Что такое двигатель и движитель
Разница между движителем и двигателем
Часто в разговорной речи и печатных источниках встречается смешивание понятий «движитель» и «двигатель». Их употребляют неправильно, когда называют узлы машин или механизмов. Некоторые люди ошибочно считают такие слова синонимами, но это неверно. Названия обозначают устройства с разными функциями. При таком применении терминов происходит подмена понятий, нарушается логичность высказывания. Употребление слов в несвойственных им значениях – лексическая ошибка. Для поиска истины рассмотрим подробно каждый объект и сравним между собой.
Движитель
Каждое транспортное средство имеет движитель – механизм, который сообщает ему движение, перемещает в пространстве. Для этого он использует энергию от постороннего источника. Им может быть специальный мотор или внешняя среда.
Основные виды этого устройства:
Колесо – одно из самых древних и распространённых видов движителя. Оно имеется у подавляющего большинства сухопутных транспортных средств. У обычного автомобиля их четыре. Ведущие колёса получают вращение через трансмиссию от встроенного мотора. При движении они взаимодействуют с покрытием дороги. Чем лучше их сцепление с полотном трассы, тем быстрее можно разогнать машину, увеличить тягу. На бездорожье используют устройства с более высоким коэффициентом сцепления: гусеницы или шнек.
До изобретения паровых машин основным видом движителя морского транспорта был парус. Он преобразует бесплатную силу ветра в поступательное движение судна по воде. Но использовать его можно только при движении воздушных масс. В штиль такие корабли стоят или применяют другие способы для перемещения.
Изобретатели первых летательных аппаратов придумали лопастной (воздушный) винт. Лопасти этого устройства при вращении захватывают потоки воздуха и отбрасывают их назад, благодаря чему создаётся усилие по перемещению самолёта вперёд. Чем быстрее вращается винт, тем больше создаётся тяга.
У человека таким устройством будут собственные ноги. Но ситуация кардинально изменится, если он пересядет на велосипед или воспользуется каким-то видом транспорта.
Двигатель
Люди не могли всё время зависеть от сил природы. Для облегчения своего физического труда они изобрели механизм, который мог преобразовывать какой-либо вид энергии в полезную работу. Его назвали двигателем. Их условно делят на первичные и вторичные. Первые превращают готовые природные ресурсы в механическую работу. Вторые используют энергию, накопленную или выработанную другими источниками.
Водяное колесо – одно из самых древних изобретений. Его широко применяли ещё народы стран Древнего мира. Оно трансформирует потенциальную энергию падающей воды во вращение, которое передаётся на исполняемые механизмы.
В двигателе внутреннего сгорания для получения полезной работы используется эффект резкого расширения топливовоздушной смеси при воспламенении в замкнутом пространстве. Полученные газы давят на поршень и перемещают его. Возвратно-поступательное движение последнего преобразуется кривошипно-шатунным механизмом во вращательное.
Электродвигатели для своей работы используют электричество, которое получено на других устройствах. Они могут питаться с помощью прямого подключения к сети или от накопительного источника (батарея, аккумулятор).
Таким образом, любое устройство, которое получает механическую энергию из её другого вида можно назвать двигателем. Например, велосипедист является таким для своего двухколёсного друга. Он получает химическую энергию от пищи, а отдаёт велосипеду механическую через вращение педалей.
Что общего между ними
Эти два понятия очень схожи в написании, но принцип действия и конструкция таких механизмов разные. И всё же у них есть общие особенности:
Отличия понятий
Обобщим написанное. Можно сказать, что движитель это то, что перемещает объект (транспортное средство, подъёмный механизм, часть станка), а двигатель вырабатывает необходимую энергию для него.
И тот и другой важные составляющие любого сложного механического устройства.
Двигатели и движители
Колесный пароход, совершавший рейсы через Атлантический океан в середине XIX в. Мощность его паровой машины была всего 750 л. с. На таких судах еще сохранялись паруса.
Движители на судах бывают разные: весла, паруса, гребные колеса, винты и т. д. При гребле мускульная энергия человека с помощью движителя-весла преодолевает сопротивление воды. Паруса использовали силу ветра. А когда появились механические движители, то весло как бы вошло составной частью в гребное колесо.
Но даже усовершенствованные гребные колеса имели серьезные недостатки. Как только появлялась бортовая качка, они сразу же начинали работать поочередно — то одно, то другое. Судно начинало отклоняться от курса то влево, то вправо — рыскать. Это одна из причин, почему гребные колеса не получили широкого распространения на море.
Значительным шагом вперед было применение гребного винта. На гребной вал, выходящий из корпуса под кормой, насаживается устройство, очень напоминающее обычный настольный вентилятор. Вокруг ступицы расположены два, три, а то и больше лопастей, плоскость которых представляет собой часть винтовой поверхности. Отсюда и название винт. Вал вращает лопасти, а они отбрасывают воду от корабля и создают тем самым необходимый упор, преодолевающий силу сопротивления воды.
Гребные винты — самый распространенный вид движителей на современных судах. На больших кораблях часто делают не один, а два или три винта.
Существуют и другие типы движителей, использующих все тот же принцип, заложенный в обычном весле. Но встречаются они реже. Движение некоторых судов осуществляется с помощью водометного движителя. Такие суда перемещаются, выбрасывая в противоположное направление струю воды. Энергия двигателя тратится у них на работу насосов, выталкивающих воду.
Гребной винт крупного современного пассажирского судна.
Коэффициент полезного действия водометных движителей меньше винтовых. Но их преимущество в том, что нет выступающих частей под кормой. Это позволяет строить специальные суда для плавания по мелководью.
Итак, зная почти все качества судна, мы пришли к его двигателю. Каким же он бывает?
Паровая машина стала первым судовым механическим двигателем. Но паровые машины — сложные, громоздкие сооружения, хотя и обладают бесспорными преимуществами по сравнению с парусами. Такие машины потребовали много места на судах. Необходимо стало также место для хранения топлива и устройства для его погрузки.
Вслед за паровыми машинами на суда пришли и паровые турбины. Они вращают либо вал с винтом, либо генераторы электрического тока, которые в свою очередь питают электродвигатели гребного вала.
Появление турбин позволило поднять мощность судовых двигателей. Так, линейные корабли во время второй мировой войны имели турбины мощностью до 250 тыс. л.с. В то же время турбина занимает меньше места, чем паровая машина той же мощности.
В начале этого столетия на кораблях стали применять также двигатель внутреннего сгорания — дизель. Оборудованные им суда называют теплоходами. Большое достоинство этих двигателей — высокая экономичность по сравнению с паровыми установками. Это дало возможность сократить запасы горючего на судне и облегчить его заправку. Отсутствие котельной, занимавшей много места, и простота эксплуатации также были большими его преимуществами.
Паровые машины, турбины и двигатели внутреннего сгорания — наиболее распространенные судовые двигатели. Лишь в последнее время у них появился серьезный «соперник». Это — атомная силовая установка. Она поставлена на первом в мире атомном ледоколе «Ленин». Источник его силы — три атомных реактора, в которых энергия извлекается из ядер урана.
Первый в мире атомный ледокол «Ленин».
Эта энергия поступает в парогенераторы, а образующийся в них пар используется для приведения в действие турбин. На атомоходе «Ленин» турбины вращают электрические генераторы. Выработанная ими электроэнергия используется для работы электродвигателей, вращающих три гребных вала ледокола.
Мощность двигателя ледокола — 44 тыс. л.с., а развиваемая им скорость —18 узлов (миль в час).
Этот огромный, могучий корабль — самый крупный ледокол в мире.
Атомные силовые установки пока еще очень громоздки. Их приходится помещать за толстыми стенами, чтобы уберечь команду от вредного действия радиоактивных излучений. Сложность и размеры такого «двигателя», необходимость защиты команды от вредных излучений позволяют пока строить их лишь на сравнительно крупных судах. И все же у этой силовой установки огромные преимущества.
Даже самые крупные из старых ледоколов не могли обходиться без заправки топливом более двух-трех недель. Каждый раз на возвращение в порт приходилось тратить много времени, а ведь период северной навигации очень краток.
Такие потери времени составляли почти 25% общего рабочего времени ледокола. Атомный ледокол может целый год не заходить в порт за «горючим».
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Значение слова «движитель»
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
ДВИ’ЖИТЕЛЬ, я, м. (тех.). То, что приводит что-н. в движение, заставляет что-н. двигаться (какой-н. прибор, человеческая или животная сила и т. п.).
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
дви́житель
1. техн. устройство, преобразующее энергию двигателя, либо внешнего источника в полезную работу по перемещению транспортного средства ◆ Танк выскакивал из Большого Балозёра, «первой воды», на этот мысок с чудом уцелевшими пружинистыми рябинками и берёзками, переходил с водомёта на гусеницы, пробирался среди грязи и камней к Малому Балозёру, чаще именовавшемуся «второй водой», и снова с гусениц переходил на водомерный движитель. Кураев Михаил, «Записки беглого кинематографиста // «Новый Мир»», 2001 г. (цитата из НКРЯ) ◆ А ведь в автомобиле колёса — не только опора, но и движитель, а также направляющие, и обеспечение их контакта с дорогой становится жизненно важным. «Ликбез: Какие бывают подвески // «Автопилот»», 09.15.2002 г.
2. перен. то, что приводит в движение; какой-либо объект, заставляющий развиваться ◆ Я не люблю красивые слова, но поверьте, Володечка, моему опыту, главный движитель нашего ремесла в военное время — такие конференции. Юрий Герман, «Дорогой мой человек», 1961 г. ◆ Вот оно, счастливое словцо, движитель не одного нашего сюжета: вдруг! Владимир Рецептер, «Ностальгия по Японии», 2000 г.
Фразеологизмы и устойчивые сочетания
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: конвертор — это что-то нейтральное, положительное или отрицательное?
движитель
Полезное
Смотреть что такое «движитель» в других словарях:
Движитель — Движитель устройство, преобразующее энергию двигателя, либо внешнего источника, через взаимодействие со средой, в полезную работу по перемещению транспортного средства. Является частью машин. по суше Колесо автомобили, локомотивы,… … Википедия
Движитель — устройство, преобразующее работу двигателя или естественного источника энергии в движение боевого или транспортного средства. Для передвижения по воде в качестве движителя могут служить парус, весло, гребной винт, гребное колесо, водометный… … Морской словарь
ДВИЖИТЕЛЬ — ДВИЖИТЕЛЬ, устройство для преобразования какого либо вида энергии (например, работа двигателя) в работу по перемещению транспортной машины. Функции движителя при передвижении по суше выполняют колеса (автомобили, трамваи и др.), гусеницы… … Современная энциклопедия
ДВИЖИТЕЛЬ — устройство для преобразования работы двигателя или источника энергии в работу по перемещению транспортной машины. Движитель для перемещения по суше колеса, гусеницы и др., по воде винты, водометы и др., по воздуху винты, реактивные сопла и др … Большой Энциклопедический словарь
движитель — привод, передача; гусеница, парус, водомет, колесо, пневмодвижитель, винт, сопло Словарь русских синонимов. движитель сущ., кол во синонимов: 8 • винт (27) • … Словарь синонимов
Движитель — ДВИЖИТЕЛЬ, устройство для преобразования какого либо вида энергии (например, работа двигателя) в работу по перемещению транспортной машины. Функции движителя при передвижении по суше выполняют колеса (автомобили, трамваи и др.), гусеницы… … Иллюстрированный энциклопедический словарь
ДВИЖИТЕЛЬ — ДВИЖИТЕЛЬ, движителя, муж. (тех.). То, что приводит что нибудь в движение, заставляет что нибудь двигаться (какой нибудь прибор, человеческая или животная сила и т.п.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ДВИЖИТЕЛЬ — ДВИЖИТЕЛЬ, я, муж. (спец.). Название устройств, обеспечивающих движение (винт 1 во 2 знач., колесо, гусеница во 2 знач., парус, реактивное сопло самолёта). Водомётный д. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
движитель — Устройство для преобразования работы двигателя в работу, обеспечивающую движение машины [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN caterpillar drivedrive bogie DE Getriebe FR propulseurtrain de roulement … Справочник технического переводчика
ДВИЖИТЕЛЬ — устройство, использующее выработанную (см.) энергию или преобразующее энергию др. источника энергии (ветра, Солнца и др.) в работу, обеспечивающую (см.) транспортного средства. В качестве Д. для передвижения по суше используют колёса, (см.),… … Большая политехническая энциклопедия
движитель — я; м. Спец. Устройство, обеспечивающее движение какого л. транспортного средства (например: винт самолёта, колесо автомобиля и т.п.). Водомётный д. * * * движитель устройство для преобразования работы двигателя или источника энергии в работу по… … Энциклопедический словарь
Двигатель является главной системой в любом транспортном средстве. Этот компонент автомобиля можно сравнивать с сердцем человека, то есть, человек умрет без сердца – так же и автомобиль без двигателя. Двигательная система отвечает за преобразование топливной энергии в механическую энергию, которая впоследствии выполняет полезную работу. Сегодня в качестве энергии может выступать энергия сгорания топлива, электрическая энергия и т.д. Источник энергии всегда находится в автомобили. Он должен пополняться через определенный промежуток времени, чтобы автомобиль мог в итоге передвигаться. Так, механическая энергия передается на ведущие колеса от двигателя. Эта передача обычно осуществляется при помощи трансмиссии.
Принцип работы
Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.
Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение.
Принцип работы четырехтактного двигателя
Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации. Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.
По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.
При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.
Принцип работы двухтактного двигателя
Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:
Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.
При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.
Показатели двигателей
Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.
Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.
Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).
Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.
Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).
Двигатели большей мощности производители получают увеличением:
рабочего объема, что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
оборотов коленчатого вала, число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.
Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.
Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.
Основные элементы двигателя
Ниже на рисунке показана схема расположения элементов в цилиндре. В зависимости от модели двигателя, их может быть 4, 6, 8 и даже больше. На рисунке обозначены следующие элементы: A – распределительный вал. B – крышка клапанов. C – выпускной клапан. Открывается строго в нужное время для того, чтобы отработанные газы выводились за пределы камеры сгорания. D – отверстие для выхода отработанных газов. E – головка блока цилиндра. F – пространство, заполняемое охлаждающей жидкостью. В процессе работы двигатель сильно нагревается, поэтому его необходимо остудить. Чаще всего для этого используется антифриз. G – корпус двигателя. H – маслосборник. I – поддон. J – свеча зажигания. Обеспечивает искру, необходимую для того, чтобы зажечь топливную смесь, находящуюся под давлением. K – впускной клапан. Открывается и запускает в камеру сгорания воздушно-топливную смесь. L – отверстие для впуска топливной смеси. M – сам поршень. Движется вверх-вниз в результате детонации топливной смеси, передавая механическую нагрузку на коленчатый вал. O – шатун. Соединительный элемент поршня и коленчатого вала. P – коленвал. Вращается в результате движения поршней. Передает усилия на колеса через трансмиссию автомобиля. Все эти элементы принимают участие в четырехтактном цикле.
Виды двигателей
Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.
Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.
Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:
Роторно-поршневые ДВС
Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.
Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.
Газовый двигатель
Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.
Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.
Электрические моторы
Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.
Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.
Инжектор
Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.
С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.
Дизельные двигатели
Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.
На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.
Характеристики двигателей
При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.
Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.
Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.
Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.
Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.
Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.
Преимущества и недостатки ДВС
Какой же основной недостаток у ДВС?
Так что, если раньше сосед дядя Вася перебирал двигатель своей «копейки» самостоятельно, но на новеньких современных машинах вряд ли кто-то полезет в тонкую систему ДВС без специального оборудования и инструментов.
И, наконец, нефтяная эра сама по себе отходит в прошлое. Не зря же растут требования к экологической безопасности транспорта, а заодно и эффективность солнечных батарей. Да, бензиновые и дизельные моторы еще не скоро исчезнут с улиц, но уже Европа борется за внедрение электромобилей, благодаря которым человечество когда-нибудь забудет слово «бензиновый смог».
Неполадки двигателя
Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится… Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:
Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:
Недостаточная компрессия — Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:
Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра) крепится к самому цилиндру. Обычно головка цилиндра крепится к самому цилиндру при помощи болтового соединения с использованием тонкой прокладки, которая обеспечивает качественное уплотнение.. При повреждении прокладки, между цилиндром и его головкой образуются небольшие отверстия, в результате чего происходят протечки.
Регулярное техническое обслуживание может помочь избежать ремонта
Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:
Могут возникнуть и другие неполадки. Например:
Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.
Клапанный механизм и система зажигания двигателя
Большинство подсистем двигателя может быть установлено с использованием различных технологий, а новые технологии могут улучшить показатели двигателя. Далее мы рассмотрим различные подсистемы, которые используются в современных двигателях, начиная с клапанного механизма.
Рисунок 5. Распредвал
В большинстве современных автомобилей используются так называемые верхнерасположенные распредвалы. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз, как показано на Рисунке 5. Кулачки воздействуют на клапаны напрямую или посредством очень короткой тяги. В старых моделях двигателей распредвал расположен в картере рядом с коленвалом. Штифты соединяют нижнюю часть кулачков с толкателями клапанов, расположенными над клапанами. В таком устройстве имеется больше движущихся частей, в результате чего возникает отставание между временем активации кулачка и последующим перемещением клапана.
Ремень ГРМ или цепь ГРМ соединяет коленвал с распредвалом таким образом, чтобы клапаны двигались синхронно с поршнями. Скорость вращения распредвала в два раза ниже, чем у коленвала. Во многих мощных двигателях на каждый цилиндр установлено по четыре клапана (два впускных и два выпускных), такая конструкция требует наличия двух распредвалов на блок цилиндров, отсюда и название «двухраспредвальный вид головки». Для получения более подробной информации читайте статью «Как работает распредвал».
Система зажигания (Рисунок 6) генерирует электрический разряд высокого напряжения и передает его от свечи зажигания по проводам зажигания. Вначале заряд поступает на распределитель, который Вы легко можете найти под капотом большинства автомобилей. Распределитель имеет один провод, входящий в центре и четыре, шесть или восемь проводов (в зависимости от количества цилиндров), выходящие их него. Эти провода зажигания передают заряд на каждую свечу зажигания. Зажигание двигателя отрегулировано таким образом, что за один раз искру от распределителя получает только один цилиндр. Такая конструкция обеспечивает максимальную равномерность работы. Для получения более подробной информации читайте статью «Как работает автомобильная система зажигания».
Рисунок 6. Система зажигания
В следующем разделе мы рассмотрим, как происходит запуск, охлаждение и циркуляция воздуха в двигателе.
Системы охлаждения, воздухозабора и запуска двигателя
В большинстве автомобилей система охлаждения состоит из радиатора и водяного насоса. Охлаждающая жидкость циркулирует по охлаждающей рубашке цилиндров, затем попадает в радиатор для охлаждения. В некоторых автомобилях (преимущественно в Volkswagen Жук) и в большинстве мотоциклов и газонокосилок используется воздушное охлаждение двигателей (двигатель с воздушным охлаждением легко узнать по ребрам на внешней стороне цилиндров, которые рассевают тепло). Двигатели с воздушным охлаждением намного легче, но охлаждаются хуже, что снижает их срок эксплуатации и производительность. Для получения более подробной информации читайте статью «Как работает система охлаждения».
На схеме представлено соединение патрубков системы охлаждения
Итак, теперь Вы знаете, что и как охлаждает двигатель Вашего автомобиля. Но почему так важна циркуляция воздуха? Большинство двигателей является безнаддувными, т.е. воздух поступает через воздушные фильтры непосредственно в цилиндры. Более мощные двигатели либо имеют турбонаддув, либо наддув, т.е. воздух поступает в двигатель под давлением (для подачи в цилиндр большего объема топливно-воздушной смечи) для увеличения мощности двигателя. Уровень сжатия воздуха называется наддув. При турбонаддуве используется небольшая турбина, установленная на выхлопную трубу для вращения нагнетающей турбины входящим потоком воздуха. Турбокомпрессор устанавливается непосредственно на двигатель для вращения компрессора.
Увеличение мощности двигателя — это, конечно, хорошо, но что же происходит когда Вы поворачиваете ключ? Система запуска состоит из электростартера и соленоида стартера. При повороте ключа зажигания, стартер несколько раз проворачивает двигатель для начала процесса сгорания. Для запуска холодного двигателя требуется мощный стартер. Стартер должен преодолеть:
В связи с тем, что требуется большое количество энергии и в автомобилях используется 12-вольтная электросистема, на стартер должен поступать ток в несколько сотен ампер. Соленоид стартера — это большой электронный переключатель, который может выдержать ток такой силы. При повороте ключа зажигания, он запускает соленоид для подачи питания на стартер.
В следующем разделе мы расскажем о подсистемах двигателя, которые отвечают за то, что в него поступает (масло и топливо) и что выходит (выхлоп и выбросы).
Системы смазки, подачи топлива, выхлопа и электросистема двигателя
Когда дело касается повседневного обслуживания, скорее всего Вас, прежде всего, заинтересует количество бензина в бензобаке Вашего автомобиля. Каким же образом бензин, которым Вы заправляетесь, заставляет работать цилиндры? Топливная система при помощи насоса подает топливо из бензобака и смешивает его с воздухом в определенных пропорциях для того, чтобы топливно-воздушная смесь затем поступала в цилиндры. Существует три способа подачи топлива: карбюрация, впрыск во впускные каналы и непосредственный впрыск.
Для получения более подробной информации читайте статью «Как работает система впрыска топлива».
Масло также играет очень важную роль. Система смазки обеспечивает подачу масла для каждой движущейся детали для того, чтобы они свободно двигались. Прежде всего, смазка требуется поршням (для их плавного движения в цилиндрах) и подшипникам, которые обеспечивают вращение таких деталей, как коленвал и распредвал. В большинстве автомобилей масла из поддона картера подается при помощи масляного насоса, проходит через масляный фильтр для удаления абразивных частиц, после чего под давлением поступает на подшипники и стенки цилиндра. Затем масло стекает обратно в картер, где оно собирается, после чего цикл повторяется.