Что такое декогеренция простыми словами

Декогеренция

Декогере́нция — это процесс нарушения когерентности (от латинского cohaerentio — сцепление, связь), вызываемый взаимодействием квантовомеханической системы с окружающей средой посредством необратимого, с точки зрения термодинамики, процесса. Во время протекания этого процесса у самой системы появляются классические черты, которые соответствуют информации, имеющейся в окружающей среде. То есть система смешивается или запутывается с окружающей средой.

Теория декогеренции имеет важное следствие: для макросостояния предсказания квантовой теории практически совпадают с предсказаниями классической теории.

Декогеренция является одним из самых существенных технических препятствий на пути создания квантовых компьютеров. Для борьбы с декогеренцией разрабатываются, с одной стороны, различные методы изоляции квантовой сиcтемы, включая использование крайне низких температур и высокого вакуума, а с другой — введение в квантовые вычисления кодов, устойчивых к ошибкам, связанным с декогеренцией (обычно в таких схемах состояние логического кубита кодируется состоянием нескольких связанных физических кубитов).

В настоящее время физики-экспериментаторы могут удерживать атомы или отдельно взятые фотоны в состоянии суперпозиции на протяжении значительных периодов времени при условии, что взаимодействие с окружающей средой сведено до минимума. Однако чем больше система, тем выше её подверженность внешним воздействиям. В крупных комплексных системах, состоящих из многих миллиардов атомов, декогеренция происходит почти мгновенно, и по этой причине кот Шрёдингера не может быть одновременно мертвым и живым на каком-либо поддающемся измерению отрезке времени.

Процесс декогеренции является существенной составляющий мысленного эксперимента, предложенного Эрвином Шрёдингером, которым он хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим. (Кот Шрёдингера)

Источник

Декогеренция

Теория декогеренции имеет важное следствие: для макросостояния предсказания квантовой теории практически совпадают с предсказаниями классической теории.

Декогеренция является одним из самых существенных технических препятствий на пути создания квантовых компьютеров. Для борьбы с декогеренцией разрабатываются, с одной стороны, различные методы изоляции квантовой системы, включая использование крайне низких температур и высокого вакуума, а с другой — введение в квантовые вычисления кодов, устойчивых к ошибкам, связанным с декогеренцией (обычно в таких схемах состояние логического кубита кодируется состоянием нескольких связанных физических кубитов).

В настоящее время физики-экспериментаторы могут удерживать атомы или отдельно взятые фотоны в состоянии суперпозиции на протяжении значительных периодов времени при условии, что взаимодействие с окружающей средой сведено до минимума. Однако чем больше система, тем выше её подверженность внешним воздействиям. В крупных комплексных системах, состоящих из многих миллиардов атомов, декогеренция происходит почти мгновенно, и по этой причине кот Шрёдингера не может быть одновременно мёртвым и живым на каком-либо поддающемся измерению отрезке времени.

Процесс декогеренции является существенной составляющей мысленного эксперимента, предложенного Эрвином Шрёдингером, которым он хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим (см. кот Шрёдингера)

Источник

Квантовая физика: декогеренция

Это перевод статьи Элиезера Юдковского, из научно-популярного цикла, посвященного многомировой интерпретации квантовой механики. Начало цикла было переведено на хабре, но потом переводчик видимо подустал. Его можно понять — материал очень объемный. Юдковский любит растекаться мыслию по древу. С другой стороны, материал действительно сложный, а повторение разными словами одного и того же позволяет картинке в голове неподготовленного читателя хоть как-то уложиться. Я не возьмусь продолжить перевод всего цикла, но попробую перевести пару наиболее важных статей.

Я пропущу статьи цикла про пространства состояний (классическое и квантовое) — концепция используется много где, и должна быть знакомой технически подготовленному читателю. А также пропущу фейнмановские интегралы по траекториям — с ними можно ознакомиться в прекрасном научно-популярном первоисточнике.

А вот следующий пост отвечает на важный вопрос. Если «настоящий» мир на фундаментальном уровне — квантовый, где все запутано, и все влияет друг на друга, откуда вообще берутся классические системы? Почему «естественные» квантовые явления мы видим так редко в обычной жизни? Это то что автор называет «классической галлюцинацией». Почему, например, создателям квантовых компьютеров нужно прикладывать такие огромные усилия, чтобы сохранить систему в «естественном» запутанном состоянии?

Disclaimer: я не являюсь ни профессиональным физиком, ни профессиональным переводчиком (также как и автор оригинала).

Декогеренция

Чтобы понять квантовый процесс под названием «декогеренция», сначала нужно понять как разрушается особое состояние квантовой независимости — то есть как именно квантовая система переходит из состояния независимости в состояние запутанности.

Квантовая независимость, как мы помним, это особое, «прямоугольное» состояние распределения амплитуды, которое хорошо факторизуется. То есть его можно представить как произведение распределений составных частей системы, которые выглядят для нас как «отдельные частицы».

Что такое декогеренция простыми словами. Смотреть фото Что такое декогеренция простыми словами. Смотреть картинку Что такое декогеренция простыми словами. Картинка про Что такое декогеренция простыми словами. Фото Что такое декогеренция простыми словами

Робкие туристы, посещающие наш квантовый мир, иногда принимают отсутствие такого «прямоугольного» распределения за некую особую таинственную связь между частицами. Отсюда — неудачный термин «квантовая запутанность». На самом деле, любая эволюция квантовой системы обычно порождает запутанность из независимости (а не наоборот), превращая прямоугольные распределения в не-прямоугольные. Независимость встречается редко и ее очень легко разрушить.

Чтобы лучше понять, какие именно физические процессы ведут к запутанности, начнем с классической системы. На рисунке изображена система из положительно заряженного лёгкого шарика на верхней дорожке и отрицательно заряженного тяжелого шарика на нижней дорожке. Изначально два шарика находятся далеко друг от друга и почти не взаимодействуют. Потом мы опускаем верхнюю дорожку, сближая шарики так, чтобы они начали притягивать друг друга (противоположные заряды притягиваются). И легкий шарик подкатывается к тяжелому (и тяжелый чуть-чуть подкатывается к легкому, подобно тому как падающее яблоко чуть-чуть притягивает к себе Землю).

Что такое декогеренция простыми словами. Смотреть фото Что такое декогеренция простыми словами. Смотреть картинку Что такое декогеренция простыми словами. Картинка про Что такое декогеренция простыми словами. Фото Что такое декогеренция простыми словами

Теперь посмотрим на эту систему как на квантовую, с точки зрения фейнмановских интегралов по траекториям. То есть представим эволюцию системы в виде суммы всех возможных траекторий от исходного состояния в пространстве конфигураций. Допустим два шарика вначале квантово независимы, их совместное распределение амплитуд можно представить как произведение «распределения для нижнего шарика» и «распределения для верхнего шарика».

Далее, пусть амплитуда нижнего шарика в начале состоит из трёх частей (которые с точки зрения интегралов Фейнмана можно рассматривать как три начальных состояния). Когда мы опускаем верхнюю дорожку, верхний шарик должен притянуться к нижнему. Но если совместная амплитуда нижнего шарика состоит из нескольких частей, то и в конце мы получим совместное распределение, состоящее из нескольких частей, каждый из которых описывает новое положение шариков.

Что такое декогеренция простыми словами. Смотреть фото Что такое декогеренция простыми словами. Смотреть картинку Что такое декогеренция простыми словами. Картинка про Что такое декогеренция простыми словами. Фото Что такое декогеренция простыми словами

Я всеми силами пытаюсь избегать формулировок типа «нижний шарик может находиться в одном из трёх мест» или «в каждом возможном случае верхний шарик притягивается к соответствующему положению нижнего». Хотя наверное вы все равно представите все именно так. С конце концов я сам это так проиллюстрировал. Я нарисовал три возможные начальные позиции и три возможных результата. Что поделать, так человеческий мозг обычно представляет себе интегралы Фейнмана. Но это не означает, что существуют три возможных состояния вселенной. Это просто трюк для визуализации интеграла по траекториям. Все три компонента амплитуды существуют в нашей вселенной, все три одинаково реальны, а вовсе не возможны или вероятны.

Теперь представьте, что вначале амплитуда нижнего шарика «размазана» по всей дорожке. Амплитуда верхнего шарика по-прежнему сосредоточена в одном месте. Тогда совместное распределение вначале будет в виде вытянутого прямоугольника, а затем превратится в диагональное.

Что такое декогеренция простыми словами. Смотреть фото Что такое декогеренция простыми словами. Смотреть картинку Что такое декогеренция простыми словами. Картинка про Что такое декогеренция простыми словами. Фото Что такое декогеренция простыми словами

По оси Х здесь — положение верхнего шарика, по оси Y — нижнего. Мы начинаем с точно локализованного верхнего шарика и «размытого» нижнего и заканчиваем на взаимозависимом распределении, когда обе координаты размыты, но равны друг другу (упрощённо). То есть изначально факторизуемое распределение превратилось в «запутанную систему» — оно больше не разлагается на два независимых множителя.

Заметьте, что на рисунке выше развитие системы подчиняется второму закону термодинамики, он же теорема Лиувилля. При изменении системы сохраняется «размер облака», то есть общий объём амплитуды или проще говоря — размер серой области на графике. Если бы в начале на рисунке был огромный светло-серый квадрат (когда обе частицы сильно размазаны по пространству), то по второму закону термодинамики, он не смог бы превратиться в темно-серую диагональ. Чтобы перейти в состояние запутанности, система изначально должна обладать низкой энтропией, и эта энтропия не должна сильно увеличиться в процессе.

Напомню, что взаимная информация — это энтропия с противоположным знаком. Квантовые амплитуды — это не совсем информация, но принцип тот же. Начальная амплитуда должна быть достаточно сконцентрированной, чтобы породить компактную диагональную линию, вместо большого разреженного облака. Если представить, что распределение амплитуды имеет «квантовую энтропию», то энтропия запутанной системы должна быть относительно низкой)

Наконец мы готовы поговорить о декогеренции.

Что такое декогеренция простыми словами. Смотреть фото Что такое декогеренция простыми словами. Смотреть картинку Что такое декогеренция простыми словами. Картинка про Что такое декогеренция простыми словами. Фото Что такое декогеренция простыми словами

Система на рисунке довольно сильно запутана. Её можно описать примерно так: «есть две частицы, и они обе могут быть либо тут, либо там». Да, я сформулировал это, как будто есть два возможных состояния, а не физически реальное распределение амплитуды. Серьезно, я не знаю как по-нормальному описывать квантовую физику на обычном языке! Просто запомните общее правило, что «возможность» или «вероятность» — это сокращённое обозначение «физически существующего участка распределения амплитуды». Тогда я смогу описывать амплитуды гораздо короче, используя термины неопределенностей. Но помните, что это всего-лишь условность! «Частица либо здесь, либо там» обозначает «физически существующее распределение амплитуды из двух частей, одна здесь, одна там», а не «частица находится в одном из двух мест, но мы не знаем в каком».

Итак. Работать с запутанными системами обычно сложно (для физиков, конечно, не для вселенной). Вначале мы должны рассчитать все возможные траектории для всех возможных начальных условий (то есть учесть все физически существующие траектории амплитуды в интеграле Фейнмана). Далее, нужно учесть влияние этих траекторий друг на друга (вероятные в строгом смысле траектории взаимодействовать не могут — только нечто реально существующее может влиять на что-то ещё). К примеру, наши две частицы встречают ещё 20 других, каким-то образом взаимодействуют, и в результате получается куча конфигураций на которые повлияли все предыдущие точки всех возможных состояний.

Отметим, что запутанность возникает только если участки начальной амплитуды находятся недалеко друг от друга. Так чтобы пути их развития смогли пересекаться. Если две частицы находятся либо тут либо там, но «тут» и «там» у нас разделены расстоянием в два световых года, то их дальнейшие траектории могут пересечься не раньше чем через год.

Теперь добавим третью частицу. На рисунке показано трёхмерное пространство конфигураций, которое разлагается на независимые двухмерное и одномерное подпространства. То есть на две запутанных частицы и одну независимую от них.

Что такое декогеренция простыми словами. Смотреть фото Что такое декогеренция простыми словами. Смотреть картинку Что такое декогеренция простыми словами. Картинка про Что такое декогеренция простыми словами. Фото Что такое декогеренция простыми словами

Высота — это третья частица, ширина и глубина — две запутанные частицы.

Независимая частица находится в определенном месте — по вертикали распределение очень узкое. Две запутанные частицы находятся либо тут, либо там (я опять использую некорректные вероятностные термины, вроде «определенный» и «либо», но вы понимаете о чем я).

Представим теперь, что третья частица реагирует с запутанными двумя неким образом, который чувствителен к их положению. Например, третья частица балансирует на острой вершине, две частицы пролетают мимо, притягивают ее, и она сваливается либо в одну, либо в другую сторону. После этого амплитуда выглядит как-то так.

Что такое декогеренция простыми словами. Смотреть фото Что такое декогеренция простыми словами. Смотреть картинку Что такое декогеренция простыми словами. Картинка про Что такое декогеренция простыми словами. Фото Что такое декогеренция простыми словами

Третья частица теперь запутана с двумя другими. И амплитуда теперь состоит из двух удалённых друг от друга кусков. Упрощенное описание: «если две частицы находились тут, то третья частица полетела сюда. А если они находились там, то она полетела туда.» То есть амплитуда стала полностью запутанной. Она больше не разлагается на независимые подпространства.

Но два куска амплитуды теперь дальше друг от друга, и каждый состоит из трёх частиц в соответствующей области. Это произошло потому, что третья частица чувствительна к координате других. После скатывания с острой вершины в одну из двух сторон, расстояние между конечными координатами достаточно велико.

На самом деле скатывание с вершины необязательно. Все работает аналогично, если у вас есть двадцать частиц, реагирующих на первые две и запутывающихся с ними. Окончательное распределение в 22-мерном пространстве будет выглядеть как две области, каждая из которых соответствует 22-м частицам. И расстояние между этими областями будет огромно. А чем больше расстояние, тем менее вероятно, что области в будущем повлияют друг на друга.
Это и есть декогеренция. Она является третьей причиной «классической галлюцинации», потому что две области начинают развиваться независимо. Это позволяет описывать их как не-запутанные системы. Как только мы рассмотрим их по-отдельности, распределение в каждой из них выглядит «прямоугольно» и независимо по трём координатам (я попытался показать это на рисунке выше).

В квантовом компьютере очень сложно предотвратить декогеренцию. Квантовые вычисления требует чтобы участки амплитуды оставались близко друг к другу и могли взаимодействовать. Но вокруг находятся триллионы других частиц, которые все время пытаются ненароком прореагировать с нашими хрупкими кубитами, разрушая точно сконструированную амплитуду.

И вы не можете просто взять и восстановить разрушенное. Для этого потребуется вернуть на место все прореагировавшие частицы, включая случайные частицы из окружения (не забудьте, итоговая амплитуда имеет совместное с ними распределение).

(Выглядит как практически необратимый процесс, правда? Вроде попытки собрать разбитое яйцо обратно в скорлупу. На самом деле это хорошая аналогия.

Вот почему я подчеркнул ранее, что процесс запутывания начинается с низкой энтропии. Декогеренция необратима, потому что это по сути термодинамический процесс.

Один из фундаментальных физических принципов гласит, что можно «прокрутить кинопленку назад» без нарушения фундаментальных законов. Если вы снимете на плёнку падающее на пол яйцо, а потом прокрутите ее задом наперёд, так что разбитое яйцо подлетает вверх с пола, собираясь при этом обратно в гладкую скорлупу, вы не увидите нарушенным ни одного физического закона. Все молекулы просто окажутся в нужном месте в нужное время, и яйцо отскочит от пола целым и невредимым. Это не невозможно, просто крайне маловероятно.

Тоже самое относится и к разбитой на удаленные куски амплитуде, неожиданно возвращающейся обратно в когерентное состояние — это теоретически возможно. Но практически нет шансов, что разобщённые вначале куски вдруг окажутся одновременно рядом друг с другом. Обратный процесс гораздо более вероятен.

На самом деле, в дополнение к прокручиванию пленки назад, нужно ещё поменять заряды всех частиц на противоположные, а также поменять местами лево и право (или одно из двух других измерений), превращая вселенную в её зеркальное отражение. Это правило известно как «CPT-инвариантность» от слов Заряд (Charge), Четность (Parity) и Время (Time).

Скорее всего CPT-инвариантность является одним из наиболее базовых принципов функционирования вселенной. Для физиков, попытки ее нарушить выглядят почти также абсурдно, как попытка кинуть мячик быстрее скорости света. Насколько я знаю, CPT-инвариантность необходима для непротиворечивости Квантовой Теории Поля.

Поэтому декогеренция только выглядит как однонаправленный процесс, но на самом деле ее необратимость — термодинамическая, а не фундаментальная. И это очень важно, ведь из этого следует, что квантовая физика соблюдает CPT-инвариантность.

Насколько мы знаем, абсолютно все однонаправленные процессы в природе являются следствием второго закона термодинамики, а не фундаментальной асимметрии времени.)

Подводя итог. Декогеренция — это термодинамический процесс постоянно увеличивающейся квантовой запутанности, который удивительным образом маскируется под процесс уничтожения этой самой запутанности. Декогерентные области не взаимодействуют между собой, и каждая из них становится менее запутанной. Декогеренция — третья причина «классической галлюцинации». Она позволяет физикам рассматривать каждую область как независимую, не учитывая мизерную вероятность их взаимодействия. Кроме того, каждая отдельная область становится внутри более простой для понимания. Это очень кстати, если вы хотите решать задачи в терминах простой классической физики. И очень некстати, если вы хотите разложить на множители миллионозначное число, до того как погаснет Солнце.

Источник

Квантовая азбука: «Когерентность»

Можно ли потревожить квантовую систему чуть-чуть, а потом вернуть все обратно?

Что такое когерентность? Есть ли какие-то хорошие аналогии из классической физики?

Понятие когерентности впервые возникает именно в классической физике, когда речь идет про колебания. Классическая когерентность — это постоянство относительной фазы между двумя или более волновыми процессами одной частоты. Когда говорят о когерентности всегда вспоминают интерференцию — эффект, при котором суммарный поток энергии от нескольких когерентных источников в некоторой точке пространства получается не непосредственным сложением потоков энергии от каждого источника, а чуть сложнее. Говоря формально, нужно сложить комплексные амплитуды, которые описывают приходящую от каждого источника волну, потом взять модуль полученного комплексного числа и возвести его в квадрат (с некоторым коэффициентом, чтоб с размерностями все было хорошо).

За счет суммирования комплексных амплитуд, а не интенсивностей, в пространственном профиле интенсивности образуется хорошо знакомая интерференционная картинка. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.

Теперь к квантовой механике. Одним из основных положений квантовой механики является то, что микроскопические частицы в своем поведении проявляют волновые свойства. Но если в классической физике мы говорили, например, о волнах напряженности электромагнитного поля, то для микроскопических частиц речь идет волнах вероятности, описывающимися комплексными «амплитудами вероятности», известными также под названием «волновая функция». Именно эта идея заложена в уравнение Шрёдингера.

Для волн вероятности, как и любых других волн, также характерны все те же эффекты, связанные с возможностью наложения волн друг на друга. В квантовой механике такое наложение называют (когерентной) суперпозицией. Именно суперпозиция приводит к «квантовым» эффектам дифракции и интерференции.

Квантовые системы могут находиться в когерентной суперпозиции состояний, даже если это суперпозиция (с классической точки зрения) взаимоисключающих состояний. Прямое применение квантовых законов к классическому миру ведет к парадоксальным ситуациям, одна из наиболее известных — кошка Шрёдингера. Да, в ящик Шрёдингер хотел посадить именно кошку (die Katze), а не кота.

Почему когерентность необходима для квантовых вычислений?

Квантовая когерентность позволяет реализовать квантовый параллелизм. Архитектура квантовых компьютеров отличается от архитектуры классический вычислений в нескольких важных аспектах (про это в квантовой азбуке уже говорилось, но напомнить основы будет не лишним).

Система битов заменяется на систему кубитов, которая находится в некотором начальном состоянии. Логические операции выполняются не классическими логическими элементами, а их квантовыми аналогами. Таким образом, в квантовом компьютере через квантовый логический элемент («гейт») может проходить сразу целый набор (когерентная суперпозиция) входных сигналов, дающих суперпозицию соответствующих выходных сигналов. Это и обеспечивает преимущество квантовых вычислений над классическими в некоторых классах задач, например, в задаче факторизации.

Правда тут есть тонкость: после того как квантовый компьютер закончит вычисления, ответы к задачам, которые он решал, будут также находиться в состоянии суперпозиции. Как только мы попытаемся выяснить, каковы эти ответы, мы получим только один, случайно выбранный ответ. Но проделав вычисления много раз, мы можем говорить об ответе с достаточной степенью вероятности.

Квантовый компьютер имеет преимущество над классическим в определенных классах задач. С одной стороны, это ограничивает его применения и свидетельствует о том, что он, возможно, не заменит нам классический персональный компьютер. Хотя, высказывая подобные предположения стоит помнить о том, что на заре компьютерной эры миру приписывали необходимость всего в пяти компьютерах.

Кроме того, класс задач, с которым квантовый компьютер справляется лучше классического, лежит в основе современных представлений о криптографии и информационной безопасности. Так что возможное появление квантового компьютера уже меняет правила в информационных технологиях.

Что такое декогеренция, какие процессы могут к ней приводить?

В классической физике явление декогеренции также существует. Декогеренция — нарушение когерентности — это исчезновение когерентных свойств, связанное с потерей постоянства относительной фазы между источниками, что, например, приводит к разрушению интерференционной картины, о которой мы говорили выше.

В квантовой механике все сложнее и намного интереснее. Декогеренция представляет собой взаимодействие квантовой системы с окружающей средой, при котором квантовое состояние системы неконтролируемо изменяется. С точки зрения теории квантовой информации декогеренции соответствует возникновение запутанности между степенями свободы квантового состояния и степеняими свободы окружения.

При этом в окружение попадает часть информации о квантовом объекте, в то время, как в квантовую систему попадает часть информации об окружении. Декогеренция происходит из-за того, что хаос неопределенности состояния окружения врывается в состояние квантовой системы, изменяя его неконтролируемым образом.

Если рассматривать поведение всех, в том числе и макроскопических, объектов с точки зрения квантовой механики, то декогеренции соответствует возникновение запутанности между конкретным квантовым объектом и окружением. По причине декогеренции мы не видим кошек, одновременно бегущих в противоположных направлениях.

Как определить, что произошла декогеренция?

Декогеренцию можно обнаружить, например, по исчезновению интерференционной картины. Есть такой простой эксперимент «Welcher Weg» («который путь»). В нем, фактически, мы просто посылаем фотоны на светоделитель, через который фотон либо проходит (назовем это «путь 1»), либо отражается (назовем это «путь 2»). Затем с использованием зеркал мы сводим два пути в другой светоделитель, на каждом из выходов которого стоит детектор одиночных фотонов.

К примеру, если в этом эксперименте интерферометр (т.е. соотношение между длинами путей) изначально был настроен на то, что все фотоны выходят строго в одном из двух направлений выходного светоделителя. При декогеренции, т.е. разрушения состояния когеретной суперпозиции между путями, они будут выходить с вероятностью 1/2 в каждом из двух направлений.

Предположим, квантовый компьютер выполнял некую операцию и произошла декогеренция (например, на середине исполнения алгоритма Шора, или каких-либо более простых операций). Каков будет результат вычисления, чем он будет отличаться от вычисления на полностью когерентных кубитах?

Декогеренция будет приводит к искаженному результату вычислений (который, возможно, еще и будет меняться от запуска к запуску) в выходном квантовом регистре. Например, в результате выполнения алгоритма Шора для числа 15 мы будем получать не стабильно 3 и 5, а с какой-то вероятностью 3 и 5, и с какой-то вероятностью всевозможные иные результаты (2 и 4, 3 и 6 и т.д.)

Как бороться с декогеренцией? Можете ли Вы привести какие-то примеры? Сложнее ли сохранять когерентность в многокубитных системах?

Для борьбы с декогеренцией нужен контроль окружения, поскольку даже малейшее воздействие окружения может привести к декогеренции. Таким образом, нужно чтобы изучать квантовые суперпозиции, необходимо тщательно изолировать их от окружающей среды.

Интересно, что последнее обстоятельство породило концепцию квантового сенсора: раз квантовые состояния так чувствительны к внешним воздействиям, значит с их помощью можно проводить сверхчувствительные измерения. Недавно с помощью квантового сенсора на NV-центрах было проведено измерение сигнала от отдельного нейрона.

На практике для борьбы с декогеренцией используются низкие температуры и различные компенсационные схемы для медленно меняющихся флуктуаций в параметрах окружающей среды. Например, ученые научились обращать декогеренцию вспять в экспериментах с «спиновым эхо» (о нем чуть ниже).

В многокубитных системах сложнее балансировать между необходимостью заставить кубиты «слышать» друга друга и «разговаривать» между собой, и при этом «не слышать» окружение. Принципиальных физических ограничений для этого нет, но на пути к решению такой задачи есть ряд технологический затруднений.

Как долго сохраняется когерентность в современных кубитах?

Недавно ученые Мэрилендского университета построили устройство из пяти кубитов на основе ионов иттербия в электромагнитных ловушках (о ней N+1 писал). В частности, в этой работе, являющейся одной из самых свежих, это времена порядка секунд.

Насколько эта величина соответствует требованиям, предъявляемым концепцией квантовых компьютеров?

Нужно чтобы время когерентности превосходило время, за которое происходит вычисление и коррекция ошибок. Таким образом, достижимое время когерентности является достаточным чтобы проводить вычисления. Однако этого пока недостаточно, чтобы сделать полноценный и универсальный квантовый компьютер, поскольку для этого требуется долговременная память и другие элементы, в которых время когерентности должно быть больше. Другой интересный подход состоит в развитии топологических квантовых вычислений, которые являются устойчивыми к ошибкам.

Как связана декогеренция и коллапс волновой функции? Это про одно и то же?

Это «добрый полицейский» и «злой полицейский».

Суть обоих этих процессов состоит в утечке информации о состоянии квантовой системы в окружающую среду. Когда говорят о декогеренции, данный процесс представляется относительно плавным и растянутым во времени — как допрос доброго полицейского. В случае коллапса он подразумевается практически мгновенным и интенсивным — злому полицейскому нужны ответы сразу. И неважно что там с дальше будет с нашей квантовой системой.

Часто говорят о коллапсе волновой функции в момент измерения, хотя фактически измерение есть срежессированная версия декогеренции, при которой роль окружения берет на себя измерительный прибор, транслирующий информацию о квантовой системе на макроскопический уровень (условно говоря, на отклонение стрелки). Можно сказать, также, что коллапс волновой функции представляет собой предельный случай декогеренции.

А можно декогеренцию чуть-чуть сломать, а потом вернуть на место?

Исходя из природы процесса декогеренции понятно, что для обращения декогеренции требуется вернуть информацию, известную окружению о квантовой системе, обратно в квантовую систему, т.е. макроскопическому окружению требуется её «забыть». В общем, это очень сложно, поскольку процесс утечки информации является необратимым из-за того, что степеней свободы, в которых эта информация может храниться чрезвычайно много, и все они быстро обмениваются ей между собой. Поэтому чтобы вернуть все на свои места нужно достаточно хорошо контролировать окружение. Все как у людей, в общем.

Однако принципиально трюк по обращению декогеренции возможен, например, в эксперименте под названием «спиновое эхо». Его суть состоит в том, что время эволюции квантовой системы (например, ядерного спина) было гораздо меньше, чем время характерного изменения внешних условий (магнитного поля). Применяя специальную последовательность операций, можно обращать процесс утечке информации о квантовой системы вспять.

Подготовили материал Владимир Королев и Андрей Коняев

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *