Что такое контроллер lpc

Что такое контроллер lpc

Используемая вами версия браузера не рекомендована для просмотра этого сайта.
Установите последнюю версию браузера, перейдя по одной из следующих ссылок.

Спецификация интерфейса LPC для устаревших систем ввода/вывода способствовала переходу отрасли на системы без шины ISA. Ключевым усовершенствованием версии 1.1 спецификации интерфейса LPC является включение циклов встроенного ПО и добавление возможности многобайтового чтения.

Интерфейс LPC позволяет устаревшим компонентам ввода-вывода на системной плате, обычно встроенным в микросхему Super I/O, перейти с шины ISA/X на интерфейс LPC, сохраняя полную программную совместимость. Спецификация LPC предлагает несколько ключевых преимуществ по сравнению с шиной ISA/X, например сокращение числа выводов для получения более простой и экономичной конструкции. Спецификация интерфейса LPC понятна для функций ввода/вывода и совместима с существующими периферийными устройствами и приложениями.

Спецификация интерфейса LPC описывает операции памяти, системы ввода/вывода и прямого доступа к памяти (DMA). В отличие от шины ISA, которая работает с частотой 8 МГц, она использует тактовую частоту PCI 33 МГц и совместима с более продвинутыми кремниевыми процессорами. Дизайнеры мобильных устройств также оценят преимущества уменьшения числа выводов, поскольку шина занимает меньше места, потребляет меньше энергии и более эффективна с точки зрения температурных характеристик. Спецификацию интерфейса LPC версии 1.1 и соответствующее обоюдное лицензионное соглашение о патентах можно скачать ниже.

Источник

Что такое контроллер lpc

LPC (Low Pin Count, малое число контактов) — шина, разработанная компанией Intel и предназначенная главным образом для подключения стандартных устройств, доставшихся современным персональным компьютерам «в наследство» от ранних ПК и обычно называемых унаследованными (legacy). Раньше такие устройства подключались к шине ISA.

Целесообразность разработки новой шины объясняется следующими основными причинами:

Шина LPC имеет всего 7 обязательных и 6 необязательных сигналов. Обмен данными по ней идёт в синхронном режиме с частотой 33 МГц (шина ISA является асинхронной, что также усложняет работающее с ней оборудование), причём каждый так передаётся 4 информационных или управляющих бита. Разрядность адреса увеличена до 32 бит, что позволяет задатчикам шины прямо обращаться к адресному пространству памяти объёмом 4 Гбайта (у шины ISA разрядность адреса составляла 24 бита, что ограничивало возможности адресации величиной 16 Мбайт). Реальная пропускная способность LPC, составляющая 6,7 Мбайт/с, ненамного уступает таковой у ISA (до 8 Мбайт/с) и совершенно достаточна для одновременной работы всех подключенных к ней устройств (по расчётам Intel, они используют порядка 75% максимальной пропускной способности).

С точки зрения программиста шина LPC как бы отсутствует: программы просто работают с регистрами подключенных к ней устройств. Хотя у LPC отсутствуют традиционные сигналы запросов прерываний и прямого доступа к памяти, эти возможности поддерживаются, причём создаётся иллюзия применения обычной шины ISA. Например, с точки зрения программиста подключенные к LPC порты и контроллер интерфейса PS/2 генерируют обычные для них запросы прерываний IRQ1, IRQ3, IRQ4, IRQ12, хотя физически эти линии отсутствуют. Определять наличие или отсутствие тех или иных устройств, подключенных к LPC, необходимо соответствующими функциями BIOS. Зачастую информация о них содержится в таблицах ACPI, поэтому анализ конфигурации обычно целесообразно начинать именно с их разбора.

Источник

Встроенный контроллер одного ноутбука и его наследство

В этом материале я хочу немного рассказать о том, что происходит во встроенном контроллере (Embedded Controller, EC) моего ноутбука. Речь идёт о мультиконтроллере IT8586E, основанном на Intel 8051. Он встроен в ноутбук Lenovo Ideapad 310-15IKB. Но, прежде чем переходить к деталям, полагаю, нелишним будет поговорить о том, что это вообще такое — встроенные контроллеры.

Что такое контроллер lpc. Смотреть фото Что такое контроллер lpc. Смотреть картинку Что такое контроллер lpc. Картинка про Что такое контроллер lpc. Фото Что такое контроллер lpc

Краткая история встроенных контроллеров на платформах x86

Сначала был создан компьютер IBM PC. Многих это возмутило, данный шаг компании IBM был широко признан неразумным.

В материнскую плату этого компьютера было встроено множество периферийных устройств, вроде Intel 8259 (программируемый контроллер прерываний) или Intel 8253 (программируемый таймер). Обращаться к этим контроллерам можно было, пользуясь инструкциями in/out ядра x86 (и, на самом деле, к контроллерам 8259 и 8253 всё ещё можно обращаться на современных x86-процессоров, но теперь они входят в состав кристалла CPU). Один из контроллеров IBM PC, Intel 8255 (программируемый контроллер интерфейса периферийных устройств), отвечал за взаимодействие с клавиатурой.

Где-то в конце 1980-х периферийные устройства всё чаще и чаще объединяли, включая в состав одной микросхемы несколько таких устройств. Например — это чипы северного моста и южного моста. Один из таких чипов, Super I/O-контроллер, отвечал за взаимодействие с низкоскоростными устройствами, вроде последовательных портов, параллельных портов и контроллеров дисководов гибких дисков. В состав этого чипа часто входил и контроллер клавиатуры.

Ноутбукам, кроме прочего, требовалась особая система управления питанием. Производители портативных компьютеров взглянули на контроллер клавиатуры, на то, что он способен перезагружать компьютер, и сказали: «На самом деле — это замечательно. Давайте сделаем то, что нам нужно, по похожей схеме». В результате к контроллеру клавиатуры были добавлены два порта с похожим интерфейсом, позволяющим отправлять на устройства команды и получать от них данные. И, фактически, во многих платформах эта возможность реализована в том же самом контроллере, который входит в состав Super I/O-чипа.

В середине 1990-х заметным явлением стал стандарт ACPI (Advanced Configuration and Power Interface, усовершенствованный интерфейс управления конфигурацией и питанием). Он определял стандартизированный интерфейс для EC. А именно, через его командный интерфейс можно было обращаться к 8-битному адресному пространству переменных, определяемых производителями оборудования. Эти переменные можно было описывать с помощью языка AML (ACPI Machine Language), средствами AML можно было описывать и код, позволяющий воздействовать на эти переменные.

В конце 2000-х годов микросхемы южного и северного мостов были объединены с CPU. Правда, надо отметить, что интеграция южного моста (PCH, Platform Controller Hub) в CPU, по всей видимости, имеет место лишь на мобильных платформах. Но в ноутбуках EC всё ещё представлен отдельным чипом, который, кроме того, реализует функционал Super I/O-контроллера и контроллера клавиатуры. Он, например, решает следующие задачи:

Схема материнской платы моего ноутбука

Так как EC интенсивно взаимодействует с разными устройствами — неплохо было бы знать о том, что это за устройства. Мне в решении этой задачи повезло — кто-то выложил в интернет так называемые boardview-файлы к интересующей меня плате. В таких файлах содержатся схемы печатных плат, в частности, сведения о компонентах, расположенных на плате, и о том, как они связаны. Между компонентами материнских плат имеется так много соединений, что анализ схемы их связей может оказаться весьма сложной задачей. Я попытался представить связи между компонентами платы в упрощённой форме, результат моих трудов показан на следующей схеме (тут нет большинства линий, имеющих отношение к питанию).

Что такое контроллер lpc. Смотреть фото Что такое контроллер lpc. Смотреть картинку Что такое контроллер lpc. Картинка про Что такое контроллер lpc. Фото Что такое контроллер lpc

Схема связей компонентов платы (оригинал)

CPU соединён с EC с использованием шины LPC (Low Pin Count), которая, по сути, представляет собой замену шины ISA, применявшейся в более старых компьютерах, в физической реализации которой используется меньше линий связи. Процессор и контроллер взаимодействуют, в основном, по LPC. Но между EC и CPU имеется множество соединений (показанных синими линиями без стрелок), используемых в особых целях. Например — это линия SCI, предназначенная для вызова прерывания от EC в CPU.

Прошивка EC

Раздобыть прошивку контроллера несложно. Я уже извлекал образ BIOS раньше, для других нужд. После его обработки с помощью утилиты cpu_rec в моём распоряжении оказалось примерно 160 Кб 8051-кода из самого начала образа, расположенного до кода, имеющего отношения к UEFI. Контроллер 8051 имеет 16-битное адресное пространство, а значит 160 Кб кода ему не соответствуют. Получается, что речь идёт о так называемой banked-прошивке. То есть — одни части («блоки» или «банки») прошивки в адресном пространстве подвергаются динамической замене на другие части путём воздействия на некие регистры.

Размеры блоков прошивки обычно, в большинстве контроллеров 8051, составляют либо 32, либо 64 Кб. Выяснить их размер при работе с конкретным контроллером можно, поискав повторяющиеся фрагменты кода. Дело в том, что в разных блоках прошивки обычно имеются одинаковые фрагменты, представляющие код общего назначения (быстро найти такие фрагменты можно попробовать, прибегнув к автокорреляции). Оказалось, что в моём случае речь идёт о блоках кода размером 32 Кб.

После того, как я всё это выяснил, меня посетила блестящая идея, которая заключалась в том, чтобы посмотреть даташит исследуемого компонента. Даташит на мой контроллер найти не удалось, но мне попались документы на IT8502E, описывающие устройство достаточно близкое к тому, которое было у меня. В нём, что было очень кстати, подробно описывалось большинство I/O-механизмов и, похоже, описание функционирования прошивки, в основном, соответствовало той прошивке, что была у меня.

При просмотре даташита я наткнулся на упоминание отладочного интерфейса I2C, но он, правда, не был документирован. После некоторых изысканий я нашёл проект ECSpy, который представляет собой Rust-реализацию отладчика для EC, созданную силами компании System76, которая работает над собственной прошивкой для EC.

Отладчик даёт доступ на чтение и запись к оперативной памяти и регистрам ввода/вывода EC. Доступ к регистрам отличается дополнительным ограничением, которое заключается в том, что операция записи чётко определена лишь для триггерных регистров (в результате, например, операция, вызывающая изменение состояния конечного автомата, не сработает).

Ещё в даташите сказано, что возможность отладки нужно включать с помощью регистра, но она и так включена. Доступ к ней осуществляется посредством I/O-портов x86 через Super I/O-чип, поэтому ей можно пользоваться из пользовательского пространства, без необходимости писать драйвер.

Для реверс-инжиниринга тех частей прошивки, которые отвечают за взаимодействие с различными устройствами, могут пригодиться спецификации этих устройств. Я, работая над этим проектом, прочитал часть спецификаций ACPI, SMBus и Smart Battery. В процессе исследования кода прошивки используются следующие ресурсы и инструменты: boardview-файлы, даташиты, спецификации компонентов, отладчик Ghidra, обычный браузер, применяемый для поиска дополнительных сведений вроде скан-кодов, исходный код Linux-драйвера для EC, дизассемблированный машинный ACPI-код, отладчик для EC и его исходный код. В таких делах весьма кстати могут оказаться несколько мониторов, использование которых позволяет ускорить сопоставление информации, полученной из разных источников.

Большой объём работы выполняется в коде главного цикла, ответственном за обработку событий таймера. Таймер в EC запрограммирован так, что он выдаёт прерывание раз в одну миллисекунду. Потом, на основе прерываний таймера, формируются события, которые происходят, например, каждые 10, 50, 100 мс. Обновление ACPI-переменных выполняется, в основном, в этом контексте.

POST-карты в современных ноутбуках

Затем, вместе с тактовыми импульсами, осуществляется последовательный вывод результирующего значения на GPIO-пины.

Вышеприведённая поисковая таблица может показаться вам знакомой. Дело в том, что она позволяет преобразовывать полубайты в шестнадцатеричные числа для их вывода на 7-сегментном дисплее. Если взглянуть на схему материнской платы, там можно увидеть две линии — EC_TX и EC_RX (эти названия, вероятно, не очень удачны, так как одна из них — это линия данных, а другая — тактовая линия, обе они используются лишь для отправки данных). Они ведут к Wi-Fi-чипу, который подключён к плате через разъём M.2. Но эти линии, на самом деле, ни к чему на Wi-Fi-карте не присоединены.

Это наводит на мысль о том, что существуют некие POST-платы, которые можно подключать к разъёму M.2 для решения проблем, возникающих в ходе загрузки ноутбуков. Так как я знаком с протоколом обмена данными, используемым в M.2-картах, я попытался сделать собственный вариант такой платы (она, в целом, представляет собой два последовательно соединённых сдвиговых регистра, подключённых к 7-сегментным дисплеям). Посмотрите — какая симпатичная у меня получилась штука.

Что такое контроллер lpc. Смотреть фото Что такое контроллер lpc. Смотреть картинку Что такое контроллер lpc. Картинка про Что такое контроллер lpc. Фото Что такое контроллер lpc

Самодельная POST-плата для разъёма M.2

Но я, к сожалению, видимо что-то напутал, так как эта плата, в итоге, так и не заработала, а мне не очень-то хотелось тратить время на поиск и исправление ошибок, допущенных при её создании.

Клавиатурные механизмы

Можно подумать, что вышеописанная задача решается очень легко, что заключается она в просмотре некоей поисковой таблицы и в отправке хосту результатов. Но, увы, скан-коды PS/2 — это настоящий бардак.

Существует три различных набора скан-кодов, между которыми нет ничего общего. EC использует набор №2. Одиночное нажатие и отпускание клавиши не всегда приводит к генерированию одного байта скан-кода.

Если промежуточное значение меньше 0x80, это значит, что оно просто соответствует обычному однобайтовому PS/2 скан-коду. А если говорить о других значениях, то они, по уже рассмотренной нами схеме, используются в роли индексов в поисковой таблице. Результирующее значение определяет функцию, которая используется для обработки скан-кода. Полученные скан-коды затем помещают в 16-байтовый кольцевой буфер, байты, содержащиеся в котором, если это возможно, потом отправляют хосту.

Таинственный фрагмент кода

Зачем встроенному контроллеру SHA-1? Если посмотреть на то, что именно вызывает SHA1-код, то окажется, что он используется при взаимодействии с батареей по SMBus:

Где хранится код?

Во многих прошивках для 8051 обычно имеется код, реализующий возможности отладки, и мой — не исключение. Перед функциями, имеющими отношение к контроллеру клавиатуры и к EC, имеется множество функций, которые явно реализуют отладочные возможности. Одна из них — это команда контроллера клавиатуры, предназначенная для чтения из EC данных с адресов флеш-памяти с применением регистра.

Если сделать оттуда дамп прошивки, то получится образ, который отличается от оригинала. Изначально я предполагал, что EC использует образ из флеш-памяти BIOS, так как он хранится в этой памяти, и EC к этой памяти подключён. Но оказалось, что это, на самом деле, не так. К этой памяти напрямую подключены и CPU, и EC. В результате, в том случае, если и тот и другой одновременно попытаются прочесть из неё данные, на шине неизбежно возникнет конфликт. Прошивка, на самом деле, хранится в самом EC. В IT8502 этой возможности не было (это запутало меня ещё сильнее, так как я пользовался даташитом именно для такого контроллера).

Запуск моего собственного кода в EC

Вероятно, стоит сказать о том, что у 8051 имеется некоторое количество различных адресных пространств:

Я этого делать не собирался, так как подобные действия несут в себе риск «окирпичивания» устройства. EC можно перепрограммировать, используя входы/выходы клавиатурной матрицы в роли параллельного порта, но я не собирался заниматься и этим.

Ещё одна проблема, связанная с записью данных во флеш-память, заключается в том, что её содержимое проверяется с использованием контрольной суммы. В прошивке имеется сигнатура, которая указывает на то, где начинается контрольная сумма, и в ней имеются два байта, которые различаются в разных редакциях прошивки. Подобное характерно для контрольных сумм. Если дело обстоит именно так — то неясно, где именно начинается и заканчивается контрольная сумма, и то, как именно она вычисляется.

Правда, для выполнения собственного кода нет нужды выполнять запись данных во флеш-память. В EC для этого имеется другой механизм. А именно — адреса 0x0000-0x1000 в адресном пространстве XDATA — это обычная оперативная память, которую можно отобразить на произвольную область адресного пространства CODE, изменив содержимое кое-каких регистров.

Что такое контроллер lpc. Смотреть фото Что такое контроллер lpc. Смотреть картинку Что такое контроллер lpc. Картинка про Что такое контроллер lpc. Фото Что такое контроллер lpc

Схема из даташита, на которой показано 5 областей, пронумерованных от 0 до 4, которые могут быть отображены на адресное пространство кода. А именно, речь идёт об областях 0x0000-0x0800, 0x0800-0x0c00, 0x0c00-0x0e00, 0x0e00-0x0f00 и 0x0f00-0x1000

В результате для выполнения собственного кода достаточно лишь выполнить отображение одного из этих фрагментов на память с кодом. Оперативная память в диапазоне 0x0000-0x0e00 используется самой прошивкой, в результате остаются блоки 3 и 4, размер каждого из которых составляет 256 байт.

Правда, чтобы осуществить отображение этой памяти на память с кодом, нужно выполнить запись в регистры и в оперативную память из пространства XDATA. Есть одна отладочная функция, позволяющая писать данные в XDATA, но она содержит ошибки и может писать данные только по адресам, где байт из верхней части адреса является таким же, как и байт из его нижней части. Тут имеется ещё и интерфейс I2C, который достаточно хорошо подходит для решения задачи записи данных в SRAM.

Я сомневался по поводу записи данных в порты ввода/вывода, так как было сказано, что это подходит лишь для триггерных регистров. Но в регистрах, используемых для отображения памяти, имеется ещё и бит для запуска DMA-транзакции (так как этот чип, конечно, поддерживает DMA). В любом случае, не было способа проверить то, что отображение памяти осуществляется именно так, как мне нужно, так как нет отладочной функции, позволяющей читать данные из адресного пространства CODE.

К счастью, был и другой путь: функционал отображения памяти используется для перезаписи флеш-памяти (так как никто не заинтересован в том, чтобы работа программы завершилась бы с ошибкой, когда будет достигнута область с кодом, выполняющим запись данных). Используя I2C можно отредактировать содержимое SRAM в адресном пространстве XDATA, поместив туда отладочный код, и подстроить механизм записи данных во флеш-память так, чтобы он обращался бы к этому отладочному коду.

В любом случае, эту проблему легко обойти, так как между адресами, всё равно, имеется взаимно однозначное соответствие, а значит — код можно просто записать в те места пространства XDATA, которые будут соответствовать нужным местам памяти. Оказалось, что I2C-запись в регистры, отвечающие за отображение памяти, тоже работает. В результате для выполнения отладочного кода с его последующей записью мне не нужно было бы прибегать к режиму перезаписи флеш-памяти.

Итоги

На сегодня это всё, а в следующий раз я расскажу об исследовании прошивки ноутбучного Wi-Fi-модуля (RTL8821AE) и о разработке небольшого кейлоггера, основанного исключительно на возможностях Intel 8051.

Занимались ли вы разработкой прошивок для контроллеров, основанных на Intel 8051?

Источник

ISA умер! Да здравствует LPC?

Сегодня в персональном компьютере осталось только одно функциональное устройство, по которому можно проследить его генеалогию, — это интерфейс ISA, доставшийся ему по наследству от IBM PC AT. Большинство карт расширения выполняется по стандарту PCI, многие видеокарты подключаются по AGP. Однако производители карт расширения и материнских плат кивают друг на друга: если стандарт существует, то под него должны выпускаться карты; если выпускаются карты с интерфейсом ISA, то материнские платы должны его поддерживать. В спецификации PC98 наличие разъемов расширения стандарта ISA признается нежелательным. Однако для подсоединения таких устройств, как параллельные и последовательные порты, клавиатура, флоппи-диск, какой-нибудь интерфейс все же необходим. Поэтому разработчики микросхем для материнских плат вынуждены разводить ISA на кристалле, а чтобы добро не пропадало зря, — и выводить его наружу. Что же придет ему на смену?

