Что такое гру в электрике
ВРУ, ГРЩ, ВУ: рассмотрим особенности функционала
Низковольтные комплектные устройства (НКУ) – важнейшие звенья сложной цепи в обеспечении электроснабжения жилых, промышленных и других объектов, ввода и распределения электроэнергии между потребителями. Каждое из таких устройств имеет свои функциональные задачи (ввод, распределение, контроль, учет электроэнергии, защита линий от перегрузок и коротких замыканий) и характеризуется определенными техническими параметрами.
Основными НКУ в общей схеме электроснабжения потребителей являются:
Все они относятся к группе устройств с идентичным практическим назначением в общей системе энергоснабжения. Они разделяют питающую электрическую сеть от трансформаторов, подстанций и обеспечивают ввод и распределение электроэнергии на объекте. При этом каждое из данных устройств обладает индивидуальными техническими параметрами и функциональными возможностями, определяющими их практические различия и целевое назначение.
Главный распределительный щит
ГРЩ – щит, через который обеспечивается электроснабжение всего объекта или его отдельных участков. Он устанавливается на вводе сразу после трансформаторов 6, 10/0,4кВ и выполняет функцию распределения электроэнергии по объекту. ВРУ ставится после него с целью распределения питания на конкретных потребителей.
ГРЩ применяется в трехфазных сетях с напряжением 380/220 В и частотой 50 Гц и обеспечивает защиту линий от перегрузок, коротких замыканий и утечек напряжения. Оснащается противоаварийной автоматикой и различными по функционалу приборами (в том числе ВРУ, панелями ЩО-70 и другим оборудованием).
Водно-распределительные устройства
ВРУ – устройства, обеспечивающие в здании прием и распределение электроэнергии при напряжении менее 1000 В одно- и трехфазного тока частотой 50-60 Гц. Они также выполняют функции защиты линий от высоких токов в результате перегрузки или замыкания. Вводно-распределительные устройства (одно или несколько) устанавливаются на вводе в здание. При наличии в нем нескольких обособленных потребителей рекомендована установка отдельных ВРУ для каждого из них.
Для ВРУ существует ограничения на максимальный ток ввода – не более 630 А. Это одно из основных отличий от ГРЩ, который рассчитан на большие показатели и не имеет ограничений на токи ввода и отходящих питающих линий.
ВРУ комплектуется различными аппаратами и приборами: рубильниками, переключателями, выключателями нагрузки, предохранителями, счетчиками и прочим функциональным оборудованием. Вводно-распределительное устройство обеспечивает оперативное включение и отключение от электроэнергии отдельных потребителей (частей зданий), а также различных устройств и приборов.
Вводные устройства
ВУ – это сборное электротехническое устройство, предназначенное для подключения и первичной защиты электросети здания. Питание приборов и аппаратов, входящих в конструкцию ВУ и установленных на вводе линии в здание, производится от ГРЩ.
В отличие от ВРУ вводное устройство не имеет автоматов защиты для распределения электропитания по отдельным группам и может устанавливаться не только в доме, но также на столбе ЛЭП или возле дома.
Что такое ГРЩ как он расшифровывается
Электропитание бытовых и промышленных объектов производится путем подачи электроэнергии от электроснабжающих устройств по кабельным и воздушным линиям электропередач. В целях обеспечения необходимого уровня безопасности (защита от перегрузок, короткого замыкания), а также исключения перебоев электропитания вводные питающие линии подключаются к распределительным устройствам, и только потом электроэнергия подается к потребителям. На электрических схемах устройства, к которым подключаются линии питания, обозначаются аббревиатурой ГРЩ, расшифровка которой главный распределительный щит.
Что такое ГРЩ: расшифровка и чем отличается от ВРУ
Существует несколько типов распределительных устройств, которые обеспечивают распределение электроэнергии потребителям, резервирование нескольких источников, защиту от короткого замыкания (секционирование нагрузки).
Электропитание жилого дома
Данные устройства обозначаются ВУ, ВРУ и ГРЩ, их расшифровка следующая:
К сведению! Все устройства имеют схожие черты и во многих случаях могут совмещать свои функции. И ВРУ, и ГРЩ комплектуются защитными автоматами, приборами учета электроэнергии, устройствами автоматического и ручного резервирования. Но есть и отличия, большая часть которых заключается в иерархической системе построения электрических сетей.
Верхнюю ступень в иерархии занимают главные распределительные устройства, а более низкую — вводные. Таким образом, если рассматривать участок от понижающей подстанции до потребителей, то на выходе подстанции устанавливается главный распределительный щит, а на входах потребителей (предприятия, жилые дома) — вводные распределительные устройства.
Обратите внимание! На участке от ввода в дом и до квартирных устройств на входе дома будет установлен ГРЩ, на отдельных подъездах или этажах — ВРУ, возле квартиры — квартирный щиток.
Есть и другое мнение по поводу различий в обозначениях. ВРУ — это тип изделия. Под этим наименование распределительные устройства поступают после производства. ГРЩ — функциональное назначение. Таким образом на шильдике (бирке) изделия, может стоять одно обозначение, а на схеме электропитания другое.
Вводное распределительное устройство
Еще одно различие заключается в токовых характеристиках, что полностью согласуется с иерархической системой. Вводные распределительные устройства имеют ограничения по максимальному допустимому току по входу и выходу. ВРУ предназначены для работы с нагрузкой, ток потребления которой не превышает 630 А. Главные распределительные щиты таких ограничений не имеют.
Зачем нужен главный распределительный щит
Основные задачи главного распределительного щита — прием и распределение электроэнергии между отдельными потребителями. Также осуществляется защита потребителей от превышения питающего напряжения в случае аварии на сети, защита источников и линий передач энергии при авариях в нагрузке.
К сведению! В зависимости от категории нагрузки может потребоваться необходимость в непрерывной подаче электроэнергии, поэтому распределительные устройства должны иметь возможность автоматического или ручного переключения на резервную линию питания или при особых требованиях на резервный источник электрической энергии (бензиновую или дизельную автономную электростанцию).
Как работает ГРЩ
ГРЩ представляет собой металлический шкаф, в котором размещены:
В зависимости от требований может быть огромное количество разновидностей ГРЩ. Самый простой и универсальный вариант работает таким образом:
Обратите внимание! Неисправность одного из потребителей вызовет срабатывание соответствующего автомата, поэтому остальная нагрузка будет обеспечена питанием вне зависимости от состояния неисправной части.
Технические характеристики ГРЩ
К техническим характеристикам ГРЩ относят:
Поскольку в каждом отдельном случае условия неодинаковы, то в конструкцию типовых ГРЩ могут вносится изменения. Особенно часто это касается номинальных значений автоматов защиты.
Важно! Для обеспечения безопасности обслуживания и безаварийной работы все изменения должны обязательно вноситься в техническую документацию.
Один из экземпляров электрической схемы обычно закрепляется на внутренней стороне одной из дверок шкафа. Обозначения на схеме должны выполняться согласно требованиям стандартов, чтобы можно было однозначно расшифровать изменения.
Пример однолинейной схемы ГРЩ
Наиболее часто современные распределительные щиты имеют модульную конструкцию, что упрощает обслуживание и внесение изменений. Основные модули (секции):
Таким образом, в зависимости от предъявляемых требований конструкции ГРЩ могут отличаться как количеством, так и способом подключения модулей.
Обратите внимание! Одной из важных характеристик является способ разделения нагрузки и резервирования питания, то есть, к какой линии подключены потребители в нормальном режиме и к какой в аварийном при пропадании питания в основном фидере.
Как и где используется ГРЩ
В отличие от ВРУ ГРЩ в основном устанавливаются на выходе питающей подстанции. В таком случае возможность переключения на резерв должна быть предусмотрена во ВРУ. Но если главный распределительный щит установлен на входе потребителя, то в зависимости от требований к надежности электроснабжения он должен обеспечивать переключение на резервный источник питания (линию электроснабжения или автономную электростанцию).
Важно! Проектирование и монтаж электрораспределительных устройств могут выполнять только лица и организации, которые имеют право на производство соответствующих работ. Разница в стоимости работы, выполненной самостоятельно или с привлечением профессионалов, полностью окупается гарантией надежной и бесперебойной работы.
Таким образом, ГРЩ — это важный элемент в электроцепи. Главный распределительный щит отвечает за прием и передачу электроэнергии в квартиры, дома и на предприятия. Без него не работает электричество в принципе, поэтому его монтаж рекомендуется доверять только профессионалам.
Питание потребителей собственных нужд на ТЭЦ, с ГРУ, схемы, применение РПН
На рис.3.1 изображен фрагмент главной схемы из схемы собственных нужд ТЭЦ с питанием секций собственных нужд (Р) и общестанционной нагрузки (Особственных нужд) одинарными реакторами от ГРУ-6,3 кВ. Секции местной нагрузки в виде групповых сборок 6,3 кВ также питаются от ГРУ-6,3 кВ сдвоенными токоограничивающими реакторами РС-1, РС-2. Резервирование секций собственных нужд и Особственных нужд осуществляется одинарными реакторами Ррез от ГРУ-6,3 кВ.
Главная схема ГРУ-6,3 кВ на рис.3.1 выполнена в виде кольца с тремя или четырьмя секциями 6,3 кВ, связанными друг с другом с помощью одинарных секционных токоограничивающих реакторов (СР).
На ТЭЦ используются турбогенераторы с номинальной мощностью от 7,5 МВт до 320 МВт. При этом агрегаты номинальной мощностью Sном = 7,5; 15, 25, 40 и 78,75 МВА и с напряжением 6,3 и 10,5 кВ могут связываться с энергосистемой 110 кВ через трехобмоточные трансформаторы мощностью от 6,3 до 80 МВА напряжением обмоток среднего напряжения 38,5 или 11 кВ. Указанные трансформаторы имеют РПН на высокой стороне 110 кВ ±9х1,77% и ПБВ на обмотке среднего напряжения ±2х2,5%.
Наличие РПН и ПБВ на трехобмоточных трансформаторах связи позволяет отказаться от устройств регулирования напряжения на секциях собственных нужд и на групповых сборках 6,3 кВ местной нагрузки.
В рассматриваем примере на рис.3.1 связь с системой осуществляется с помощью трехобмоточных трансформаторов ТДТН-40000/110 с РПН и ПБВ.
Начиная с номинальной мощности агрегатов ТЭЦ от 125 до 375 МВА и в схемах ТЭС от 125 до 1330 МВА из соображения надежности повышающие трансформаторы устройств РПН не имеют, а связь с энергосистемой на напряжениях от 220 до 750 кВ осуществляется с помощью трехобмоточных автотрансформаторов с РПН со стороны линейного вывода об-мотки собственных нужд или в нейтрали ВН. В этих условиях все трансформаторы собственных нужд имеют устройство РПН для регулирования напряжения на секциях собственных нужд 6,3 кВ.
Выполнение ГРУ на напряжение 6,3 кВ встречает определенные трудности. На напряжениях 6,3 и 10,5 кВ применяются турбогенераторы с мощностью не выше 63 МВт с номинальным током 7,21 кА при Uн = 6,3 кВ и 4,33 кА при Uн = 10,5 кВ. На номинальный ток 7,21 кА трудно подобрать выключатель серии МГГ – масляный с горшковым исполнением полюсов, генераторный. Учитывая подпитку секций 6,3 кВ от соседних секций через секционный реактор и от трансформатора связи, ток КЗ на секции 6,3 кВ может превысить 100 кА, что осложняет применение выключателей серии МГГ.
Схемы собственных нужд ТЭЦ обычно проектируются при наличии ГРУ так, что при всех работающих генераторах переток мощности через секционные реакторы минимален. Это позволяет увеличивать сопротивление секционных реакторов и уменьшать подпитку точки КЗ от соседних секций. Для осуществления питания местной нагрузки при ремонте турбогенераторов или трансформаторов связи переток мощности через секционные реакторы возрастает. В зависимости от состава местной нагрузки величина тока через секционный реактор возрастает до величины 0,5 – 0,7 от номинального тока генератора.
Применительно к схеме рис.3.1 при наличии ГРУ наиболее мощными одинарными реакторами являются: РБДГ 10-4000 с сопротивлением 0,105 Ом и 0,18 Ом и РБДГ 10-2500 с сопротивлением от 0,14 Ом до 0,35 Ом. При использовании турбогенераторов номинальной мощности 63 МВт напряжением 6,3 кВ с номинальным током Iн = 7,21 кА доля тока генератора составит 4000/7210 = 0,55 при Iрн = 4000 А и 2500/7210 = 0,35 при Iрн = 2500 А. Несколько лучше обстоит дело при напряжении 10,5 кВ с номинальным током 4,33 кА. При этом доля тока генератора составляет: 4000/4330 = 0,92 при Iрн = 4000 А и 2500/4330 = 0,58 при Iрн = 2500 А [1].
Реакторы большей проходной мощности не выпускаются [1]. В схеме рис.3.1 применено шунтирование секционных реакторов в ремонтных ре-При использовании напряжения 10,5 кВ возможно применение ГРУ- 10,5 кВ, питающегося от генераторов ТВФ-120-2У3 с Iн = 6,875 кА, но тогда собственных нужд питаются через трансформаторы, а местная нагрузка питается от групповых сборок 10,5 кВ. Подобное ГРУ-10,5 кВ обычно выполняется с двумя реактированными секциями по схеме с одинарной системой шин или по схеме с двумя системами сборных шин. Остальные агрегаты включаются по блочной схеме.
В схеме рис.3.1 выключатели с наибольшим номинальным током и с наибольшим номинальным током отключения устанавливаются в цепях генераторов ГРУ, в цепях трансформаторов связи с энергосистемой и в цепях секционных реакторов. Выключатели в схемах питания собственных нужд и на групповых сборках местной нагрузки устанавливаются за реакторами и имеют гораздо меньшие номинальные токи и номинальные токи отключения. Для выбора параметров реакторов в схемах собственных нужд и на групповых сборках местной нагрузки необходимо знать начальное значение периодической составляющей тока КЗ на сборках ГРУ.
На рис.3.2 изображен фрагмент главной схемы и схемы питания собственных нужд и сборок местной нагрузки при чисто блочной главной схеме, когда ГРУ напряжением 6,3 или 10,5 кВ отсутствует. Питание секций РУсобственных нужд-6,3 кВ выполняется ответвлением от генераторного токопровода с использованием групповых сдвоенного реактора РС-2 при Uг = 6,3 кВ или трансформаторов собственных нужд с РПН при Uг = 10,5 кВ. Резервирование собственных нужд осуществляется от ОРУ 110 кВ с использованием трансформатора с расщепленными обмотками.
Для удобства открытое распределительное устройство 110 кВ условно показано горизонтальной линией. Реально ОРУ выполняется по более сложным схемам: одинарная система шин (СШ) с наличием или отсутствием обходной СШ, двойная СШ с наличием или отсутствием обходной СШ с одним или двумя выключателями на присоединение.
Питание групповых сборок местной нагрузки 6,3 кВ также осуществляется ответвлением от генераторного токопровода с использованием сдвоенного реактора РС-1. Эти реакторы питают сборки ЗРУ-6,3 кВ в схемах с турбогенераторами ТВФ-63 и при меньшей мощности непосредст-венно, без дополнительных регулировочных устройств, если генератор связан с сетью системы с использованием трансформатора с РПН.
В блоках большей мощности при Uг = 10,5 кВ трансформаторы связи с системой не имеют устройств РПН, и питание сдвоенного реактора РС-3 выполняется через трансформаторные агрегаты регулировочные. Тип агрегата – ТМНЛ-16000/10-У1 и ТМНЛ- 40000/10-У1. Значение проходной мощности составляет 16000 и 40000 кВА при номинальном напряжении Uном = 6,6 и 11 кВ с пределом регулирования Uном ± 15%.
Для выбора параметров сдвоенных реакторов в схеме рис.3.2 необходимо знать токи КЗ на генераторном токопроводе Г1 и Г2.
ГРЩ расшифровка, устройство, назначение. Чем отличается ВРУ от ГРЩ?
Главные распределительные щиты ГРЩ предназначены для полного или частичного резервируемого снабжения электроэнергией, трехфазного переменного тока с номинальным рабочим напряжением 380 В и частотой 50 Гц в общественных и промышленных зданиях.
Чем отличается ВРУ от ГРЩ?
В системе распределения электроэнергии существует множество устройств. Каждое из них имеет свои особенности и свое назначение. Но определенные категории настолько тесно переплелись, что уже сложно увидеть разницу. В первую очередь это касается электрощитового оборудования. Здесь часто путают два понятия — ВРУ и ГРЩ. Даже специалисты не всегда могут сразу назвать отличия, хотя на интуитивном уровне наверняка ощущают разницу.
Действительно, главный распределительный щит (ГРЩ) и вводно-распределительное устройство (ВРУ) очень похожи по своим конструктивным особенностям и функциональному назначению. Оба предназначены для приема и распределения электроэнергии. Оба оснащаются устройствами защиты и контроля токовых характеристик. Но все же аббревиатуры две, значит, разница между данными понятиями существует. Разберемся, чем отличается ВРУ от ГРЩ?
У электрощитового оборудования существует своя иерархия. И первое устройство на вводе, разумеется, считается главным. Оно управляет распределением электроэнергии между всеми последующими щитовыми аппаратами в этой иерархии. Так что разница в теоретических понятиях заключается в том, что ГРЩ стоит на самой верхней ступени, а все последующие звенья в этой электрощитовой цепи — это ВРУ. На практике это выглядит следующим образом. Сразу после трансформаторной или котельной идет ГРЩ. А на вводах в здания и на этажах устанавливаются ВРУ. Но в рамках конкретной схемы может быть и по-другому: на вводе в здание — ГРЩ (главный распределительный щит), а на этажах — ВРУ. То есть данные понятия определяют только положение звена в цепи, ступень в иерархии, на которой находится то или иное щитовое оборудование.
Практическую сторону этого вопроса можно объяснить еще проще. При изготовлении на электрощитовом оборудовании делается маркировка. Вместе с заводским номером и прочей информацией там почти наверняка будет значиться «ВРУ«. А вот уже при установке на объекте в качестве главного электрощита на это оборудование нанесут маркировку «ГРЩ«. Да и в проектной документации оно будет значиться так же. То есть получается, что ВРУ — это обозначение изделия, а ГРЩ — это функциональное назначение, которое данное изделие выполняет.
По сути, приведенная информация дает возможность ответить на популярный вопрос: «что стоит на вводе в здание — ВРУ или ГРЩ?«. Если после первого ВРУ, которое стоит на вводе в здание, находятся еще ВРУ, то возникает иерархия. Тогда первое ВРУ станет главным и на схемах будет фигурировать как ГРЩ. Если же стоящее на вводе в здание ВРУ является единственным, то допустимо использовать как аббревиатуру ВРУ, так и ГРЩ. То есть формально это ВРУ будет главным, но в то же время единственным. Так что в этом случае можно подчеркнуть его функциональное назначение, обозначив на схеме как ГРЩ, или просто использовать наименование изделия — ВРУ.
Но это далеко не все отличия между ВРУ и ГРЩ. Существует еще формальная разница по допустимым токовым характеристикам. Здесь стоит отметить, что оба понятия есть в ПУЭ (пункты 7.1.3 и 7.1.4). Кроме того, данные понятия используются в своде правил (СП 31-110), где имеются ссылки на ГОСТы. Так вот если обобщить информацию из все этой документации, то станет понятно, что для ВРУ существуют ограничения по току. Так, максимальный ток ввода не должен превышать 630A, а максимальная нагрузка на каждую отходящую от ВРУ питающую линию — не более 250A. При этом для ГРЩ (главный распределительный щит) ограничений на токи ввода и вывода не существует. Кстати, это подтверждает информацию о том, что ГРЩ — это не название изделия, а всего лишь обозначение функции ВРУ в составе схемы электросети.
Таким образом, понятия ВРУ и ГРЩ относятся к одному и тому же типу устройств и с одним и тем же назначением. Но вместе с тем — это не слова-синонимы. Употребление того или другого из них будет зависеть от того, что вы хотите подчеркнуть — назначение устройства (то есть ГРЩ как главное ВРУ) или отношение его к определенному типу устройств (изделие под названием ВРУ). В этом и состоит принципиальное отличие.
Типичная система электроснабжения с ГРЩ на верхнем уровне
Главный распределительный щит (ГРЩ) — ГРЩ, через который осуществляется приём и распределение электроэнергии по зданию или какой-то его части. Как мы уже отметили выше, в качестве ГРЩ может служить вводно-распределительное устройство или щит низшего напряжения подстанции. ГРЩ содержит в себе противоаварийную автоматику (например, автоматические выключатели или устройства УЗО), средства учёта электроэнергии (счётчики).
Главные распределительные щиты типа ГРЩ изготавливаются в многошкафном напольном исполнении, предназначены для распределения электрической энергии, защиты электрических установок напряжением до 660 В переменного тока частотой 50, 60 Гц.
Главные распределительные щиты ГРЩ чаще всего находятся в системе электроснабжения здания (сооружения) на верхнем уровне распределения питания напряжением 0,4кВ.
Комплектное распределительное устройство (КРУ), КРУЭ
КРУ применяют на электрических станциях, городских подстанциях, для питания объектов нефтяной промышленности
Распределительное устройство содержит набор коммутационных аппаратов, сборные и соединительные шины, вспомогательные устройства РЗиА и средства учёта и измерения.
На напряжении до 35 кВ ячейки изготовляют в виде шкафов, соединяемых боковыми стенками в общий ряд.
Для напряжений выше 35 кВ воздушная изоляция не применима, поэтому элементы, находящиеся под высоким напряжением помещают в герметичные камеры, заполненные элегазом.
Ячейки с элегазовыми камерами имеют сложную конструкцию, внешне похожую на сеть трубопроводов.
КРУ с элегазовой изоляцией сокращённо обозначают КРУЭ.
Комплектные распределительные устройства могут использоваться как для внутренней, так и для наружной установки (в этом случае их называют КРУН). КРУ широко применяются в тех случаях, где необходимо компактное размещение распределительного устройства.
В частности, КРУ применяют на электрических станциях, городских подстанциях, для питания объектов нефтяной промышленности (нефтепроводы, буровые установки), в схемах энергопотребления судов.
Среди шкафов КРУ, отдельно выделяют камеры сборные одностороннего обслуживания (КСО). Одностороннее обслуживание позволяет ставить КСО непосредственно к стене или задними стенками друг к другу, что позволяет экономить место (важно в условиях высокой плотности городской застройки).
— В релейном отсеке (3) располагается низковольтное оборудование: устройства РЗиА, переключатели, рубильники.
На двери релейного отсека, как правило, располагаются светосигнальная арматура, устройства учёта и измерения электроэнергии, элементы управления ячейкой.
— В отсеке выключателя (4) располагается силовой выключатель или другое высоковольтное оборудование (разъединительные контакты, предохранители, ТН).
Чаще всего в КРУ это оборудование размещается на выкатном или выдвижном элементе.
— В отсеке сборных шин (6) располагаются силовые шины (8), соединяющие шкафы секции РУ.
Применение КРУЭ позволяет значительно уменьшить площади и объемы, занимаемые РУ и обеспечить возможность более легкого расширения КРУЭ по сравнению с традиционными РУ.
Другие преимущества КРУЭ:
взрыво- и пожаробезопасность;
надежность и стойкость к воздействию внешней среды, в тч сейсмически активных районов и зон с повышенной загрязненностью;
отсутствие электрических и магнитных полей;
безопасность и удобство эксплуатации, простота монтажа и демонтажа.
Ячейки КРУЭ выполняются в 3-фазном исполнении и состоят из отдельных элементов, заключенных в герметичную металлическую оболочку цилиндрической или шаровой формы, заполненной элегазом или смесью азота с элегазом.
Соединение оболочек элементов обеспечивают фланцы и патрубки, контакты и уплотнения.
Ячейки КРУЭ, отдельные модули и элементы допускают возможность компоновки распределительных устройств 110 кВ по любым схемам. В зависимости от применяемой схемы распределительное устройство может состоять из 1 и более ячеек.
По функциональному назначению ячейки КРУЭ могут быть линейные, шиносоединительные, трансформаторов напряжения и секционные, с 1 или 2 системами сборных шин.
Ячейки, отдельные модули и элементы допускают возможность компоновки КРУЭ по различным электрическим схемам.
Ячейки состоят из 3 полюсов, шкафов и сборных шин.
В шкафах размещена аппаратура цепей сигнализации, блокировки, дистанционного электрического управления, контроля давления элегаза и подачи его в ячейку, питания приводов сжатым воздухом.
В полюс ячейки входят:
коммутационные аппараты: выключатели, разъединители, заземлители;
измерительные трансформаторы тока и напряжения;
соединительные элементы: сборные шины, кабельные вводы (масло-элегаз), проходные вводы (воздух-элегаз), элегазовые токопроводы и др.
Ячейки или их транспортные блоки заполнены элегазом или азотом при небольшом избыточном давлении.
КРУЭ снабжаются вспомогательным оборудованием и приспособлениями, обеспечивающими их нормальное обслуживание.