Что такое компрессионная высота поршня
разница в компрессионной высоте поршней
всем привет.
захотелось собрать информацию в разнице компрессионных высот различных поршней.
слева 55104 — 251/254
справа 55105 — 255/257
разница 1.4мм
следующее сравнение с оригинальным 253. 254 поршнем.
чет подумываю, собрать дестрокер турбо с СЖ 9.6-9.8
Subaru Forester 2006, двигатель бензиновый 2.3 л., 235 л. с., полный привод, автоматическая коробка передач — просто так
Машины в продаже
Комментарии 21
когда меняется степень сжатия мозги надо как-то перенастраивать?
2,35 отличный получается с портингом со всем …
приезжай, дам покататься. реально интересные ощущения
Тоже готовлюсь к экспирементам. Хочу собрать на старом атмо 2.5 мотор с навеской от 205 безфазного с sf5. Тема со СЖ весьма актуальна;)
почитай мой следующий пост)))
С удовольствием! Спасибо!
Переходи уже на турбо эксперименты, хватит овощей отжимать 🙂
Ну наконец то Азамат!
Дождались! )
пока все в мыслях. следующим постом напишу, что хочу реализовать
По подробнее об этом?)
Там у Азамата была видюха, он сравнивал кольца эн пи эр и другие.
Дак вот все кольца и даже эн пи эр стали помоему маслосьмное кольцо делать тоньше.врать не буду, но вроде на 0 5мм
Я кинулся искать на свой 202 мотор и не мог найти.снято с продажи…в итоге нашел на частной станции и купил молненостно
в каком смысле все тонкие продаются?
Там у Азамата была видюха, он сравнивал кольца эн пи эр и другие.
Дак вот все кольца и даже эн пи эр стали помое му маслосьмное кольцо делать тоньше.врать не буду, но вроде на 0 5мм
Понял посмотрю спасибо
Давай, дерзай! Мы субаристы должны помогать др дружке
Справка по размерам моторов ВАЗ классика:
Ход колена 2101, 2103, 21213:
ход 2101 — 66мм (в обиходе называется низким)
ход 2103 — 80мм
ход 21213 — 80мм (более сбалансирован за счёт более развитых
противовесов, видимо в ущерб весу)
ход 2130 — 82мм
Есть тюненские колена ходом 84,86,88 мм. Но стоят они от 10тысяч
Диаметр поршней на классику
2101 — 76мм
21011,2105 — 79мм
21213 — 82мм
2108 — 82мм (ставились для ездунства на 76 бензе, для экспорта)
Имеется много кованых поршней любого стокового диаметра, а максимум 84мм
Одна из основных геометрических характеристик поршня — компрессионная высота. Она определяется расстоянием от его днища до оси поршневого пальца. Для классического мотора ВАЗ она составляет 38 мм.
Есть поршни с меньшей компрессионной высотой, например поршни ТРТ. Высота составляет 31 мм.
Длины шатунов на классические моторы (какие бывают):
Все шатуны 2101 длинной 136 мм но есть 213 шатун такой же длинны, но там палец прессуется в поршень а не в шатун.
Есть шатуны укороченные на 7мм(как пример: запихать 80ое колено в низкий блок) Есть два вида: укороченные — производятся сразу на 7мм короче(г.Луганск, Украина, произ-ль: «Луганский завод коленчатых валов»), и усаженные, то есть берётся стоковый шатун и под нагревом усаживается, делали при совке, но они не очень желательны, и по общему мнению опасны, поскольку в месте усадки обязательно будет напряжение, и может показаться «рука дружбы»
Имеем двигатель 2101 или 21011 объемами 1,2 и 1,3 соответсвенно, что мы можем получить? из 2101 блока мы можем получить объем 1,5 и 1,6 литра, из 21011 блока 1,6 и 1,7. Что для этого нужно?
1. Коленвал 2103 (если где услышите коленвал 2106 или 2121 то имейте ввиду, что в двигателе 2106 стоит КВ 2103, на ниве 2121(!) ставили двигатель 2106), либо 21213 (он будет получше)
2. Шатуны Укороченные, Если увеличиваем объем шатунами то поршни можно оставить родные, все зависит от ресурса мотора, если точим то берем новые поршни)
3. Поршни (В случае если ставим родные или 213 шатуны)
остальное по мурзилке.
Пример получения 1,7 литра на 011 блоке:
1. Коленвал
2. Шатун 129 мм (как вариант, либо родной или 213)
3. Поршни 82 мм (тут зависит от шатуна, если укороченный то ставим Нивовский поршень с двигателей 21213, если Шатун будет родной или 213 то ставим поршень с меньшей компрессионной высотой)
4. Точим цилиндры до 82 мм
Так получается 1,7 литра) Для объемов 1,5 и 1,6 тот же самый порядок, только мы будем выбирать между шатунами и поршнями, в этом случае существует такое понятие как R/S (rod to stroke ratio) разница длинны шатуна и хода коленвала. И ему уделяется достаточно серьезное внимание при доработке моторов. Многие источники считают, что «золотой серединой» является величина R / S, равная 1,75
Эффект большого R/S:
ЗА:Позволяет поршню дольше находиться в ВМТ, что обеспечивает лучшее горение топливной смеси, т.е. более полное сгорание топливной смеси, более высокое давление на поршень после прохождения ВМТ, более высокая температура в камере сгорания. В результате хороший момент на средних и высоких оборотах. Длинный шатун уменьшает трение пары «поршень-цилиндр», а это особенно важно при рабочем ходе поршня.
ПРОТИВ: Мотор, собранный с достаточно большим значением R / S не обеспечивает хорошее наполнение цилиндров на низких и средних частотах вращения КВ, из-за снижения скорости воздушного потока (из-за уменьшения скорости движения поршня после ВМТ, в момент открытия впускного клапана). Большая вероятность появления детонации из-за высокой температуры в камере сгорания и длительного времени нахождения поршня в ВМТ.
Эффект малого R / S :
ЗА:Обеспечивает очень хорошую скорость наполнения цилиндров на низких и средних частотах вращения КВ, так как скорость движения поршня от ВМТ больше, разряжение нарастает быстрее, что улучшает наполнение цилиндров, более высокая скорость движения топливовоздушной смеси делает смесь более гомогенной (однородной) что способствует лучшему сгоранию. Преимущества: более низкие требования к доработке и диаметрам каналов ГБЦ, чем на моторе с высоким соотношением R / S.
ПРОТИВ: Малая величина RS означает, больший угол наклона шатуна. Это значит, что большая сила будет толкать поршень в горизонтальной плоскости. Для мотора это означает следующее:
1. Большая нагрузка на шатун (особенно на центр шатуна), что делает разрушение шатуна более вероятным. Разрушение шатуна само по себе мало вероятно, кроме случаев обрыва, при заклинивании и гидроударе, как правило, шатун рвется у верхней или
нижней головки под углом приблизительно 45 градусов к оси шатуна.
2. Увеличение нагрузки на стенки блока цилиндров, большая нагрузка на поршни и кольца, увеличение рабочей температуры вследствие повышенного трения, как результат, более быстрый износ стенок цилиндра, колец, и ухудшении условий смазки. Износ этого участка зависит от величины смещения оси пальца относительно оси поршня и от значения максимального угла наклона шатуна, т.е. при применении «кованных» поршней со смещенным пальцем, износ будет меньше чем при применении стандартных поршей.
3. Более короткий шатун также увеличивает скорость движения поршня, что влияет на износ и увеличение трения. Максимальная скорость поршня приходится на угол около 80 градусов поворота коленчатого вала от ВМТ, для мотора с коленвалом 74,8 мм при 5600 оборотов в минуту она равна 22,92 м/с при шатуне 121 мм., и 22,80м/с., при шатуне 129 мм.
Наиболее весомым является зависимость ускорения поршня от длины шатуна. Большие значения ускорения положительно влияют на наполнение цилиндров на малых оборотах, что ведет к «тяговитости» двигателя в следствии лучшего наполнения. Но на высоких оборотах из-за инерционности потока во впускной трубе происходит эффект запирания на впускном клапане (т.е объем цилиндра над поршнем растет быстрее, чем может заполняться через клапанную щель, что ведет к ухудшению наполнения и мощностных характеристик на высоких оборотах). В случае длинного шатуна на малых оборотах происходит обратный выброс смеси, но на высоких нет явления запирания.
По вполне понятным причинам, АВТОВАЗ комплектует свои моторы шатуном 136 мм (он обеспечивает 06-му мотору R/S = 1,7, что вполне удовлетворительно). Но для «тюнингаторов», использующих КВ с большим радиусом кривошипа, шатун 136 мм обеспечивает не очень хорошее отношение R/S, поэтому на рынке «нестандартных», а-ля «спортивных» запчастей существуют и продаются шатуны с длинной – 129, 132 мм, цена их правда не столь привлекательна, она колеблется от 70 до 200 долларов за комплект. Еще не стоит забывать, что «экстра ходы» поршня компенсируются уменьшением компрессионной высоты поршня (смещением поршневого пальца вверх) или увеличением высоты блока цилиндров. Т.к. компрессионную высоту можно уменьшать до определенного предела, то следующим шагом будет замена блока цилиндров на более высокий, что повлечет за собой немалые расходы финансовых средств. Все эти действия направлены для того, чтобы увеличить значение R/S.
В итоге, увеличение объема при помощи шатуна 129 мм до 1,5 (1,6) литров, мы получаем R/S — 1.61, что даст мотору тракторность, т.е. эффект малого R/S. При использовании поршней с меньшей компрессионной высотой, мы не меняем значение R/S, т.е. характеристика будет как у 2106 мотора — 1,7, что «близко к золотой середине»
1.
Блок 2101, изначальный объем 1200 см2
КВ — 2103 (21213)
Поршень — 76 (в зависимости от ремонта: 76,4; 76,8) с уменьшенной компрессионной высотой
Получаем 1,5 с R/S — 1.7
Итог: Отличный мотор почти 2103 за счет увеличения Степени Сжатия (Далее СЖ) под 92 бензин
2.
Блок 2101, изначальный объем 1200 см2
КВ — 2103 (21213)
Шатун 129 мм
Поршень — сток
Получаем 1,5 с R/S — 1.61
Итог: «Тракторный» мотор, будет получше 03 за счет тяги на низах, хорошо для города )
3.
Блок 21011, изначальный объем 1300 см2
КВ — 2103 (21213)
Поршень — 79 (в зависимости от ремонта: 79,4; 79,8) с уменьшенной компрессионной высотой
Получаем 1,6 с R/S — 1.7
Итог: Отличный мотор, будет получше 06 за счет увеличения СЖ
4.
Блок 21011, изначальный объем 1300 см2
КВ — 2103 (21213)
Шатун 129 мм
Поршень — сток
Получаем 1,6 с R/S — 1.61
Итог: «Тракторный» мотор, будет получше 06 за счет тяги на низах, хорошо для города )
Сами по себе двигатели 2101 и 21011 имеют R/S — 2,01 т.е. мотор оборотистый. Так же если расточить 2101 до 79 мм получаем объем в 1300, т.е. 011 мотор, но это уже самый последний вздох мотора. Ну а если расточить 011 мотор до 82 мм, то получаем 1400 кубиков, но и как в первом случае будет последний вздох мотора, тут важно не перегревать мотор, иначе блок на свалку.
Точить 2103 блок можно до 79 мм максимум, 2106 блок до 82 мм.
При расточке получаем следующее:
2103 расточенный до 79 при сток КШМ получает объем в 1600 см2
2106 расточенный до 82 при сток КШМ получает объем в 1700 см2
Установить можно Коленвал с ходом 82 мм без изменений
1.
Блок 2103 — 76мм (76,4; 76,8)
КВ — 82мм
Итог — 1487 см2 (1502; 1518) *в скобках объем при ремонтных размерах
2.
Блок 2106 — 79 мм (79,4; 79,8)
КВ — 82 мм
Итог — 1606 см2 (1623; 1639)
3.