НаименованиеНаправлениеНазначение
ПериферияОсновной задатчик
LAD[3:0]I/OI/OМультиплексированные команды, адреса и данные
LFRAME#IOФрейм, указывает на начало новой команды
LRESET#IIСброс, те же функции, что PCI Reset. При наличии PCIRST# необязателен
LCLCIIТактовая частота 33 МГц, те же функции, что PCICLK

Для подключения перечисленных выше устройств Intel предлагает новый стандарт — LPC (Low Pin Count, Малое Количество Контактов). Этот интерфейс, по утверждению представителей корпорации, будет встраиваться в будущие чипсеты для материнских плат. Такие намерения Intel означают, что, вероятнее всего, мы вскоре сможем в добровольно-принудительном порядке ознакомиться со стандартом LPC. Попробуем сделать это заранее и по собственной воле.

Введение нового стандарта преследует следующие цели:

Контактов действительно очень мало: семь обязательных (для передачи информации) и шесть дополнительных (для подключения устройств, выполняющих функцию задатчика и управления мощностью). Названия и функции обязательных сигналов интерфейса LPC приведены в табл. 1. Команды, адреса и данные передаются по линиям LAD[3:0] тетрадами-нибблами последовательно по четыре бита за один раз. Подобно PCI интерфейс синхронный, каждый цикл состоит из нескольких полей, каждое из которых имеет длительность в один период тактовой частоты 33 МГц. Любой цикл обмена по интерфейсу LPC начинается с того, что основной задатчик на шине (обычно чипсет) устанавливает активный уровень на линии LFRAME#. При этом все периферийные устройства переходят в состояние «начало цикла» и анализируют состояние линий LAD[3:0]. Если устройства передавали информацию по линиям LAD[3:0], то они немедленно их освобождают. Таким образом, этот сигнал может использоваться для прекращения затянувшихся циклов, например, при сбоях и зависаниях. То есть при достаточно интеллектуальном основном задатчике зависшее периферийное устройство не сможет подвесить всю систему. Сигнал LFRAME# может быть активным более одного периода тактовой частоты 33 МГц. В этом случае действительной считается информация, имевшаяся на LAD[3:0] во время последнего периода тактовой частоты. Первое поле — START — определяет тип операции, его возможные значения приведены в табл. 2.

Значение LAD[3:0]Тип операции
0Начало ввода/вывода или чтения/записи
1Зарезервировано для последующего расширения
10Разрешение для задатчика номер 1
11Разрешение для задатчика номер 2
0100-1110Зарезервировано для последующего расширения
1111Принудительное прекращение цикла

Следующее поле — CYCTYPE + DIR (Cycle Type / Direction, тип цикла и направление передачи), определяется текущим задатчиком. Это поле может иметь значения, указанные в табл. 3. Значение бита LAD[0] зарезервировано, и он всегда должен быть равен 0.

Поле SIZE (Размер) может принимать значения 00 при передаче 1 байта, 01 при передаче 2 байт и 11 при передаче 4 байт. Значение 10 зарезервировано. Это поле используется только при операциях прямого доступа; ввод/вывод и чтение/запись осуществляются побайтно. Поле ADDR имеет длину четыре периода тактовой частоты для операций ввода/вывода и восемь периодов для циклов обращения к памяти. Адреса передаются начиная со старшей тетрады, то есть при обращении к памяти первыми передаются биты 31:28, а последними — 3:0.

LAD[3:2]LAD[1]Тип операции
00Чтение из внешнего устройства
01Запись во внешнее устройство
10Чтение из памяти
11Запись в память
100Прямой доступ к памяти для чтения
101Прямой доступ к памяти для записи
11ХЗарезервировано. Периферия должна игнорировать это значение, а основной задатчик, обнаружив его, прерывает цикл установкой LFRAME# в активное состояние

Поле CHANNEL используется в операциях прямого доступа к памяти и содержит в битах 0:2 номер канала, а в бите 3 — аналог сигнала Terminal Count шины ISA.

Поле DATA (Данные) имеет длину два периода тактовой частоты и содержит данные, передаваемые младшей тетрадой вперед. В одном цикле может содержаться одно, два или четыре поля DATA.

Поле передачи управления Turn Around, TAR, используется для передачи контроля над линиями LAD [3:0] второму участнику данного цикла, что необходимо при операциях чтения. Оно имеет продолжительность два периода тактовой частоты, на первом периоде текущий задатчик устанавливает на линиях LAD[3:0] значение 1111, на втором отключается, ожидая информацию от второго участника диалога.

