражении:

х+у=12 – от выбранного значения х зависит значение у и наоборот.

Число у зовется функцией, а число х аргументом. При этом у функции может быть множество аргументов, но у аргумента может быть только одна функция. Например, в функции у=x+z+n – 3 аргумента. Такие функции не используются в школьной программе, но нельзя забывать, что они существуют.

Функции часто изображаются в виде графиков. На плоскости можно отобразить зависимость функции лишь от одного аргумента. Но в пространстве можно отобразить изменение функции в зависимости от двух аргументов.

Существую типовые функции, поведение которых на графике изучено. Каждая из таких функций имеет свое название. Например:

Большую часть типовых функций ученики изучают в математике старших классов.

Корень уравнения

Важно понять, что любое уравнение это частный случай функции. Уравнение это точка или точки пересечения двух функций. Задачей любого уравнения является нахождение координат точки пересечения этих функций. Так как график функции может быть не только прямой линией, то количество корней уравнения может быть разным. Если количество корней определено, то их называют простыми корнями уравнения.

Корнем уравнения называют значение х, при котором тождество выполняется. То есть это значение, при котором не нарушается равенство правой и левой сторон. Приведем пример:

х+10=5 – это уравнение, как и любое другое, представляет собой равенство двух функций:

В любом степенном уравнении количество корней равняется старшей степени многочлена. Корни могут быть одинаковыми. Линейное уравнение является частным случаем степенного, со старшей степенью равной 1. По этой же причине, в линейных уравнениях всегда один корень.

Что мы узнали?

Мы подробно разобрали определение корня уравнения. Рассмотрели обозначения неизвестных и узнали, что такое функция.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *