Что такое изотропность пространства
Изотропность пространства
Одно из ключевых свойств пространства в классической механике.
Из свойства изотропности пространства вытекает закон сохранения момента импульса.
Изотропность пространства означает, что в пространстве нет какого-то выделенного направления, относительно которого существует «особая» симметрия, все направления равноправны.
Следует отличать изотропность от однородности пространства.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Эта статья о физическом понятии. О более общем значении термина, см. статью СкалярСкалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.Скалярная величина, или скаляр согласно математическому энциклопедическому словарю.
В квантовой механике импульс, как и все другие наблюдаемые физические величины, определяется как оператор, который действует на волновую функцию.
При рассмотрении сложного движения (когда точка или тело движется в одной системе отсчёта, а эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.
Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.
В физике, при рассмотрении нескольких систем отсчёта (СО), возникает понятие сложного движения — когда материальная точка движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух системах отсчета (далее СО).
Статистическим ансамблем физической системы называется набор всевозможных состояний данной системы, отвечающих определённым критериям. Примерами статистического ансамбля являются.
Что такое изотропность пространства
Совокупность материальных точек (или тел) называется механической системой. Состояние системы характеризуется одновременным заданием координат и скоростей всех ее частиц. При движении системы ее состояние изменяется со временем. Существуют, однако, такие величины, которые обладают замечательным свойством сохраняться во времени. Среди этих сохраняющихся величин наиболее важную роль играют энергия, импульс и момент импульса. Законы сохранения энергии, импульса и момента импульса имеют глубокие корни. Они связаны с фундаментальными свойствами пространства и времени – однородностью и изотропностью.
Так, закон сохранения импульса связан с однородностью пространства. Однородность пространства означает, что свойства пространства одинаковы во всех точках: если замкнутую систему тел перенести из одного места пространства в другое, поставив при этом все тела в ней в те же условия, то это не отразится на ходе физических процессов.
Закон сохранения момента импульса является следствием изотропности пространства. Изотропность пространства означает, что свойства пространства в каждой точке одинаковы во всех направлениях: физические процессы не изменяются при повороте замкнутой системы в пространстве на любой угол.
Закон сохранения энергии связан с однородностью времени. Однородность времени означает, что протекание физических явлений (в одних и тех же условиях) в разное время их наблюдения одинаково. Например, при свободном падении тела в поле сил тяжести его скорость и пройденный путь зависят от начальной скорости и продолжительности свободного падения и не зависят от того, когда тело станет падать.
Законы сохранения далеко выходят за рамки механики и представляют собой универсальные законы природы. До сих пор не обнаружено ни одного явления, где бы эти законы нарушались. Они безошибочно «действуют» и в области элементарных частиц и в области космических объектов. Законы сохранения являются эффективным инструментом исследования, которым повседневно пользуются физики.
Изучение законов сохранения начнем с закона сохранения импульса.
Изотропность пространства
Из Википедии — свободной энциклопедии
Симметрия в физике | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Преобразование | Соответствующая инвариантность | Соответствующий закон сохранения | ||||||||||||||||||
⭥Трансляции времени | Однородность времени | …энергии | ||||||||||||||||||
⊠ C, P, CP и T-симметрии | Изотропность времени | …чётности | ||||||||||||||||||
⭤ Трансляции пространства | Однородность пространства | …импульса | ||||||||||||||||||
↺ Вращения пространства | Изотропность пространства | …момента импульса | ||||||||||||||||||
⇆ Группа Лоренца (бусты) | Относительность Лоренц-ковариантность | …движения центра масс | ||||||||||||||||||
Симметрия в физике | ||
---|---|---|
Преобразование | Соответствующая инвариантность | Соответствующий закон сохранения |
↕ Трансляции времени | …энергии | |
⊠ C, P, CP и T-симметрии | …чётности | |
↔ Трансляции пространства | Однородность пространства | …импульса |
↺ Вращения пространства | Изотропность пространства | …момента импульса |
⇆ Группа Лоренца | Относительность Лоренц-инвариантность | …4-импульса |
Калибровочная инвариантность | …заряда |
Изотропность — одно из ключевых свойств пространства в классической механике. Пространство называется изотропным, если поворот системы отсчета на произвольный угол не приведет к изменению результатов измерений.
Из свойства изотропности пространства вытекает закон сохранения момента импульса.
Изотропность пространства означает, что в пространстве нет какого-то выделенного направления, относительно которого существует «особая» симметрия, все направления равноправны.
Следует отличать изотропность от однородности пространства.
См. также
Полезное
Смотреть что такое «Изотропность пространства» в других словарях:
Изотропность — Симметрия в физике Преобразо вания Инвариант ность Закон сохранения ↕ трансляции времени Консервативность …энергии ↔ изотропия времени Изотропия времени …энтропии в обратимых процессах ↔ трансляции пространства Однородность …импульса … Википедия
Однородность пространства — Симметрия в физике Преобразование Соответствующая инвариантность Соответствующий закон сохранения ↕ Трансляции времени …энергии ⊠ C, P, CP и T симметрии …чётности ↔ Трансляции пространства Однородность пространства …импульса ↺ В … Википедия
Специальная теория относительности — Почтовая марка с формулой E = mc2, посвящённая Альберту Эйнштейну, одному из создателей СТО. Специальная теор … Википедия
Закон сохранения импульса — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
Изотропия — Симметрия в физике Преобразование Соответствующая инвариантность Соответствующий закон сохранения ↕ Трансляции времени …энергии ⊠ C, P, CP и T симметрии …чётности ↔ Трансляции пространства Однородность пространства …импульса ↺ Вращения … Википедия
Закон сохранения заряда — Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа… … Википедия
Момент импульса — У этого термина существуют и другие значения, см. Момент. Момент импульса Размерность L2MT−1 Единицы измерения … Википедия
Однородная среда — Симметрия в физике Преобразо вания Инвариант ность Закон сохранения ↕ трансляции времени Консервативность …энергии ↔ изотропия времени Изотропия времени …энтропии в обратимых процессах ↔ трансляции пространства Однородность …импульса … Википедия
Симметрия — У этого термина существуют и другие значения, см. Симметрия (значения). «Витрувианский человек» … Википедия
Принцип относительности — Симметрия в физике Преобразование Соответствующая инвариантность Соответствующий закон сохранения ↕ Трансляции времени …энергии ⊠ C, P, CP и T симметрии …чётности ↔ Трансляции пространства Однородность пространства …импульса ↺ Вращения … Википедия
Однородность и изотропность пространства
При рассмотрении кинематики использовалась неподвижная система отсчета. В природе не существует абсолютного движения, всякое движение имеет относительный характер: либо одного тела относительно другого, либо относительно выбранной системы отсчета. Возникает вопрос, все ли системы отсчета являются равноправными, а если нет, то какие являются предпочтительными. Единственное и естественное требование к системе отсчета состоит в том, что ее выбор не должен вносить усложнения в описание движения тел, т.е. законы движения в выбранной системе отсчета должны иметь наиболее простой вид. В частности, в такой системе должны оставаться неизменными свойства пространства и времени: пространство должно быть однородным и изотропным, а время однородным.
Однородность пространства и времени означает, что наблюдаемые физические свойства и явления должны быть одинаковы в любой точке пространства и в любой момент времени. Не существует выделенных в каком-либо отношении точек пространства и моментов времени.
Изотропность пространства означает, что все направления в пространстве равнозначны. Физические явления в замкнутой системе не должны изменяться при ее повороте в пространстве.
Система отсчета, которая использовалась до сих пор, отвечала этим требованиям, но возникает вопрос, как ее реализовать, т.е. с какими объектами, реально существующими в природе, можно ее связать. Оказывается, что выбор подобной системы отсчета является непростым делом, так как требуемым условиям отвечает специальный класс физических объектов. Если «привязать» неподвижную систему координат к какому-либо произвольно движущемуся объекту, например к вагону поезда, можно заметить, что в данной системе отсчета сразу произойдут странные явления, например груз, подвешенный на нити, будет время от времени отклоняться от вертикали (что связано с действием различных ускорений вагона: при торможении или ускорении и при поворотах). В результате для описания этих явлений в данной системе координат придется прибегнуть к представлениям о взаимодействиях, внешних по отношению к системе, и включить их в рассмотрение. В то же время ясно, что в другой системе координат, не испытывающей указанных ускорений, описание механических явлений будет гораздо проще.
Другой пример не очень подходящей системы отсчета — неподвижная система, связанная с Землей. В этой системе можно, напри мер, обнаружить вращение плоскости колебаний физического маятника (на самом деле связанное с вращением Земли вокруг своей оси), для объяснения которого нам также придется привлекать физические причины, являющиеся посторонними по отношению к данной системе отсчета. Вместе с тем, как показывает опыт, по отношению к Солнцу и звездам маятник будет вести себя стабильно, т.е. Солнце и звезды являются подходящими физическими объектами для выбора указанной системы отсчета.
Как показывает опыт, нужным требованиям удовлетворяют системы отсчета, которые связаны с физическими объектами, не испытывающими внешних воздействий, т.е. не подвергающимися каким-либо ускорениям. В таких системах отсчета тела находятся в состоянии покоя или равномерного прямолинейного движения до тех пор, пока на них не действуют другие тела. Свойство тела сохранять такое состояние называется инерцией, и поэтому системы отсчета, о которых «идет речь, носят название инерциальных.
Если наряду с выбранной инерциальной системой, рассмотреть другую, движущуюся относительно первой прямолинейно и равномерно, то свободное движение тела в новой системе будет также происходить с постоянной скоростью. Таким образом, существует бесконечное множество инерциальных систем отсчета. Во всех этих системах свойства пространства и времени одинаковы и одинаковы законы механики. Не существует никакой абсолютной системы отсчета, которую можно было бы предпочесть другим системам. В этом состоит принцип относительности Галилея. Его можно сформулировать и так: никакими механическими опытами невозможно установить, движется ли данная инерциальная система или покоится: оба состояния эквивалентны. Координаты точки в двух системах отсчета, одна из которых K’ движется равномерно и прямолинейно относительно другой (K) со скоростью V, связаны соотношением (рис.)
. (1.22)
При этом считается, что время абсолютно, т.е. течет одинаково в обеих системах: t’ = t. Скорость точки в системе К связана со скоростью в системе К’ формулой:
. (1.23)
- Что такое изотопы простыми словами
- Что такое изофикс в автокреслах и для чего нужен