Что такое кодирование что такое декодирование информации

Что такое кодирование и шифрование информации: отличия и особенности

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Часто в процессе программирования мы слышим разные слова и определения, которые вроде означают одно и т о ж е, но на самом деле имеют различное значение. Сегодня разберем две такие пары:

Часто значение этих двух слов путают, а на самом деле они означают разные рабочие направления.

Это будет означать одно и то же по смыслу, потому что кодер в качестве своего основного инструмента использует какой-нибудь язык программирования.

Кодирование и шифрование информации

Что такое хеширование

Главная цель хеширования — это преобразовать входящие данные в определенной и уникальной последовательности символов таким образом, чтобы не было возможности заполучить эти самые входящие данные в их исходном виде.

Для расчета таких хеш-сумм применяются специализированные скрипты. Примером применения хеша является:

Что такое шифрование информации

Шифрование очень схоже по смыслу с кодированием, они могут и часто используются как синонимы, однако значения этих терминов преследуют немного разнонаправленные цели.

Шифрование бывает разным, но цель любого шифрования — это сделать нечитабельной какую-то информацию. Часто для расшифровки (расшифровка — это обратный процесс шифрования) нужно обладать ключом или ключами шифрования информации. При использовании 2-х ключей первый ключ — всегда открытый и применяется для шифровки информации, а второй ключ — всегда закрытый и используется для расшифровки информации.

Задач а любого шифрования — полностью предотвратить злоумышленный доступ к данным всем, кто не обладает соответствующим ключом для расшифровки этих самых данных.

Что такое кодирование информации

Главная цель кодирования — это преобразовать входящую информацию в такую последовательность символов, чтобы потом было удобно обрабатывать или считывать такую информацию другими пользователями, устройствами или программами.

Типичными примерами кодирования являются:

Подытожим

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Источник

Что такое кодирование что такое декодирование информации

В процессах восприятия, передачи и хранения информации живыми организмами, человеком и техническими устройствами происходит кодирование информации. В этом случае информация, представленная в одной знаковой системе, преобразуется в другую. Каждый символ исходного алфавита представляется конечной последовательностью символов кодового алфавита. Эта результирующая последовательность называется информационным кодом (кодовым словом, или просто кодом).

Примерами кодов являются последовательность букв в тексте, цифр в числе, двоичный компьютерный код и др.

Код состоит из определенного количества знаков (имеет определенную длину), которое называется длиной кода. Например, текстовое сообщение состоит из определенного количества букв, число — из определенного количества цифр.

Преобразование знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы называется перекодированием.

При кодировании один символ исходного сообщения может заменяться одним или несколькими символами нового кода, и наоборот — несколько символов исходного сообщения могут быть заменены одним символом в новом коде. Примером такой замены служат китайские иероглифы, которые обозначают целые слова и понятия.

Кодирование может быть равномерным и неравномерным. При равномерном кодировании все символы заменяются кодами равной длины; при неравномерном кодировании разные символы могут кодироваться кодами разной длины (это затрудняет декодирование). Неравномерный код называют еще кодом переменной длины.

Примером неравномерного кодирования является код азбуки Морзе. Длительное время он использовался для передачи сообщений по телеграфу. Кодовый алфавит включал точку, тире и паузу. При передаче по телеграфу точка означала кратковременный сигнал, тире — сигнал в 3 раза длиннее. Между сигналами букв одного слова делалась пауза длительностью одной точки, между словами — длительностью трех точек, между предложениями — длительностью семи точек.

Вначале код Морзе был создан для букв английского алфавита, цифр и знаков препинания. Принцип этого кода заключался в том, что часто встречающиеся буквы кодировались более простыми сочетаниями точек и тире. Это делало код компактным. Позже код был разработан и для символов других алфавитов, включая русский.

Коды Морзе для некоторых букв.

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Чтобы избежать неоднозначности, код Морзе включает также паузы между кодами разных символов.

Декодирование информации

В зависимости от системы кодирования информационный код может или не может быть декодирован однозначно. Равномерные коды всегда могут быть декодированы однозначно.

Для однозначного декодирования неравномерного кода важно, имеются ли в нем кодовые слова, которые являются одновременно началом других, более длинных кодовых слов.

Закодированное сообщение можно однозначно декодировать с начала, если выполняется условие Фано: никакое кодовое слово не является началом другого кодового слова.

Закодированное сообщение можно однозначно декодировать с конца, если выполняется обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова.

Неравномерные коды, для которых выполняется условие Фано, называются префиксными. Префиксный код — такой неравномерный код, в котором ни одно кодовое слово не является началом другого, более длинного слова. В таком случае кодовые слова можно записывать друг за другом без разделительного символа между ними.

Например, код Морзе не является префиксным — для него не выполняется условие Фано. Поэтому в кодовый алфавит Морзе, кроме точки и тире, входит также символ–разделитель — пауза длиной в тире. Без разделителя однозначно декодировать код Морзе в общем случае нельзя.

Конспект урока по информатике «Кодирование и декодирование информации».

Источник

Кодирование и декодирование информации

Вы будете перенаправлены на Автор24

Кодирование информации

Для осуществления полноценного процесса передачи информации, при котором сам процесс должен успешно завершиться, а сообщение дойти от отправителя до получателя в полном объеме, который, в свою очередь, его правильно трактует, информацию необходимо закодировать.

Кодирование — это преобразование информации из одной ее формы представления в другую, наиболее удобную для её хранения, передачи или обработки.

Способы кодирования информации бывают различные и зависят они, в первую очередь, от целей кодирования.

Наиболее распространенными из которых являются:

Чаще всего кодированию подвергаются тексты на естественных языках (русском, английском и пр.).

Цели кодирования заключаются в доведении идеи отправителя до получателя, обеспечении такой интерпретации полученной информации получателем, которая соответствует замыслу отправителя. Для этого используются специальные системы кодов, состоящие из символов и знаков. Код представляет собой систему условных знаков (символов), предназначенных для представления информации по определенным правилам. В настоящее время понятие «код» трактуется по-разному.

Некоторые авторы (Р. Бландел, А. Б. Зверинцев, В. Г. Корольке и др.) понимают коды как любую форму представления информации или же как набор однозначных правил, используя которые сообщение можно представить в той или иной форме. Согласно этому определению человеческая речь может выступать в качестве одного из кодов. Это может означать, что в результате кодирования сообщение преобразуется в последовательность, состоящую из произносимых слов.

Готовые работы на аналогичную тему

Другим вариантом трактовки термина «код», сформированного в технической среде под влиянием «математической теории связи (коммуникации)» и использования технических средств коммуникации, является условное преобразование, как правило, взаимно однозначное и обратимое, используя которое сообщения преобразовываются из одной системы знаков в другую. К примерам такого преобразования относят азбуку Морзе, семафорный код и жесты глухонемых. Для данного определения характерно четкое различие языка, который развивался вместе с человеком на протяжении всего этапа эволюции, и кодов, разработанных людьми для определенных целей и подчиняющихся четко сформулированным правилам.

В теории коммуникации кодирование представляют как соответствующую переработку исходной идеи сообщения с целью ее доведения до адресата. При этом в разных конкретных случаях формы передачи информации могут быть различными, например: брошюры, листовки, рекламные ролики па заданную тему и т.д.

Декодирование информации

Декодирование — процесс восстановления изначальной формы представления информации, т. е. обратный процесс кодирования, при котором закодированное сообщение переводится на язык, понятный получателю. В более широком плане это:

а) процесс придания определенного смысла полученным сигналам;

б) процесс выявления первоначального замысла, исходной идеи отправителя, понимания смысла его сообщения.

Если получатель правильно воспримет смысл сообщения, то его реакция будет именно такой, какую и ожидал от него отправитель сообщения. То, каким образом получатель будет расшифровывать сообщение, зависит, как правило, от его индивидуальных особенностей восприятия информации. Так как каждый человек в той или иной степени предвзято и субъективно оценивает события, то, соответственно разные люди воспринимают и понимают одни и те же события по-разному. И это непременно необходимо учитывать при трансляции информации и при коммуникации между людьми.

Модель кодирования/декодирования С. Холла

Особенности системы кодирования-декодирования, которая включает в себя обработку информационного сообщения с целью его передачи и осмысления потребителем, лучше всего рассмотреть на примере коммуникационной модели С. Холла. В основу его теории положены базовые принципы семиотики структурализма, которые предполагают, что любое смысловое сообщение можно сконструировать из знаков, имеющих как явные, так и подразумеваемые смыслы в зависимости от выбора, осуществляемого кодировщиком, т.е. коммуникатором. Согласно основному положению семиотики многообразие смыслов зависит от природы языка, являющегося инструментарием информационной системы, и от смысловых значений, которые заключены в комбинациях знаков и символов в рамках определенной социальной культуры, к которой принадлежат отправитель (кодировщик) и получатель (декодировщик).

Семиотика подчеркивает семантическую силу закодированного текста, рассматривает смысл информационного сообщения прочно внедренного в текст. С. Холл принимал базовые положения этого подхода, но, в свою очередь, внес в него ряд дополнений.

Согласно Холлу коммуникаторы часто кодируют сообщения, придерживаясь идеологических и пропагандистских целей, а для этого манипулируют языком и медиасредствами (сообщения приобретают «предпочтительный» смысл).

Получатели согласно Холлу не всегда обязаны принимать и декодировать сообщения в том виде, в котором они отправлены. Получатели оказывать сопротивление идеологическому влиянию, применяя при этом альтернативные оценки в соответствии со своим мировоззрением, опытом и взглядами на окружающую систему бытия.

Свою теорию С. Холл сформулировал, используя в качестве примера работу телевидения, но ее можно применить к любым видам средств массовой информации. Суть теории заключается в том, что медиасообщение, проходя на своем пути от источника до получателя, претерпевает ряд преобразований. В результате средства медиакоммуникации передают сообщения, конформные или оппозиционные по отношению к правящим властям, различным общественным, политическим и экономическим социальным институтам. Эти сообщения кодируются зачастую в форме устоявшихся содержательных жанров (к ним можно отнести новости политического, спортивного, экономического содержания; музыкальные передачи, сериалы и пр., в общем все то, что смотрят обыватели), имеющих очевидный содержательный смысл, актуализированную направленность и встроенные руководства для их интерпретации заинтересованной целевой аудиторией. Зрители же, в свою очередь, подходят к содержанию, предлагаемому СМИ, с другими «смысловыми структурами», которые строятся на их собственном здравом смысле, идеях и опыте.

Различные группы людей (или так называемые субкультуры) занимают разные социальные и культурные ниши этнопространства и по-разному воспринимают сообщения СМИ. В результате своих исследований С. Холл пришел к выводу, что декодированный смысл сообщения не обязательно должен совпадать с первоначальным смыслом, который был закодирован, хотя он и был опосредован уже сложившимися медиажанрами и общей языковой системой. Важным является и то, что декодирование может принимать направления, отличные от предполагаемого, т.е. получатели, образно говоря, могут читать между строк и даже сознательно искажать изначально заложенный смысл сообщения.

Теория Холла содержит ряд принципиальных положений, это:

Таким образом, мы пришли к определению того, кто такой получатель.

Получатель — это лицо, для которого предназначена передаваемая информация, и которое может интерпретировать ее. Получателю, чтобы понять смысл передаваемого сообщения, нужно его раскодировать (декодировать). В качестве получателя могут выступать как один человек, так и группа лиц, общество в целом или любая его часть. Когда в качестве получателя выступает более одного человека, то это называют аудиторией коммуникации.

Получатель информационного сообщения должен обладать определенными характеристиками, которые представляю собой важные факторы, влияющие на эффективность коммуникации. Главным условием при этом становится способность получателя воспринимать и декодировать отправленное ему сообщение. Эта способность зависит от профессиональной компетентности получателя, его жизненного опыта, принадлежности к той или иной группе, ценностных ориентаций, общей культуры, образовательного и интеллектуального уровня, а также обусловлена социокультурными рамками коммуникативного процесса. Реакция получателя представляет собой основной индикатор эффективности коммуникации.

Мы подробно с вами разобрали непосредственно саму теорию кодирования и декодирования информационных сообщений, в частности модель Холла, которая в большей степени ориентируется на социум.

Однако эти два процесса широко используются во всех сферах жизнедеятельности человека: медицине, технике, образовании и т.д. И каждый из нас ежедневно с ними сталкивается независимо от того, что происходит в окружающей нас жизни.

Источник

Кодирование и декодирование информации

Теория к заданию 5 из ЕГЭ по информатике

Информация и ее кодирование

Различные подходы к определению понятия «информация». Виды информационных процессов. Информационный аспект в деятельности человека

Информация (лат. informatio — разъяснение, изложение, набор сведений) — базовое понятие в информатике, которому нельзя дать строгого определения, а можно только пояснить:

Понятие «информация» является общенаучным, т. е. используется в различных науках: физике, биологии, кибернетике, информатике и др. При этом в каждой науке данное понятие связано с различными системами понятий. Так, в физике информация рассматривается как антиэнтропия (мера упорядоченности и сложности системы). В биологии понятие «информация» связывается с целесообразным поведением живых организмов, а также с исследованиями механизмов наследственности. В кибернетике понятие «информация» связано с процессами управления в сложных системах.

Основными социально значимыми свойствами информации являются:

В человеческом обществе непрерывно протекают информационные процессы: люди воспринимают информацию из окружающего мира с помощью органов чувств, осмысливают ее и принимают определенные решения, которые, воплощаясь в реальные действия, воздействуют на окружающий мир.

Информационный процесс — это процесс сбора (приема), передачи (обмена), хранения, обработки (преобразования) информации.

Сбор информации — это процесс поиска и отбора необходимых сообщений из разных источников (работа со специальной литературой, справочниками; проведение экспериментов; наблюдения; опрос, анкетирование; поиск в информационно-справочных сетях и системах и т. д.).

Передача информации — это процесс перемещения сообщений от источника к приемнику по каналу передачи. Информация передается в форме сигналов — звуковых, световых, ультразвуковых, электрических, текстовых, графических и др. Каналами передачи могут быть воздушное пространство, электрические и оптоволоконные кабели, отдельные люди, нервные клетки человека и т. д.

Хранение информации — это процесс фиксирования сообщений на материальном носителе. Сейчас для хранения информации используются бумага, деревянные, тканевые, металлические и другие поверхности, кино- и фотопленки, магнитные ленты, магнитные и лазерные диски, флэш-карты и др.

Обработка информации — это процесс получения новых сообщений из имеющихся. Обработка информации является одним из основных способов увеличения ее количества. В результате обработки из сообщения одного вида можно получить сообщения других видов.

Защита информации — это процесс создания условий, которые не допускают случайной потери, повреждения, изменения информации или несанкционированного доступа к ней. Способами защиты информации являются создание ее резервных копий, хранение в защищенном помещении, предоставление пользователям соответствующих прав доступа к информации, шифрование сообщений и др.

Язык как способ представления и передачи информации

Для того чтобы сохранить информацию и передать ее, с давних времен использовались знаки.

В зависимости от способа восприятия знаки делятся на:

Для долговременного хранения знаки записывают на носители информации.

Для передачи информации используются знаки в виде сигналов (световые сигналы светофора, звуковой сигнал школьного звонка и т. д.).

По способу связи между формой и значением знаки делятся на:

Для представления информации используются знаковые системы, которые называются языками. Основу любого языка составляет алфавит — набор символов, из которых формируется сообщение, и набор правил выполнения операций над символами.

Системы счисления также можно рассматривать как формальные языки. Так, десятичная система счисления — это язык, алфавит которого состоит из десяти цифр 0..9, двоичная система счисления — язык, алфавит которого состоит из двух цифр — 0 и 1.

Методы измерения количества информации: вероятностный и алфавитный

Единицей измерения количества информации является бит. 1 бит — это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Связь между количеством возможных событий N и количеством информации I определяется формулой Хартли:

При алфавитном подходе к определению количества информации отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка (алфавит) можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет каждый символ:

Например, в русском языке 32 буквы (буква ё обычно не используется), т. е. количество событий будет равно 32. Тогда информационный объем одного символа будет равен:

I = log2 32 = 5 битов.

Если N не является целой степенью 2, то число log2N не является целым числом, и для I надо выполнять округление в большую сторону. При решении задач в таком случае I можно найти как log2N’, где N′ — ближайшая к N степень двойки — такая, что N′ > N.

Например, в английском языке 26 букв. Информационный объем одного символа можно найти так:

N = 26; N’ = 32; I = log2N’ = log2(2 5 ) = 5 битов.

Если количество символов алфавита равно N, а количество символов в записи сообщения равно М, то информационный объем данного сообщения вычисляется по формуле:

Примеры решения задач

Пример 1. Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний («включено» или «выключено»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

Пример 2. Метеорологическая станция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

Решение. В данном случае алфавитом является множество целых чисел от 0 до 100. Всего таких значений 101. Поэтому информационный объем результатов одного измерения I = log2101. Это значение не будет целочисленным. Заменим число 101 ближайшей к нему степенью двойки, большей 101. Это число 128 = 27. Принимаем для одного измерения I = log2128 = 7 битов. Для 80 измерений общий информационный объем равен:

80 · 7 = 560 битов = 70 байтов.

Вероятностный подход к измерению количества информации применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

$N$ — количество возможных событий;

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

Единицы измерения количества информации

Наименьшей единицей информации является бит (англ. binary digit (bit) — двоичная единица информации).

Бит — это количество информации, необходимое для однозначного определения одного из двух равновероятных событий. Например, один бит информации получает человек, когда он узнает, опаздывает с прибытием нужный ему поезд или нет, был ночью мороз или нет, присутствует на лекции студент Иванов или нет и т. д.

В информатике принято рассматривать последовательности длиной 8 битов. Такая последовательность называется байтом.

Производные единицы измерения количества информации:

1 килобайт (Кб) = 1024 байта = 2 10 байтов

1 мегабайт (Мб) = 1024 килобайта = 2 20 байтов

1 гигабайт (Гб) = 1024 мегабайта = 2 30 байтов

1 терабайт (Тб) = 1024 гигабайта = 2 40 байтов

Процесс передачи информации. Виды и свойства источников и приемников информации. Сигнал, кодирование и декодирование, причины искажения информации при передаче

Информация передается в виде сообщений от некоторого источника информации к ее приемнику посредством канала связи между ними.

В качестве источника информации может выступать живое существо или техническое устройство. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал.

Сигнал — это материально-энергетическая форма представления информации. Другими словами, сигнал — это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение. Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными).

Сигнал посылается по каналу связи. В результате в приемнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

Примеры решения задач

Пример 1. Для кодирования букв А, З, Р, О используются двухразрядные двоичные числа 00, 01, 10, 11 соответственно. Этим способом закодировали слово РОЗА и результат записали шестнадцатеричным кодом. Указать полученное число.

Решение. Запишем последовательность кодов для каждого символа слова РОЗА: 10 11 01 00. Если рассматривать полученную последовательность как двоичное число, то в шестнадцатеричном коде оно будет равно: 1011 01002 = В416.

Скорость передачи информации и пропускная способность канала связи

Прием/передача информации может происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации, или скорость информационного потока.

Скорость выражается в битах в секунду (бит/с) и кратных им Кбит/с и Мбит/с, а также в байтах в секунду (байт/с) и кратных им Кбайт/с и Мбайт/с.

Максимальная скорость передачи информации по каналу связи называется пропускной способностью канала.

Примеры решения задач

Пример 1. Скорость передачи данных через ADSL-соединение равна 256000 бит/с. Передача файла через данное соединение заняла 3 мин. Определите размер файла в килобайтах.

Решение. Размер файла можно вычислить, если умножить скорость передачи информации на время передачи. Выразим время в секундах: 3 мин = 3 ⋅ 60 = 180 с. Выразим скорость в килобайтах в секунду: 256000 бит/с = 256000 : 8 : 1024 Кбайт/с. При вычислении размера файла для упрощения расчетов выделим степени двойки:

Размер файла = (256000 : 8 : 1024) ⋅ (3 ⋅ 60) = (2 8 ⋅ 10 3 : 2 3 : 2 10 ) ⋅ (3 ⋅ 15 ⋅ 2 2 ) = (2 8 ⋅ 125 ⋅ 2 3 : 2 3 : 2 10 ) ⋅ (3 ⋅ 15 ⋅ 2 2 ) = 125 ⋅ 45 = 5625 Кбайт.

Представление числовой информации. Сложение и умножение в разных системах счисления

Представление числовой информации с помощью систем счисления

Для представления информации в компьютере используется двоичный код, алфавит которого состоит из двух цифр — 0 и 1. Каждая цифра машинного двоичного кода несет количество информации, равное одному биту.

Система счисления — это система записи чисел с помощью определенного набора цифр.

Система счисления называется позиционной, если одна и та же цифра имеет различное значение, которое определяется ее местом в числе.

Позиционной является десятичная система счисления. Например, в числе 999 цифра «9» в зависимости от позиции означает 9, 90, 900.

Римская система счисления является непозиционной. Например, значение цифры Х в числе ХХІ остается неизменным при вариации ее положения в числе.

Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим.

Количество различных цифр, употребляемых в позиционной системе счисления, называется ее основанием.

Развернутая форма числа — это запись, которая представляет собой сумму произведений цифр числа на значение позиций.

Развернутая форма записи чисел произвольной системы счисления имеет вид

$a$ — цифры численной записи, соответствующие разрядам;

$m$ — количество разрядов числа дробной части;

$n$ — количество разрядов числа целой части;

$q$ — основание системы счисления.

Если основание используемой системы счисления больше десяти, то для цифр вводят условное обозначение со скобкой вверху или буквенное обозначение: В — двоичная система, О — восмеричная, Н — шестнадцатиричная.

Например, если в двенадцатеричной системе счисления 10 = А, а 11 = В, то число 7А,5В12 можно расписать так:

В шестнадцатеричной системе счисления 16 цифр, обозначаемых 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, что соответствует следующим числам десятеричной системы счисления: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Примеры чисел: 17D,ECH; F12AH.

Перевод чисел в позиционных системах счисления

Перевод чисел из произвольной системы счисления в десятичную

Для перевода числа из любой позиционной системы счисления в десятичную необходимо использовать развернутую форму числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами. Например:

11012 = 1 ⋅ 2 3 + 1 ⋅ 2 2 + 0 ⋅ 2 1 + 1 ⋅ 2 0 = 1310;

17D,ECH = 12 ⋅ 16 –2 + 14 ⋅ 16 –1 + 13 ⋅ 160 + 7 ⋅ 16 1 + 1 ⋅ 16 2 = 381,921875.

Перевод чисел из десятичной системы счисления в заданную

Для преобразования целого числа десятичной системы счисления в число любой другой системы счисления последовательно выполняют деление нацело на основание системы счисления, пока не получат нуль. Числа, которые возникают как остаток от деления на основание системы, представляют собой последовательную запись разрядов числа в выбранной системе счисления от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Например, переведем десятичное число 475 в двоичную систему счисления. Для этого будем последовательно выполнять деление нацело на основание новой системы счисления, т. е. на 2:

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Читая остатки от деления снизу вверх, получим 111011011.

1 ⋅ 2 8 + 1 ⋅ 2 7 + 1 ⋅ 2 6 + 0 ⋅ 2 5 + 1 ⋅ 2 4 + 1 ⋅ 2 3 + 0 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 1 + 2 + 8 + 16 + 64 + 128 + 256 = 47510.

Для преобразования десятичных дробей в число любой системы счисления последовательно выполняют умножение на основание системы счисления, пока дробная часть произведения не будет равна нулю. Полученные целые части являются разрядами числа в новой системе, и их необходимо представлять цифрами этой новой системы счисления. Целые части в дальнейшем отбрасываются.

Например, переведем десятичную дробь 0,37510 в двоичную систему счисления:

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Полученный результат — 0,0112.

Не каждое число может быть точно выражено в новой системе счисления, поэтому иногда вычисляют только требуемое количество разрядов дробной части.

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Для записи восьмеричных чисел используются восемь цифр, т. е. в каждом разряде числа возможны 8 вариантов записи. Каждый разряд восьмеричного числа содержит 3 бита информации (8 = 2 І ; І = 3).

Таким образом, чтобы из восьмеричной системы счисления перевести число в двоичный код, необходимо каждую цифру этого числа представить триадой двоичных символов. Лишние нули в старших разрядах отбрасываются.

1234,7778 = 001 010 011 100,111 111 1112 = 1 010 011 100,111 111 1112;

12345678 = 001 010 011 100 101 110 1112 = 1 010 011 100 101 110 1112.

При переводе двоичного числа в восьмеричную систему счисления нужно каждую триаду двоичных цифр заменить восьмеричной цифрой. При этом, если необходимо, число выравнивается путем дописывания нулей перед целой частью или после дробной.

Для записи шестнадцатеричных чисел используются шестнадцать цифр, т. е. для каждого разряда числа возможны 16 вариантов записи. Каждый разряд шестнадцатеричного числа содержит 4 бита информации (16 = 2 І ; І = 4).

Таким образом, для перевода двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры и преобразовать каждую группу в шестнадцатеричную цифру.

Для перевода шестнадцатеричного числа в двоичный код необходимо каждую цифру этого числа представить четверкой двоичных цифр.

1234,AB7716 = 0001 0010 0011 0100,1010 1011 0111 01112 = 1 0010 0011 0100,1010 1011 0111 01112;

CE456716 = 1100 1110 0100 0101 0110 01112.

При переводе числа из одной произвольной системы счисления в другую нужно выполнить промежуточное преобразование в десятичное число. При переходе из восьмеричного счисления в шестнадцатеричное и обратно используется вспомогательный двоичный код числа.

Например, переведем троичное число 2113 в семеричную систему счисления. Для этого сначала преобразуем число 2113 в десятичное, записав его развернутую форму:

2113 = 2 ⋅ 3 2 + 1 ⋅ 3 1 + 1 ⋅ 3 0 = 18 + 3 + 1 = 2210.

Затем переведем десятичное число 2210 в семеричную систему счисления делением нацело на основание новой системы счисления, т. е. на 7:

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Примеры решения задач

Пример 1. В системе счисления с некоторым основанием число 12 записывается в виде 110. Указать это основание.

Пример 2. Указать через запятую в порядке возрастания все основания систем счисления, в которых запись числа 22 оканчивается на 4.

Пример 3. Указать через запятую в порядке возрастания все числа, не превосходящие 25, запись которых в двоичной системе счисления оканчивается на 101. Ответ записать в десятичной системе счисления.

a1 = 0; x = 5 + 0 · 8 = 5;.

a1=1; x = 5 + 1 · 8 = 13;.

a1 = 2; x = 5 + 2 · 8 = 21;.