Блок 2106 расточенный до 82 мм
КВ — 82
Итог — 1731 см2
Но вздох мотора будет последним
здесь не учитывается объемы цилиндров с ремонтными размерами поршней
При форсировке такими способами важно знать вот это:
Компрессия — это максимальное давление воздуха в камере сгорания в конце такта сжатия.
Степень сжатия двигателя — это отношение полного объема цилиндра (V) к объему камеры сгорания (Vс).
Полный объем — объем цилиндра + объем камеры сгорания + объем прокладки ГБЦ.
E = V / Vc Оба этих показателя очень важны для оценки общих мощностных факторов ( E ) и для оценки состояния мотора ( компрессия ).
Мотор, часть 2.1. Пазл собирается и попытка рассчитать ст. сжатия
Собственно, на текущий момент дела обстоят так:
ГБЦ перебрана — заменены направляющие выпуска (впуск в допуске, как я и предполагал), нарезаны фаски на седлах и клапанах, плоскость отшлифована, голова помыта. Портинг и прочий тюнинг я оставил на потом, надо для начала завестись и обкатать
Блок отвез в расточку вместе с поршнями, тут все понятно
И, собственно, самое интересное:
Напомню, спеки моторов сток:
M42B18 — шатун 140, ход 81, диаметр 84, компрессионная высота 31.65, степень сжатия 10:1, недоход 0.2 мм
M44B19 — шатун 140, ход 83.5, диаметр 85, компрессионная высота 30.4, степень сжатия 10:1, недоход 0.2 мм
То, что хочу получить я:
M42B20 (мой колхоз) — шатун 140, ход 88, диаметр 85, желаемая степень сжатия 11.2-11.5
Очевидно, что для того, чтобы остаться на 140-м шатуне, мне нужны поршни с компрессионной высотой 30.4-2.25 = 28,15 мм (ну, несколько примерно)
Пролил я все, что мог:
Объем КС в голове М42 — 33 см^3
Объем КС в поршне М44 — 10.5 см^3 (глубокая, сволочь)
Толщина обжатой стоковой паронитовой прокладки — 1.4 мм, диаметр отверстий 86 мм
Взял листок с ручкой, открыл несколько калькуляторов степени сжатия и начал считать…
В итоге решил, что нужно торцануть поршень на 1.75 мм (объем лужи уменьшится до примерно 3-4 см^3), при этом выход поршня из блока в ВМТ будет 0,3 мм
И проточить цековки.
Да, заказал тут на Драйве реплику моторспортовской губы, уже сделали, прислали фото, но еще не забрал.
Как заберу — напишу подробнее.
Техно теория – собираем мощный мотор, выбираем поршневую
Поршень — одна из деталей, скрытых в недрах силового агрегата, благодаря изменению конфигурации которых можно повысить как отдачу, так и ходи мость мотора. Конструктивные нюансы поршней, реализуемых на вторичном рынке, помогают решить эти задачи.
Автор: Алексей Романов, фото из разных источников
История развития поршня
За более чем 140-летнюю историю развития двигателей внутреннего сгорания основные функции и конструктивные основы поршней не изменились. Эта цилиндрическая деталь формирует нижнюю половину камеры сгорания и передает энергию, расширяющихся в цилиндре газов через поршневой палец и шатун к коленчатому валу. Для предотвращения прорыва газов в картер и масла в камеру сгорания, как и на поршнях самых первых моторов, установлены кольца. Условия же работы стали другими — возросли и нагрузки, и температуры.
В тоже самое время, двигатели работают чище, а ходимость их гораздо выше, чем раньше. Именно с этим в первую очередь связаны основные изменения конструкции, применении новых сплавов поршней и колец, широкое использование специальных покрытий. Поршни становятся короче и легче. Частично снижение веса было достигнуто уменьшением как общей высоты поршней, так и укорачиванием отдельных элементов.
Информация – кольца поршневой
За последние 30 лет типичная высота юбок сократилась с 60-65 мм до 35-40 мм. Такое облегчение потребовало уменьшения до 0.025-0.125 мм зазора между и стенками цилиндра поршнем, дабы убавить его раскачивание во время движения.
В спортивных моторах, где юбка практически отсутствует вовсе, возможен и нулевой зазор или даже небольшой натяг, если поршни имеют специальные антифрикционные покрытия. Расстояние от центра поршневого пальца до вершины днища поршня, называемое компрессионной высотой, за те же последние три десятилетия сократилось с 38-44 мм до 30-33 мм.
Форма поверхности днища поршней также менялась. Плоскости уступили место вогнутым, более сложным конфигурациям, обеспечивающим циркуляцию топливовоздушной смеси и улучшающим отвод отработавших газов. Самое критическое место на поршне в области верхнего компрессионного кольца. Еще десятилетие назад, высота жарового пояса (расстояния между верхним компрессионным кольцом и кромкой днища) обычно составляла 7.5 — 8.0 мм. Сегодня оно уменьшилось до 3.0-3,5 мм в большинстве двигателей.
Информация поршень
Передвижение компрессионного кольца ближе к вершине поршня во многом вызвано борьбой за полноту сгорания смеси и, как следствие, за уменьшение вредных выбросов. Дело в том, что щелевое пространство между жаровым поясом и стенкой цилиндра создает мертвую зону для распространения пламени топливовоздушной смеси, и там остается не сожженное топливо. Само по себе это количество мало, но если умножить его на четверть частоты вращения коленвала и на количество цилиндров, то становится понятно, что углеводороды, спрятавшиеся в этом месте, заметно повышают уровень СН в выхлопе двигателя.
Вследствие уменьшения жарового пояса компрессионное кольцо переместилось в зону высоких рабочих температур, которые делают металл более мягким, что увеличивает опасность деформирования кольцевой канавки, приваривания кольца к посадочному месту или поломки, как кольца, так и кольцевых перемычек. Это потребовало применения более стойких материалов, анодирования канавки кольца. Таким образом, конструкторский поиск усовершенствований поршней сосредоточен на геометрических нюансах, материалах, весе, зависящем напрямую от первых двух характеристик и применении специальных покрытий. Те же аспекты, но уже в готовом виде, принимают во внимание при выборе поршней, дорабатывая мотор.
Выбор поршневой при тюнинге — Геометрия
В первую очередь подбор поршневой при тюнинге, как и при капитальном ремонте силового агрегата основан на геометрических зависимостях его недр — диаметра цилиндра, хода поршня. размера коленчатого вала, длины шатунов, рекомендуемых тепловых зазоров, параметров головки блока цилиндров (ее высота, конструкция камеры сгорания, размеры и расположение клапанов). Для низкобюджетных проектов выбор стоковой поршневой будет достаточен. При Серьезной же форсировке силового агрегата, стоит обратить внимание на тюнинговую линейку изделий или кастом-продукцию, конструкторские решения которых нацелены на конкретные требования специфической эксплуатации двигателя. Производители предлагают на вторичном рынке поршни с конфигурациями днища, которые увеличивают скорость горения смеси, что позволяет увеличивать степень сжатия без опасности детонации. Часто специальные углубления используется не только для размещения тарелок клапанов, но и для устранения критических горячих точек в камере сгорания, для увеличения циркуляции потока смеси и лучшего удаления выхлопных газов.
Нюансы выбора поршней
Другой уникальный конструктивный элемент, встречающийся у поршней, предназначенных для тюнинговых моторов, заключается в мини-оребрении площади жарового пояса и на перемычке первого и второго колец. Если поршень становится слишком горячим, то вершина выпуклостей такого оребрения, контактируют со стенкой цилиндра. Этот мгновенный контакт помогает охладить поршень, чтобы уменьшить опасность детонации и разрушения поршня.
Некоторые поршни, предлагаемые на вторичном рынке, делаются с пальцами, которые немного смещены вверх по сравнению со стоковыми образцами, чтобы компенсировать шлифовку привалочных плоскостей ГБЦ и блока цилиндров. Применение таких изделий лучшая альтернатива спиливанию вершины поршня, если блок привалочные плоскости подвергались обработке, поскольку уменьшенная глубина выемок под клапана увеличивает риск повреждения последних. Перемещение местоположения пальца выше на поршне также позволяет применять в моторе более длинные шатуны, что приводит к увеличению крутящего момента и делают жизнь подшипников и колец легче.
Нюансы поршневой
Постройка нескольких моторов даст опыт в определения необходимой высоты юбки, ориентируясь на максимальную мощность и потолок рабочих оборотов, а по диапазону рабочих температур, толщину прокладки ГБЦ и степени сжатия — прочность конструкции поршней. Чем ближе к вершине поршня находятся кольца, тем больше создается давление в цилиндре и тем выше крутящий момент и мощность мотора. Но при этом работа колец перемещается в зону с более высокой температурой, что вынуждает делать большие кольцевые промежутками и сами кольца толще. Выбор подобной схемы для изготовления поршня может также вызвать проблемы с возможностью организации правильного рельефа днища.
Высоты над кольцом может не хватить для выемок под клапана. Надежности обычных чугунных компрессионных колец при жаровом поясе в 7.5-8 мм хватило бы с запасом, но при уменьшении его до 2.5-3 мм такие кольца не справляются со своей задачей. Поэтому в современных моторах применяют кольца из специальных марок гибкого чугуна или из стали. Тенденция уменьшения толщины компрессионного кольца наметилось еще в 80-х годах. Типичная толщина сегодняшних компрессионных колец составляет 1.2 мм: 1,5 мм для второго кольца и 3.0 мм для маслосъемного.
Встречаются и более тонкие — компрессионные толщиной 1,0 мм и 2 миллиметровые маслосъемные. Примерно 40% от потерь на трение в двигателе приходится на работу колец, увеличение упругости их уменьшает сопротивление трения в цилиндре при ходе поршня. Поэтому более узкие и тонкие кольца стали применяться изготовителями в стандартных моторах. Это значительно повлияло на экономию топлива, температурный режим и ходимость силовых агрегатов, поскольку кроме снижения потерь на трение уменьшились и ударные нагрузки, передаваемые на поршень и стенки цилиндра. Но, с другой стороны, тонкие кольца хуже отводят тепло от поршня в стенку цилиндра из-за меньшей площади контакта с обоими. Следовательно, поршни с такими кольцами будут более горячими, чем поршни с большими кольцами. Изготовители колец дают рекомендации по этому вопросу на основании многочисленных испытаний, когда после определенного пробег а мотор разбирается и проверяется его состояние.
Материалы и вес поршней
Сплав, из которого поршень сделан, не только определяет его прочность и характеристики износостойкость, но также и особенности теплового расширения. В поршнях, предлагаемых на вторичном рынке для тюнинга, обычно используются сплавы с высоким содержанием кремния. Большинство поршней раньше делались из доэвтектических алюминиевых сплавов.
ЧЕМ ВЫШЕ ФОРСИРОВКА ДВИГАТЕЛЯ, ТЕМ ВЫШЕ НЕОБХОДИМОСТЬ ПОКРЫТИЙ НА ПОРШНЯХ
которые содержали от 8.5 до 10.5 % кремния. Сегодня мы видим больше эвтектических сплавов, у которых содержание кремния составляет 11% и заэвтектические сплавы, у которых кремния от 12.5 до более чем 16%. Кремний улучшает прочностную стойкость материала при высокой температуре и уменьшает коэффициент его расширения, таким образом, тепловые зазоры между поршнем и стенками цилиндров могут быть меньше. У заэвтектических поршней коэффициент теплового расширения приблизительно на 15 % меньше чем у стандартных поршней. Следовательно, выбирая такой поршень, нужно скорректировать указанный производителем зазор. Заэвтектические сплавы также несколько легче (приблизительно на 2%), чем материалы, применяемые в стандартных моторах. Но отливки часто делаются более тонкими, потому что сплав прочнее, что приводит в итоге к сокращению общей массы поршня до 10%.
Заэвгектические сплавы труднее отливать. потому что кремний сложно сохранить равномерно рассеянным по объему алюминия пока металл охлаждается. Размер частиц должен также тщательно контролироваться, чтобы поршень не становился ломким или с крупными твердыми включениями, мешающими механической обработке. Некоторые поршни проходят специальную термообработку, улучшающую структуру зерна для повышения прочности и износостойкости.
Информация – износ поршневой
После такой термообработки эти показатели могут увеличиваться до 30%. Механическая обработка поршней из заэвтектическик сплавов из-за их твердости труднее, потому и стоимость их, как правило, несколько выше стандартных. Для конвейера подобный материал дороговат. Выбор веса поршней и материала, из которого они изготовлены, во многом (хотя и не полностью) обусловливается необходимой прочностью деталей для нагрузок в строящемся силовом агрегате. Ходимость — основной критерий, если, конечно, машину не планируется создавать заново перед каждой гонкой.
Вес применяемых поршней может быть уменьшен несколькими путями. Один из них — врезать в блок цилиндров масляные форсунки. Распыляемое ими масло охлаждает поршни, что позволяет сэкономить вес, используя конструкцию с более тонкими стенками днища. Другой способ — применение поршней с короткими юбками, предназначенных для высоко оборотистых моторов, также снизит вес, более легкие поршни облегчат раскрутку мотора, но при этом стоит быть крайне осторожным в выборе.
Покрытия поршней
Необходимость покрытий зависит от того, насколько экстремальны эксплуатационные режимы. Чем выше форсировка двигателя, тем необходимость эта выше. Потери на трение могут составлять более лошадиной силы, вызывают чрезмерный износ и повышают температуру деталей мотора. Особенно ощутим нагрев на юбке поршня и в отверстии поршневого пальца. Покрытия, предотвращающие износ, удлиняют жизнь поршня. Сегодня, во многих серийных моторах применяют поршни с графито-дисульфидно-молибденовым покрытием на юбке поршня, уменьшающим сопротивление трения, большинство изготовителей поршней на вторичном рынке также предлагают некоторый тип покрытых поршней, предназначенных в качестве замены стоковых изделий при ремонте и тюнинге.
Но не только с трением призваны бороться покрытия на изделиях. В процессе работы мотора желательно чтобы высокая температура в камере сгорания как можно меньше передавалась поршню. Горячий раскаленный поршень –источник для самовоспламенения смеси и детонации. Кроме того, высокая температура меняет твердость материала, что снижает ходимость поршней не только из-за повышенного износа, но и может вызвать их разрушение из-за теплового коробления. Керамико-металлические покрытия короны поршня — тип покрытий, работающих как тепловой барьер. Удержание высокой температуры в камере сгорания повышает тепловую эффективность и дает больше мощности. Это также помогает поршню не нагреваться сверх меры. Правда, слишком большая температура в камере сгорания также увеличивает риск детонации и самовоспламенения. Когда поршни с подобными покрытиями установлены на моторах, угол опережения зажигания обычно уменьшают на несколько градусов.
Конструкция поршня
Образование нагарных отложений на нижней поверхности днища поршня, утяжеляющих его, совсем нежелательно. Особенно активен процесс образования таких излишеств при устройстве масляных форсунок охлаждеиия. Специальные поршневые покрытия могут уменьшить время, которое масло проводит на основании поршня, а значит и возможность создания масляной «кулинарии». Анодирование компрессионной кольцевой канавки, как способ борьбы с привариванием кольца к материалу поршня под действием высокой температуры, используется во многих серийных моделях современных двигателей. Но это покрытие, толщиной около 20 микрон не всесильно, анодированный поршень может потерпеть неудачу, раскалившись сверх меры. Некоторые производители не серийной продукции вместо анодирования применяют вставки из никелевых сплавов в кольцевой канавке. Необходимость конструктивных особенностей крайне трудно просчитать, основываясь только на цифрах. Поэтому при выборе поршней лучше обратиться к тем, кто может дать совет на основании опыта эксплуатации. И уже по списку. составленному мастером. определится с предпочтениями.