Поле SYNC служит для синхронизации источника и приемника данных. Его вставляет ведомый участник цикла для того, чтобы подготовить для передачи запрошенные данные, или для размещения полученной информации. Полей SYNC в одном цикле может быть несколько, фактически столько, сколько нужно для подготовки. Значения поля SYNC приведены в табл. 4.

LAD[3:0]
0Синхронизация достигнута
0001-0100Зарезервировано
101Короткое ожидание
110Длительное ожидание, будет добавлено много полей SYNC
0111-1000Зарезервировано
1001Синхронизация достигнута, передача будет продолжена в следующем цикле (только при прямом доступе к памяти)
1010Ошибка. В переданных данных содержится ошибка
1011 — 1111Зарезервировано

Значение 1010 — Ошибка необходимо потому, что все циклы должны иметь определенную длину, так что периферийное устройство обязано передать требуемое для данного цикла количество данных, но перед этим оно честно предупреждает задатчика о том, что эти данные имеют чисто фиктивный характер.

Ознакомившись с типами полей, можно более подробно рассмотреть механизмы начала, окончания и принудительного прекращения цикла. Цикл начинается с того, что основной задатчик устанавливает активный уровень на линии LFRAME#. С этого момента периферийные устройства только анализируют состояние линий LAD[3:0], прервав любую операцию на шине (если она проводилась). Задатчик может удерживать LFRAME# в активном состоянии более одного периода частоты синхронизации, при этом он даже может произвольно менять состояние LAD[3:0]. Действительным значением поля START будет то, которое имелось на этих линиях перед переходом LFRAME# в пассивное состояние. Если считанное поле START распознается периферийными устройствами, то они должны декодировать весь цикл, а в противном случае — просто дожидаться следующей активации LFRAME# (например, устройства ввода/вывода, не использующие циклы прямого доступа или захвата шины, могут их просто игнорировать). Принудительное прекращение цикла является специальным циклом, так как начинается с установки LFRAME# в активное состояние, а заканчивается установкой поля START со значением 1111. При этом для более уверенного распознавания линия LFRAME# находится в активном состоянии не менее четырех периодов тактовой частоты.

ПолеЗначениеИсточникЧисло тактов
START0Основной задатчик1
CYCTYPE+DIR100Основной задатчик1
ADDRХХХХОсновной задатчик8
TAR1111Основной задатчик2
SYNC101Периферийное устройство3
SYNC0Периферийное устройство1
DATAХХХХПериферийное устройство2
TAR1111Периферийное устройство2
Всего тактов20
Время доступа0,66 мкс
Скорость передачи1,5 Мбайт/с

В табл. 5 приведены последовательность и характеристики полей в цикле чтения из памяти. Основной задатчик инициирует цикл, определяет тип цикла и направление передачи (чтение из памяти), адрес памяти и информирует об освобождении линий LAD[3:0]. Периферийное устройство во время подготовки данных передает поля SYNC со значением 0101. Когда данные готовы для передачи, устройство передает поле SYNC со значением 0000, две тетрады данных и информирует основного задатчика об освобождении линий LAD[3:0].

Количество полей синхронизации соответствует быстродействию памяти и может изменяться. В данном примере предполагалось наличие ППЗУ с временем доступа 120 нс (4*33 нс = 132 нс). Цикл записи построен примерно так же, но данные передает основной задатчик, а периферийное устройство — только поля SYNC и TAR. В поле SYNC устройство помещает значение либо 0000 (успешная запись), либо 1010 (ошибка при записи). Соответственно возможны варианты, когда устройство не буферизует данные, а выдает поля SYNC до момента реальной записи.

ПолеЗначениеИсточникЧисло тактов
START0Основной задатчик1
CYCTYPE+DIR110Основной задатчик1
ADDRХХХХОсновной задатчик8
DATAХХХХОсновной задатчик2
TAR1111Основной задатчик2
SYNC0Периферийное устройство1
TAR1111Периферийное устройство2
Всего тактов17
Время доступа0,56 мкс
Скорость передачи1,8 Мбайт/с

В табл. 6 приведены последовательность и характеристики полей в цикле чтения из памяти. Совершенно аналогично происходит ввод/вывод при работе с портами, отличие состоит лишь в других значениях полей CYCTYPE+DIR. Для ознакомления с функциями работы с прямым доступом к памяти и управления потребляемой мощностью в табл. 7 приведены необязательные линии интерфейса LPC.

НаименованиеНаправлениеНазначение
ПериферияОсновной задатчик
LDRQ#OIЗапрос на прямой доступ к памяти или захват шины. Каждому устройству, обладающему этими функциями, требуется отдельная линия LDRQ#
SERIRQI/OI/OПоследовательный запрос на прерывание
CLKRUN#OD I/ODOD I/ODТо же, что и PCI CLKRUN#
PME#ODI/ODТо же, что и PCI PME#
LPCPD#I OI OОтключение, указывает, что периферия должна подготовиться к отключению
LSMI#O/D IO/D IКак и PCI SMI#, нужен для повторных попыток

При запросе прямого доступа к памяти (ПДП) или захвата шины используется линия LDRQ#. В первом случае по ней передается номер канала ПДП, во втором — зарезервированное значение 100. При благоприятном для данного запроса исходе арбитража основной задатчик начинает производить циклы ПДП. Бит LAD[3] в поле CHANNEL играет специальную роль и соответствует линии шины ISA TC (Terminal Count). В случае передачи последней порции данных (1, 2, 4 байт) этот бит устанавливается в 1, сигнализируя о том, что текущий сеанс ПДП закончен. Также сеанс ПДП может быть завершен установкой поля SYNC=0000 (синхронизация достигнута) или SYNC=1010 (ошибка), так как при циклах ПДП для индикации готовности данных используется значение SYNC=1001 (синхронизация достигнута; в следующем цикле будут еще данные). Последовательность полей и другие характеристики цикла ПДП при 8-битном чтении внешним устройством из основной памяти приведены в табл. 8. В зависимости от типа ПДП (8, 16 или 32 разряда) последние четыре поля передаются один, два или четыре раза соответственно. Соответственно будут меняться время доступа и скорость передачи.

Цикл захвата шины, как и все остальные, инициируется основным задатчиком после получения запроса по линии LDRQ#. Основной задатчик, как и при всех других циклах, формирует поле START, имеющее значение 0010 или 0011 (разрешение для задатчика 1 или задатчика 2; в настоящее время поддерживается не более двух задатчиков). После этого основной задатчик передает управление шиной при помощи поля TAR. Далее все протекает как при описанных выше циклах, за одним исключением: поля SYCTYPE+DIR и последующие, которые определяют тип цикла и направление передачи, формируются устройством, получившим право на захват шины.

НаименованиеНаправлениеНазначение
ПериферияОсновной задатчик
LDRQ#OIЗапрос на прямой доступ к памяти или захват шины. Каждому устройству, обладающему этими функциями, требуется отдельная линия LDRQ#
SERIRQI/OI/OПоследовательный запрос на прерывание
CLKRUN#OD I/ODOD I/ODТо же, что и PCI CLKRUN#
PME#ODI/ODТо же, что и PCI PME#
LPCPD#I OI OОтключение, указывает, что периферия должна подготовиться к отключению
LSMI#O/D IO/D IКак и PCI SMI#, нужен для повторных попыток

Для работы с устройствами, использующими прерывания, используется линия SERIRQ# и одноименный протокол, описанный в спецификации шины PCI «PCI Local Bus Specification, Rev 2.1». Управление включением/выключением периферийных устройств осуществляется при помощи линий LPCPD# и LRST#. При выключении первая из них устанавливается основным задатчиком в низкий уровень, при этом в течение еще не менее 30 мкс на шину подается сигнал тактовой частоты LCLC. Все периферийные устройства при обнаружении низкого уровня на линии LPCPD# обязаны прекратить любую активность на шине и перейти в режим пониженного энергопотребления. Переход к работе происходит при подаче основным задатчиком на линию LPCPD# высокого уровня. Подача тактового сигнала осуществляется заранее, не менее чем за 100 мкс перед установкой высокого уровня LPCPD#. Для правильного перехода внешних устройств в начальное состояние на линии LRST# поддерживается низкий (активный) уровень еще в течение 60 мкс.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *