Что такое кадр ethernet
Что такое технология Ethernet – история сетевого кабеля
Для многих это просто кабель, который позволяет подключить компьютер – настольный компьютер или ноутбук – без разницы – игровые приставки, жесткие диски и медиацентры к маршрутизатору с целью создания локальной сети (Local Area Network), т.е. домашней сети. Однако, понятие Ethernet объединяет целое семейство технологий, необходимых для создания и эксплуатации локальных сетей (в частности, LAN), технические характеристики которых были установлены в соответствии со стандартом IEEE 802.3.
Экспериментально задуманный в середине 70-х годов в лабораториях Xerox PARC Робертом Меткалфом и его помощником Дэвидом Боггсом, Ethernet в настоящее время является наиболее используемой технологией в домашних условиях для создания сетей, которые включают в себя и соединяют небольшое количество узлов.
По этой причине создаются всё более эффективные коммутаторы Ethernet, необходимые для быстрой и надёжной связи между двумя узлами одной сети.
Что такое Ethernet
С технической точки зрения, Ethernet – это набор протоколов и сетевых инструментов, которые позволяют создавать локально разнородные локальные сети (от нескольких узлов до нескольких десятков).
Теоретически длина кабеля Ethernet может достигать 100 метров: устройства, которые повторяют или перенаправляют сигнал, используются для соединения узлов на большем расстоянии. Для этой цели используют Ethernet-мосты и Ethernet-коммутаторы – периферийные устройства, способные соединять различные сегменты одной и той же локальной сети.
Общим элементом любой сети Ethernet является структура пакета, называемая кадром. Кадр, состоящий из 7 различных элементов, отвечает за передачу данных между двумя узлами одной и той же локальной сети.
Как сделан кабель Ethernet
Внешне кабель Ethernet выглядит как длинный провод, покрытый пластиковой оболочкой с двумя разъемами RJ45 (также изготовленными из пластика). Внутри оболочки между различными защитными и экранирующими слоями мы обнаруживаем четыре витые пары, отвечающие за передачу данных от одного сетевого устройства к другому. Витые пары отличаются друг от друга благодаря цветовой идентификации: синий, оранжевый, зеленый и коричневый. Таким образом, у нас будет синяя витая пара (полноцветный кабель и полосатый кабель), оранжевая витая пара (полноцветный кабель и полосатый кабель), зеленая витая пара (полноцветный кабель и полосатый кабель) и коричневая витая пара (полноцветный кабель и полосатый кабель).
Кабели Ethernet могут быть прямыми или скрещенными. В прямых кабелях Ethernet схема витой пары одинакова как в одном разъеме RJ45, так и в другом: это означает, что порядок, в котором расположены 8 медных кабелей, поддерживается на двух концах провода Ethernet.
В скрещенных кабелях Ethernet положение восьми кабелей «меняется», как если бы они были отражены в зеркале: если в одном разъеме RJ45 вы начинаете с коричневой витой пары и заканчиваете оранжевой, на другом конце начинайте с оранжевой, а заканчивайте коричневой.
Семь элементов кадра Ethernet
История кабеля Ethernet
Все физические и протокольные элементы, служащие для технического определения Ethernet, были экспериментально спроектированы Робертом Меткалфом в период с 1973 по 1974 годы в Xerox PARC (исследовательский центр Пало-Альто). Последний был вдохновлен ALOHAnet, сетевым протоколом, целью которого было гарантировать доступ и функции передачи данных в небольших сетях.
Название Ethernet впервые было использовано в мае 1973 года самим Меткалфом, который пытался убедить руководителей Xerox в важности е своей работы. Название было выбрано, чтобы «воздать должное» светоносному эфиру, газообразному и неощутимому веществу, которое в середине XIX века считалось инертной средой, через которую распространялись электромагнитные волны. В 1975 году Xerox подал патент от имени Меткалфа и его команды (в дополнение к Дэвиду Боггсу патент носит имена Чака Такера и Батлера Лэмпсона).
Технологии, описанные в патенте, были успешно использованы в Xerox PARC, и в 1976 году Меткалф и Боггс опубликовали научную статью «Ethernet: распределенная коммутация пакетов для локальных компьютерных сетей», в которой они описали фундаментальные части и работу сети, основанную на технологии Ethernet.
В 1979 году Меткалф покинул Xerox, но всё же смог убедить тогдашнего американского ИТ-гиганта вступить в партнерство с Digital Equipment Corporation и Intel, чтобы начать работу над уникальным стандартом Ethernet. Так родилась команда DIX (из инициалов трёх компаний, участвующих в проекте), которая в следующем году представила Институту инженеров по электронике и электронике (IEEE) первое предложение по стандартизации Ethernet в области LAN. Это первое предложение касалось стандарта со скоростью 10 Мбит/с и 48-битными адресами: то была 10BASE-T – «базовая модель» подключения Ethernet.
Модели Ethernet
Среди множества способов, которыми можно «каталогизировать» различные типы Ethernet, разработанные за последние 30 лет использования этой технологии, наиболее распространенным является метод, основанный на максимальной теоретической скорости, которая может быть достигнута во время передачи файла.
10BASE-T
Спецификация базового уровня протокола IEEE 802.3 характеризуется скоростью передачи 10 мегабит (10 миллионов бит) в секунду. Кабели состоят из двух витых пар телефонных линий, скрученных вместе, в то время как разъемы RJ-45 также были взяты с телефонной линии.
Fast Ethernet
Стандарты передачи данных для сетей LAN, теоретическая максимальная скорость которых составляет 100 мегабит в секунду. Также в этом случае 100BASE-T является преобладающим стандартом, который характеризуется двумя витыми парами и разъемами RJ-45.
Гигабитный Ethernet
Эволюция Fast Ethernet, приведшая к 10-кратному увеличению скорости. Как следует из названия, Gigabit Ethernet характеризуется скоростью передачи 1 гигабит (1 миллиард бит) в секунду, используя конфигурацию 1000BASE-T, медные пары телефонных проводов и разъёмы RJ-45.
2.5GBASE-T, 5GBASE-T и 10GBASE-T с кабелями категории Cat5e, Cat6 и Cat7
Однако, развитие кабелей Ethernet позволило техническим специалистам и инженерам выйти за пределы порога в 1 гигабит. Сегодня на рынке уже есть кабели, которые могут достигать 10 гигабит в секунду: это относится к Ethernet-кабелям Cat 7 (также называемым 10GBASE-T), способным передавать пакеты данных со скоростью 1,25 гигабайта в секунду (1 байт = 8 бит).
Однако, они не единственные, которые могут выйти за пределы гигабитного уровня скорости: с введением стандарта IEEE 802.3bz, по сути, были достигнуты значительные улучшения производительности также для кабелей Ethernet Cat 5e и Cat 6. Первый также называется 2.5GBASE-T, имеет максимальную скорость передачи данных 2,5 гигабит в секунду; второй, называемый 5GBASE-T, может развивать скорость до 5 гигабит в секунду.
Что такое кадр ethernet
Описание технологии Ethernet
Форматы кадров Ethernet
Для успешной доставки информации получателю каждый кадр должен кроме данных содержать служебную информацию : длину поля данных, физические адреса отправителя и получателя, тип сетевого протокола и т.д.
Большинство сетевых администраторов не уделяет должного внимания типам кадров Ethernet, а это может явиться источником проблем. Например, если клиентское сетевое программное обеспечение настроено на неверный тип кадра, то пользователь не сможет взаимодействовать с сервером. За типом кадра приходится особенно внимательно следить в сетях Nowell NetWare, так как в новых версиях этой операционной системы тип кадра по умолчанию был изменён с 802.3 на 802.2. Кроме того, в корпоративных сетях применяются устройства от нескольких поставщиков, базирующихся на разных протоколах взаимодействия и использующих различные типы кадров.
Для того, чтобы рабочие станции имели возможность взаимодействовать с сервером в одном сегменте сети, они должны поддерживать единый формат кадра. Существует четыре основных разновидности кадров Ethernet :
Рассмотрим поля, общие для всех четырёх типов кадров (рис. 1).
Признак начала кадра (8 бит)
Адрес получателя (48 бит)
Адрес отправителя (48 бит)
Данные (переменная длина)
Контрольная сумма (32 бит)
Рис. 1. Общий формат кадров Ethernet
Поля в кадре имеют следующие значения :
Рассмотрим более подробно форматы кадров разных типов. Тип кадра Ethernet II используется многими протоколами верхнего уровня, такими как IPX, TCP/IP и Apple Talk. Данный тип кадра был разработан фирмами DEC, Intel и Xerox. Необходимо учитывать, что хотя данный тип кадра является наиболее широко используемым, он не одобрен организациями ISO и IEEE. Формат данного типа кадра отличается от рассмотренного выше только тем, что в поле «Длина/тип» всегда указывается тип протокола.
Сетевые операционные системы Nowell NetWare 2.x и 3.x (за исключением 3.12) по умолчанию используют кадры Ethernet 802.3. Хотя в названии этого кадра есть упоминание комитета IEEE, последний не имел никакого отношения к его разработке.
Данный тип кадра не содержит никакой информации о протоколе. Поле «Длина/тип» всегда указывает длину кадра. В результате нет стандартных методов идентификации сетевого протокола, которому принадлежит данный кадр. Однако, только в соответствии с концепцией фирмы Nowell, только протокол IPX может использоваться с данным типом кадров. Разработана специальная последовательность действий для определения того, что именно протокол IPX был инкапсулирован в кадр данного типа :
В результате стандартизации сетей Ethernet подкомитетом IEEE 802.3 появился кадр Ethernet 802.2. Этот кадр является базовым для операционных систем Nowell NetWare версий 3.12 и 4.х. В данном типе кадра сразу за адресом отправителя следует поле длины, имеющее такое же назначение. Кроме того, этот тип кадра содержит несколько дополнительных полей, рекомендованных подкомитетом IEEE 802.3. Эти поля распологаются за полем «Длина/тип» и имеют следующее назначение :
Формат кадра Ethernet 802.2 имеет некоторые недостатки, в частности, он содержит нечётное число байтов служебной информации. Это не совсем удобно для работы большинства сетевых устройств. Кроме того, для идентификации протокола сетевого уровня отводится 7 бит,что позволяет поддерживать «всего» 128 различных протоколов. Кадр Ethernet SNAP, являющийся дальнейшим развитием Ether n et 802.2, содержит следующие дополнительные поля (рис. 2) :
В совокупности эти два поля составляют дополнительное пятибайтовое поле для идентификации протокола.Это было сделано для увеличения числа поддерживаемых протоколов.
Физика Ethernet для самых маленьких
Если не знаешь ответов на эти вопросы, а читать стандарты и серьезную литературу по теме лень — прошу под кат.
Кто-то считает, что это очевидные вещи, другие скажут, что скучная и ненужная теория. Тем не менее на собеседованиях периодически можно услышать подобные вопросы. Мое мнение: о том, о чем ниже пойдет речь, нужно знать всем, кому приходится брать в руки «обжимку» 8P8C (этот разъем обычно ошибочно называют RJ-45). На академическую глубину не претендую, воздержусь от формул и таблиц, так же за бортом оставим линейное кодирование. Речь пойдет в основном о медных проводах, не об оптике, т.к. они шире распространены в быту.
Технология Ethernet описывает сразу два нижних уровня модели OSI. Физический и канальный. Дальше будем говорить только о физическом, т.е. о том, как передаются биты между двумя соседними устройствами.
Технология Ethernet — часть богатого наследия исследовательского центра Xerox PARC. Ранние версии Ethernet использовали в качестве среды передачи коаксиальный кабель, но со временем он был полностью вытеснен оптоволокном и витой парой. Однако важно понимать, что применение коаксиального кабеля во многом определило принципы работы Ethernet. Дело в том, что коаксиальный кабель — разделяемая среда передачи. Важная особенность разделяемой среды: ее могут использовать одновременно несколько интерфейсов, но передавать в каждый момент времени должен только один. С помощью коаксиального кабеля можно соединит не только 2 компьютера между собой, но и более двух, без применения активного оборудования. Такая топология называется шина. Однако если хотябы два узла на одной шине начнут одновременно передавать информацию, то их сигналы наложатся друг на друга и приемники других узлов ничего не разберут. Такая ситуация называется коллизией, а часть сети, узлы в которой конкурируют за общую среду передачи — доменом коллизий. Для того чтоб распознать коллизию, передающий узел постоянно наблюдает за сигналов в среде и если собственный передаваемый сигнал отличается от наблюдаемого — фиксируется коллизия. В этом случае все узлы перестают передавать и возобновляют передачу через случайный промежуток времени.
Диаметр коллизионного домена и минимальный размер кадра
Теперь давайте представим, что будет, если в сети, изображенной на рисунке, узлы A и С одновременно начнут передачу, но успеют ее закончить раньше, чем примут сигнал друг друга. Это возможно, при достаточно коротком передаваемом сообщении и достаточно длинном кабеле, ведь как нам известно из школьной программы, скорость распространения любых сигналов в лучшем случае составляет C=3*10 8 м/с. Т.к. каждый из передающих узлов примет встречный сигнал только после того, как уже закончит передавать свое сообщение — факт того, что произошла коллизия не будет установлен ни одним из них, а значит повторной передачи кадров не будет. Зато узел B на входе получит сумму сигналов и не сможет корректно принять ни один из них. Для того, чтоб такой ситуации не произошло необходимо ограничить размер домена коллизий и минимальный размер кадра. Не трудно догадаться, что эти величины прямо пропорциональны друг другу. В случае же если объем передаваемой информации не дотягивает до минимального кадра, то его увеличивают за счет специального поля pad, название которого можно перевести как заполнитель.
Таким образом чем больше потенциальный размер сегмента сети, тем больше накладных расходов уходит на передачу порций данных маленького размера. Разработчикам технологии Ethernet пришлось искать золотую середину между двумя этими параметрами, и минимальным размером кадра была установлена величина 64 байта.
Витая пара и дуплексный режим рабты
Витая пара в качестве среды передачи отличается от коаксиального кабеля тем, что может соединять только два узла и использует разделенные среды для передачи информации в разных направлениях. Одна пара используется для передачи (1,2 контакты, как правило оранжевый и бело-оранжевый провода) и одна пара для приема (3,6 контакты, как правило зеленый и бело-зеленый провода). На активном сетевом оборудовании наоборот. Не трудно заметить, что пропущена центральная пара контактов: 4, 5. Эту пару специально оставили свободной, если в ту же розетку вставить RJ11, то он займет как раз свободные контакты. Таким образом можно использовать один кабели и одну розетку, для LAN и, например, телефона. Пары в кабеле выбраны таким образом, чтоб свести к минимуму взаимное влияние сигналов друг на друга и улучшить качество связи. Провода одной пару свиты между собой для того, чтоб влияние внешних помех на оба провода в паре было примерно одинаковым.
Для соединения двух однотипных устройств, к примеру двух компьютеров, используется так называемый кроссовер-кабель(crossover), в котором одна пара соединяет контакты 1,2 одной стороны и 3,6 другой, а вторая наоборот: 3,6 контакты одной стороны и 1,2 другой. Это нужно для того, чтоб соединить приемник с передатчиком, если использовать прямой кабель, то получится приемник-приемник, передатчик-передатчик. Хотя сейчас это имеет значение только если работать с каким-то архаичным оборудованием, т.к. почти всё современное оборудование поддерживает Auto-MDIX — технология позволяющая интерфейсу автоматически определять на какой паре прием, а на какой передача.
Возникает вопрос: откуда берется ограничение на длину сегмента у Ethernet по витой паре, если нет разделяемой среды? Всё дело в том, первые сети построенные на витой паре использовали концентраторы. Концентратор (иначе говоря многовходовый повторитель) — устройство имеющее несколько портов Ethernet и транслирующее полученный пакет во все порты кроме того, с которого этот пакет пришел. Таким образом если концентратор начинал принимать сигналы сразу с двух портов, то он не знал, что транслировать в остальные порты, это была коллизия. То же касалось и первых Ethernet-сетей использующих оптику (10Base-FL).
Зачем же тогда использовать 4х-парный кабель, если из 4х пар используются только две? Резонный вопрос, и вот несколько причин для того, чтобы делать это:
Не смотря на это на практике часто используют 2х-парный кабель, подключают сразу 2 компьютера по одному 4х-парному, либо используют свободные пары для подключения телефона.
Gigabit Ethernet
В отличии от своих предшественников Gigabit Ethernet всегда использует для передачи одновременно все 4 пары. Причем сразу в двух направлениях. Кроме того информация кодируется не двумя уровнями как обычно (0 и 1), а четырьмя (00,01,10,11). Т.е. уровень напряжения в каждый конкретный момент кодирует не один, а сразу два бита. Это сделано для того, чтоб снизить частоту модуляции с 250 МГц до 125 МГц. Кроме того добавлен пятый уровень, для создания избыточности кода. Он делает возможной коррекцию ошибок на приеме. Такой вид кодирования называется пятиуровневым импульсно-амплитудным кодированием (PAM-5). Кроме того, для того, чтоб использовать все пары одновременно для приема и передачи сетевой адаптер вычитает из общего сигнала собственный переданный сигнал, чтоб получить сигнал переданный другой стороной. Таким образом реализуется полнодуплексный режим по одному каналу.
Дальше — больше
10 Gigabit Ethernet уже во всю используется провайдерами, но в SOHO сегменте не применяется, т.к. судя по всему там вполне хватает Gigabit Ethernet. 10GBE качестве среды распространения использует одно- и многомодовое волокно, с или без уплотнением по длине волны, медные кабели с разъемом InfiniBand а так же витую пару в стандарте 10GBASE-T или IEEE 802.3an-2006.
40-гигабитный Ethernet (или 40GbE) и 100-гигабитный Ethernet (или 100GbE). Разработка этих стандартов была закончена в июле 2010 года. В настоящий момент ведущие производители сетевого оборудования, такие как Cisco, Juniper Networks и Huawei уже заняты разработкой и выпуском первых маршрутизаторов поддерживающих эти технологии.
В заключении стоит упомянуть о перспективной технологии Terabit Ethernet. Боб Меткалф, создатель предположил, что технология будет разработана к 2015 году, и так же сказал:
Чтобы реализовать Ethernet 1 ТБит/с, необходимо преодолеть множество ограничений, включая 1550-нанометровые лазеры и модуляцию с частотой 15 ГГц. Для будущей сети нужны новые схемы модуляции, а также новое оптоволокно, новые лазеры, в общем, все новое
UPD: Спасибо хабраюзеру Nickel3000, что подсказал, про то что разъем, который я всю жизнь называл RJ45 на самом деле 8P8C.
UPD2:: Спасибо пользователю Wott, что объяснил, почему используются контакты 1,2,3 и 6.
Технология Ethernet. Обзор, описание, формат кадра.
Приветствую всех снова на нашем сайте!
Вынужденная пауза в выходе новых статей подошла к концу и, собственно, этой статьей мы положим начало активнейшему периоду наполнения сайта новым контентом. С выбором темы для статьи было в этот раз все максимально просто — в далекие-далекие времена была обещана статья про работу с Ethernet, наконец-то настало время исполнить обещанное… Но начнем мы для начала с общего обзора и описания технологии и некоторых нюансов, связанных с работой. А уже в следующих статьях будет практическое использование.
Семейство технологий Ethernet.
Как в самом начале не привести максимально «стандартное» и распространенное определение… Вот оно: Ethernet — семейство технологий пакетной передачи данных между устройствами для компьютерных и промышленных сетей. А теперь уже переходим непосредственно к сути.
В сетевой модели OSI (про нее скоро тоже будет статья, а здесь появится ссылка на нее) Ethernet отвечает за 2 самых низких уровня — физический и канальный. Собственно, физический уровень определяет метод, который используется для непосредственной передачи двоичных данных. Канальный же, в свою очередь, обеспечивает упаковку полученных с физического уровня данных в структурированные кадры, а также контролирует их целостность и безошибочность.
Модификации Ethernet.
Классификация модификаций Ethernet в основном заключается в различиях двух факторов — используемого типа кабеля, а также возможной скорости передачи данных. Различают:
Варианты соединения | Скорость | |
---|---|---|
Ethernet | Коаксиальный кабель, оптика, витая пара | 10 Мб/с |
Fast Ethernet | Оптика, витая пара | 100 Мб/с |
Gigabit Ethernet | Оптика, витая пара | 1 Гб/с |
10G Ethernet | Оптика, витая пара | 10 Гб/с |
Как мы и отметили сразу, различаются, в первую очередь, скорость передачи данных и тип используемого кабеля. На заре развития Ethernet использовались исключительно коаксиальные кабели, и лишь затем появились варианты с витой парой и оптикой, что привело к значительному расширению возможностей. К примеру, использование витой пары дает одновременно:
Внутри указанных четырех модификаций (Ethernet, Fast Ethernet, Gigabit Ethernet, 10G Ethernet) присутствует дополнительное «внутреннее» разделение. Например, возьмем 10 Мбит/с Ethernet. Вот некоторые из стандартов, которые включает этот тип:
Ethernet (10 Мб/с) |
---|
10Base-2 |
10Base-5 |
10Base-T |
10Base-F |
10Base-FL |
При этом различная физическая реализация подключения (разные кабели) приводят к возможности использования разных топологий сети. Для 10Base-5 максимально топорно:
А вот 10Base-T уже может использовать полнодуплексную передачу данных:
Здесь, как видите присутствует устройство под названием сетевой концентратор. Поэтому небольшое лирическое отступление на эту тему.
Зачастую термины сетевой концентратор, сетевой коммутатор и маршрутизатор перемешиваются и могут использоваться для описания одного и того же. Но строго говоря, все эти три термина относятся к абсолютно разному типу устройств:
Возвращаемся к схеме для стандарта 10Base-T… Поскольку для передачи и приема используются физически разные линии, то нет и препятствий для одновременного протекания данных процессов. Принцип же формирования данных остается неизменным практически для всех модификаций Ethernet, к обсуждению чего мы и переходим.
Кадр Ethernet.
Вся передаваемая информация поделена на пакеты/кадры, имеющие следующий формат:
Рассмотрим блоки подробнее:
Все поля, кроме поля данных, являются служебными.
Методика анализа контрольной суммы абсолютно стандартна: отправитель рассчитывает контрольную сумму на основе остальных данных кадра и добавляет рассчитанное значение к этому же отправляемому кадру. Получатель также рассчитывает контрольную сумму на основе принятых данных и сравнивает ее с принятой (которую рассчитывал отправитель). Несовпадение рассчитанного и принятого значений CRC — явный сигнал к тому, что данные повреждены и некорректны.
При этом контрольная сумма в данном случае никоим образом не может помочь в устранении ошибки, она только сигнализирует о ее наличии. В результате принятый кадр целиком считается некорректным. Это, в свою очередь, приводит к необходимости передать ошибочный кадр еще раз.
Кроме этого, возможна еще одна неприятная ситуация, так называемая коллизия — когда несколько узлов начинают передавать данные одновременно. Для предотвращения этого в Ethernet используется технология CSMA/CD — Carrier Sense Multiple Access with Collision Detection — множественный доступ с прослушиванием несущей и обнаружением коллизий. Эта тема тоже довольно-таки интересная, в связи с чем, принято волевое решение посвятить ей отдельную статью 🙂 Поэтому здесь и сейчас на этом не останавливаемся.
В первых по очередности двух полях кадра Ethernet содержатся MAC-адреса узлов сети — передатчика и приемника. Изначально при разработке первых версий технологии было предусмотрено, что любая сетевая карта должна иметь свой уникальный идентификатор. Роль этого идентификатора и играет MAC-адрес, состоящий из 6 байт.
При работе он позволяет идентифицировать все устройства в сети и определить, какому именно из них предназначен тот или иной кадр данных. Распределением MAC-адресов занимается регулирующий комитет IEEE Registration Authority, именно сюда производитель сетевого устройства должен обращаться для выделения ему некоего диапазона адресов, которые он сможет использовать для своей продукции.
И на этой ноте заканчиваем вводную теоретическую часть по Ethernet, в дальнейшем приступим к практическому использованию в своих устройствах. До скорого!