Арифметические операции в позиционных системах счисления

Правила выполнения арифметических действий над двоичными числами задаются таблицами сложения, вычитания и умножения.

СложениеВычитаниеУмножение
0 + 0 = 00 – 0 = 00 ⋅ 0 = 0
0 + 1 = 11 – 0 = 10 ⋅ 1 = 0
1 + 0 = 11 – 1 = 01 ⋅ 0 = 0
1 + 1 = 1010 – 1 = 11 ⋅ 1 = 1

Правило выполнения операции сложения одинаково для всех систем счисления: если сумма складываемых цифр больше или равна основанию системы счисления, то единица переносится в следующий слева разряд. При вычитании, если необходимо, делают заем.

Пример выполнения сложения: сложим двоичные числа 111 и 101, 10101 и 1111:

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Пример выполнения вычитания: вычтем двоичные числа 10001 – 101 и 11011 – 1101:

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Пример выполнения умножения: умножим двоичные числа 110 и 11, 111 и 101:

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Аналогично выполняются арифметические действия в восьмеричной, шестнадцатеричной и других системах счисления. При этом необходимо учитывать, что величина переноса в следующий разряд при сложении и заем из старшего разряда при вычитании определяется величиной основания системы счисления.

Например, выполним сложение восьмеричных чисел 368 и 158, а также вычитание шестнадцатеричных чисел 9С16 и 6716:

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

При выполнении арифметических операций над числами, представленными в разных системах счисления, нужно предварительно перевести их в одну и ту же систему.

Представление чисел в компьютере

Формат с фиксированной запятой

В памяти компьютера целые числа хранятся в формате с фиксированной запятой: каждому разряду ячейки памяти соответствует один и тот же разряд числа, «запятая» находится вне разрядной сетки.

Для хранения целых неотрицательных чисел отводится 8 битов памяти. Минимальное число соответствует восьми нулям, хранящимся в восьми битах ячейки памяти, и равно 0. Максимальное число соответствует восьми единицам и равно

1 ⋅ 2 7 + 1 ⋅ 2 6 + 1 ⋅ 2 5 + 1 ⋅ 2 4 + 1 ⋅ 2 3 + 1 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 25510.

Таким образом, диапазон изменения целых неотрицательных чисел — от 0 до 255.

Для п-разрядного представления диапазон будет составлять от 0 до 2 n – 1.

Для хранения целых чисел со знаком отводится 2 байта памяти (16 битов). Старший разряд отводится под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное — 1. Такое представление чисел в компьютере называется прямым кодом.

Для представления отрицательных чисел используется дополнительный код. Он позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие. Дополнительный код отрицательного числа А, хранящегося в п ячейках, равен 2 n − |А|.

Алгоритм получения дополнительного кода отрицательного числа:

1. Записать прямой код числа в п двоичных разрядах.

2. Получить обратный код числа. (Обратный код образуется из прямого кода заменой нулей единицами, а единиц — нулями, кроме цифр знакового разряда. Для положительных чисел обратный код совпадает с прямым. Используется как промежуточное звено для получения дополнительного кода.)

3. Прибавить единицу к полученному обратному коду.

Например, получим дополнительный код числа –201410 для шестнадцатиразрядного представления:

Прямой кодДвоичный код числа 201410 со знаковым разрядом1000011111011110
Обратный кодИнвертирование (исключая знаковый разряд)1111100000100001
Прибавление единицы1111100000100001 + 0000000000000001
Дополнительный код1111100000100010

При алгебраическом сложении двоичных чисел с использованием дополнительного кода положительные слагаемые представляют в прямом коде, а отрицательные — в дополнительном коде. Затем суммируют эти коды, включая знаковые разряды, которые при этом рассматриваются как старшие разряды. При переносе из знакового разряда единицу переноса отбрасывают. В результате получают алгебраическую сумму в прямом коде, если эта сумма положительная, и в дополнительном — если сумма отрицательная.

1) Найдем разность 1310 – 1210 для восьмибитного представления. Представим заданные числа в двоичной системе счисления:

Запишем прямой, обратный и дополнительный коды для числа –1210 и прямой код для числа 1310 в восьми битах:

1310–1210
Прямой код0000110110001100
Обратный код11110011
Дополнительный код11110100

Вычитание заменим сложением (для удобства контроля за знаковым разрядом условно отделим его знаком «_»):

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

Так как произошел перенос из знакового разряда, первую единицу отбрасываем, и в результате получаем 00000001.

2) Найдем разность 810 – 1310 для восьмибитного представления.

Запишем прямой, обратный и дополнительный коды для числа –1310 и прямой код для числа 810 в восьми битах:

810–1310
Прямой код0000100010001101
Обратный код11110010
Дополнительный код11110011

Вычитание заменим сложением:

Что такое кодирование что такое декодирование информации. Смотреть фото Что такое кодирование что такое декодирование информации. Смотреть картинку Что такое кодирование что такое декодирование информации. Картинка про Что такое кодирование что такое декодирование информации. Фото Что такое кодирование что такое декодирование информации

В знаковом разряде стоит единица, а значит, результат получен в дополнительном коде. Перейдем от дополнительного кода к обратному, вычтя единицу:

11111011 – 00000001 = 11111010.

Перейдем от обратного кода к прямому, инвертируя все цифры, за исключением знакового (старшего) разряда: 10000101. Это десятичное число –510.

Определим диапазон чисел, которые могут храниться в оперативной памяти в формате длинных целых чисел со знаком (для хранения таких чисел отводится 32 бита памяти). Минимальное отрицательное число равно

А = –2 31 = –214748364810.

Максимальное положительное число равно

А = 2 31 – 1 = 214748364710.

Достоинствами формата с фиксированной запятой являются простота и наглядность представления чисел, простота алгоритмов реализации арифметических операций. Недостатком является небольшой диапазон представимых чисел, недостаточный для решения большинства прикладных задач.

Формат с плавающей запятой

Вещественные числа хранятся и обрабатываются в компьютере в формате с плавающей запятой, использующем экспоненциальную форму записи чисел.

Число в экспоненциальном формате представляется в таком виде:

$q$ — основание системы счисления;

Например, десятичное число 2674,381 в экспоненциальной форме запишется так:

Число в формате с плавающей запятой может занимать в памяти 4 байта (обычная точность) или 8 байтов (двойная точность). При записи числа выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы. Две последние величины определяют диапазон изменения чисел и их точность.

Определим диапазон (порядок) и точность (мантиссу) для формата чисел обычной точности, т. е. четырехбайтных. Из 32 битов 8 выделяется для хранения порядка и его знака и 24 — для хранения мантиссы и ее знака.

Найдем максимальное значение порядка числа. Из 8 разрядов старший разряд используется для хранения знака порядка, остальные 7 — для записи величины порядка. Значит, максимальное значение равно 11111112 = 12710. Так как числа представляются в двоичной системе счисления, то

Аналогично, максимальное значение мантиссы равно

Кодирование текстовой информации. Кодировка ASCII. Основные используемые кодировки кириллицы

Соответствие между набором символов и набором числовых значений называется кодировкой символа. При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Код символа хранится в оперативной памяти компьютера. В процессе вывода символа на экран производится обратная операция — декодирование, т. е. преобразование кода символа в его изображение.

Присвоенный каждому символу конкретный числовой код фиксируется в кодовых таблицах. Одному и тому же символу в разных кодовых таблицах могут соответствовать разные числовые коды. Необходимые перекодировки текста обычно выполняют специальные программы-конверторы, встроенные в большинство приложений.

Как правило, для хранения кода символа используется один байт (восемь битов), поэтому коды символов могут принимать значение от 0 до 255. Такие кодировки называют однобайтными. Они позволяют использовать 256 символов ( N = 2 I = 2 8 = 256 ). Таблица однобайтных кодов символов называется ASCII (American Standard Code for Information Interchange — Американский стандартный код для обмена информацией). Первая часть таблицы ASCII-кодов (от 0 до 127) одинакова для всех IBM-PC совместимых компьютеров и содержит:

Вторая часть таблицы (коды от 128 до 255) бывает различной в различных компьютерах. Она содержит коды букв национального алфавита, коды некоторых математических символов, коды символов псевдографики. Для русских букв в настоящее время используется пять различных кодовых таблиц: КОИ-8, СР1251, СР866, Мас, ISO.

В последнее время широкое распространение получил новый международный стандарт Unicode. В нем отводится по два байта (16 битов) для кодирования каждого символа, поэтому с его помощью можно закодировать 65536 различных символов ( N = 2 16 = 65536 ). Коды символов могут принимать значение от 0 до 65535.

Примеры решения задач

Пример. С помощью кодировки Unicode закодирована следующая фраза:

Я хочу поступить в университет!

Оценить информационный объем этой фразы.

Решение. В данной фразе содержится 31 символ (включая пробелы и знак препинания). Поскольку в кодировке Unicode каждому символу отводится 2 байта памяти, для всей фразы понадобится 31 ⋅ 2 = 62 байта или 31 ⋅ 2 ⋅ 8 = 496 битов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *