Что может растворить вода
Каково значение воды как растворителя
Строение воды
Вода — уникальное вещество и все её аномальные свойства: высокая температура кипения, значительная растворяющая и диссоциирующая способность, малая теплопроводность, высокая теплота испарения и другие обусловлены строением её молекулы и пространственной структурой.
У отдельно взятой молекулы воды есть качество, которое проявляется только в присутствии других молекул: способность образовывать водородные мостики между атомами кислорода двух оказавшихся рядом молекул, так, что атом водорода располагается на отрезке, соединяющем атомы кислорода. Свойство образовывать такие мостики обусловлено наличием особого межмолекулярного взаимодействия, в котором существенную роль играет атом водорода. Это взаимодействие называется водородной связью.
Каждая из присоединённых к данной молекул воды сама способна к присоединению дальнейших молекул. Этот процесс можно называть «полимеризацией». Если только одна из двух возможных связей участвует в присоединении следующей молекулы, а другая остаётся вакантной, то «полимеризация» приведёт к образованию либо зигзагообразной цепи, либо замкнутого кольца. Наименьшее кольцо, по-видимому, может состоять из четырёх молекул, но величина угла 90° делает водородные связи крайне напряжёнными. Практически ненапряжёнными должны быть пятизвенные кольца (угол 108 о ) шестизвенные (угол 120° ), также как и семизвенные – напряжённые.
Рассмотрение реальных структур гидратов показывает, что, действительно, наиболее устойчиво шестизвенное кольцо, находимое в структурах льдов. Плоские кольца являются привилегией клатратных гидратов, причём во всех известных структурах чаще всего встречаются плоские пятизвенные кольца из молекул воды. Они, как правило, чередуются во всех структурах клатратных гидратов с шестизвенными кольцами, очень редко с четырёхзвенными, а в одном случае — с плоским семизвенным.
В целом структура воды представляется как смесь всевозможных гидратных структур, которые могут в ней образоваться.
Уникальные свойства воды интересуют людей с древнейших времен. Это единственное вещество на Земле, которое при нормальных для человека условиях может находится сразу в трех агрегатных состояниях — жидком, твердом и газообразном.
Лед, плотность, кристаллизация. При замерзании плотность воды уменьшается, поэтому лед всплывает. Благодаря этому уникальному свойству воды озера и реки не промерзают до дна, и водные обитателимогут пережить зиму.
Уменьшение плотности льда происходит вследствие увеличения объема. Именно поэтому замерзающая вода рвет водопроводные трубы.Вода может быть переохлаждена до отрицательных температур без перехода в твердое состояние. Однако при малейшем сотрясении или попадании каких-либо частиц переохлажденная вода быстро превращается в лед. Посторонние частицы, пузырьки воздуха в этом случае становятся центрами кристаллизации.
Высокая скрытая теплота испарения воды спасает водоемы от быстрого высыхания жарким летом. А высокая скрытая теплота плавления защищает нас весной от слишком быстрого таяния огромного количества снега, скопившегося за зиму.
Растворитель. Вода является универсальным растворителем. Это качество объясняется особым строением молекулы воды. Молекулы сильно поляризованы, благодаря чему легко входят во взаимодействие с молекулами других веществ. Именно свойство сильного растворителя затрудняет получение абсолютно химически чистой воды.
Высокое поверхностное натяжение воды наблюдал каждый из нас. Вспомните, как по поверхности пруда бегают водомерки. Даже не очень тяжелый предмет из несмачиваемого материала может оставаться на поверхности воды. В отсутствии гравитации капля воды стремится принять идеальную форму шара. Кстати, еще одно полезное свойство воды — способность поглощать микроволновое излучение — позволяет нам разогревать продукты в микроволновой печи.
Видео
Круговорот воды
Вода рек, морей, озер постоянно испаряется, превращаясь в мельчайшие капли водяного пара. Капли собираются вместе, образуя облака, из которых вода проливается на землю в виде дождя. В этом состоит круговорот воды в природе. В облаках пар охлаждаемся и возвращается на землю в виде дождя, снега или града. Сточные воды из канализации и с заводов очищаются и затем сбрасываются в море.
Водонапорная станция
Особенности талой воды
Уже небольшое нагревание (до 50-60° С) приводит к денатурации белков и прекращает функционирование живых систем. Между тем охлаждение до полного замерзания и даже до абсолютного нуля не приводит к денатурации и не нарушает конфигурацию системы биомолекул, так что жизненная функция после оттаивания сохраняется. Это положение очень важно для консервирования органов и тканей предназначенных для пересадки. Как указывалось выше, вода в твёрдом состоянии имеет другую упорядоченность молекул, чем в жидком и после замерзания и оттаивания приобретает несколько иные биологические свойства, что послужило причиной применения талой воды с лечебной целью. После оттаивания вода имеет более упорядоченную структуру, с зародышами клатратов льда что позволяет ей взаимодействовать с биологическими компонентами и растворёнными веществами, например с другой скоростью. При употреблении талой воды в оганизм попадают мелкие центры льдоподобной структуры, которые в дальнейшем могут разрастись и перевести воду во льдоподобное состояние и тем самым произвести оздоравливающее действие.
Что не растворяется в воде
Существуют такие химические образования, которые не воспринимают воздействия воды в качестве растворителя совсем.
Хороший пример: углерод С, который находится в простом карандаше, многие металлы и сплавы, типа алюминия, а также золото, серебро, медь.
Такая ситуация складывается благодаря тому, что между молекулами и атомами нерастворимых веществ действуют сильные связи, которые водород разрушить не в состоянии. Полярное состояние молекулы также способствует большей прочности материала, который состоит из таких частиц.
Многие вещи, которые мы видим вокруг себя в быту, также являются нерастворимыми. Очень популярный пример – пластик.
В мировом океане плавает огромное пятно из пластикового мусора, которое ежегодно растет, и количество пластмассы там совершенно не желает уменьшаться естественным путем. Его не могут никак переработать, что очень плохо для всей экосистемы.
Именно поэтому экологи бьют тревогу и в ЕС уже сейчас планируется отказ от целлофановых пакетов, пластиковых стаканчиков и трубочек и тому подобные меры.
Жесткая вода
В жесткой воде растворены минералы, попавшие туда из горных пород, по которым текла вода. В такой воде мыло плохо мылится, потому что оно вступает в реакции с минералами и образует хлопья. Существует жесткая вода двух видов; разница между ними в типе растворенных минералов. Тип минералов, растворенных в воде, зависит от типа горных пород, по которым течет вода (см. рис.). Временная жесткость воды возникает при реакции известняка с дождевой водой. Известняк — это нерастворимый карбонат кальция, а дождевая вода — слабый раствор угольной кислоты. Кислота вступает в реакцию с карбонатом кальция и образует гидрокарбонат, который растворяется в воде и придаст ей жесткость.
При кипении или испарении воды с временной жесткостью часть минералов выпадает в осадок, образуя накипь на дне чайника или сталактиты и сталагмиты в пещере. Вода с постоянной жесткостью содержит другие кальциевые и магниевые соединения, например гипс. Эти минералы при кипячении не выпадают в осадок.
викторина
1. Вода считается полярной, потому что:A. У этого есть одна отрицательная сторона и другая, которая является положительной.B. Это универсальный растворитель.C. У него два атома водорода.D. Это самый плотный в твердой форме.
Ответ на вопрос № 1
верно. У воды есть сторона, которая немного положительна, и сторона, которая слегка отрицательна.
2. Что из следующего является силой, которая удерживает молекулы воды вместе?A. Ковалентные связи B. Ионные связиC. Полярные связиD. Водородные связи
Ответ на вопрос № 2
D верно. Водородные связи образуются между атомами кислорода и атомами водорода различных молекул воды.
3. Какое свойство относится к слипшимся молекулам воды?A. прилипание B. полярностьC. когезияD. Быть универсальным растворителем
Ответ на вопрос № 3
С верно. Силы сцепления, вызванные водородными связями, делают воду эластичной.
Конспект лекции по теме «Вода как растворитель. Растворы. Растворимость веществ» дисциплины ОУД.10 Химия, специальности 33.02.01 Фармация, СПО
Тема: Вода, как растворитель. Растворы. Растворимость веществ
1. Вода, как растворитель. Растворы, их виды.
2. Процессы, протекающие при растворении веществ (физический и химический).
3. Растворимость веществ, виды растворов (насыщенные, ненасыщенные, пересыщенные) и виды веществ по растворимости.
4. Зависимость растворимости газов, жидкостей и твердых веществ от различных факторов.
5. Массовая доля растворенного вещества.
1. Вода, как растворитель. Растворы
Раствор – это гомогенная (однофазная: газ +газ, жидкость + жидкость) система, состоящая из двух или более компонентов.
Жидкие растворы, как правило, прозрачные и устойчивые системы, не осаждаются и не расслаиваются при длительном стоянии, растворенные частицы фильтрами не задерживаются.
2. Процессы, протекающие при растворении веществ
(физический и химический)
При растворении веществ протекают два основных процесса.
Продуктами взаимодействия растворенного вещества с растворителем являются соединения, которые называют сольватами, а процесс их образования – сольватацией.
Если растворителем является вода, то соединения называют гидратами , а процесс образования – гидратацией. Гидраты – непрочные соединения и разлагаются при попытке выделить их в свободном виде. Но в ряде случаев образуются довольно прочные соединения с водой, которые можно выделить из раствора в кристаллическом состоянии – кристаллогидраты: это доказывает наличие в воде гидратов, а воду, входящую в их состав называют кристаллизационной. Состав кристаллогидратов выражают формулами, показывающими, какое количество вещества воды содержит 1 моль кристаллогидрата:
FeSO 4 * 7 H 2 O (железный купорос), CuSO 4 * 5 H 2 O (медный купорос).
Вывод: Таким образом, при растворении протекают как физические, так и химические процессы, поэтому растворы занимают промежуточное положение между химическими соединениями постоянного состава и механическими смесями.
Как химические соединения, растворы однородны, их образование сопровождается тепловыми явлениями.
Как и механические смеси, они не имеют постоянного состава, их можно разделить на составные части.
3. Растворимость веществ,
виды растворов и веществ по растворимости
Растворимость – это способность вещества растворяться в воде или другом растворителе.
Количественно растворимость характеризуется коэффициентом растворимости, или просто растворимостью вещества.
Растворимость (коэффициент растворимости) – масса вещества, которое может раствориться при данной температуре в 100 г растворителя с образованием насыщенного раствора:
А). По растворимости растворы бывают.
Насыщенный раствор – это раствор, который находится в динамическом равновесии с растворяющимся веществом. Насыщенный раствор содержит максимальную массу растворенного вещества при данной температуре (в нем нельзя растворить добавочно вещество, оно выпадает в осадок).
Например, при температуре 20 градусов в 100 г воды растворяется 35,86г хлорида натрия. Это значит, что его растворимость при данной температуре равна 35,86г. Если сверх этой массы при той же температуре добавить еще хлорид натрия, то соль не растворяется, а осаждается в виде осадка.
Ненасыщенным называют раствор, в котором содержание растворенного вещества при данной температуре меньше, чем в насыщенном , В таком растворе можно растворить дополнительную массу вещества при той же температуре.
Насыщенные и ненасыщенные растворы устойчивы при хранении.
Можно приготовить раствор, в котором при данной температуре содержание растворенного вещества больше, чем в насыщенном. Например, если насыщенный раствор сульфата натрия, приготовленный при температуре 80 градусов, осторожно и медленно охладить, то избыток растворенного вещества не выделяется в виде осадка. В этом случае получается раствор, содержащий значительно больше растворенного вещества, чем это требуется для насыщения при данной температуре. Это явление было открыто и изучено российским химиком Т.Е. Ловицем, который назвал такие растворы пересыщенными.
Пересыщенные растворы при хранении, как правило, неустойчивы. Если пересыщенный раствор встряхнуть или бросить в него кристаллик растворенного вещества, то выпадает осадок и образуется насыщенный раствор. Легко образуют перенасыщенные растворы глауберова соль, бура, тиосульфат натрия.
Б). По растворимости в воде вещества подразделяются на:
— хорошо растворимые – в 100 г воды при температуре 20 градусов растворяется более 10 г вещества (сахар, гидроксид натрия, спирт, аммиак);
— мало растворимые – в 100 г воды при температуре 20 градусов растворяется менее 10 г вещества, но не более 0,01 г вещества (гипс, сульфат свинца, метан);
— практически нерастворимые – в 100 г воды при температуре 20 градусов растворяется менее 0,01 г вещества (хлорид серебра, стекло, керосин, благородные газы).
4. Факторы, от которых зависит растворимость веществ
Природа растворяемого вещества и растворителя определяются их строением. Так, вещества, состоящие из полярных молекул или ионов, лучше растворяются в полярных растворителях (хлороводород, этанол, хлорид натрия хорошо растворяются в воде, которая является полярным растворителем), а неполярные соединения – в неполярных растворителях (иод, бром хорошо растворяются в бензоле, который является неполярным растворителем). Следовательно, растворение вещества протекает согласно правилу : подобное растворяется в подобном.
Температура. Влияние температуры на растворимость веществ зависит от их агрегатного состояния. Растворимость твердого вещества определяется соотношением энергии, которая затрачивается на разрушение его кристаллической решетки, и энергии, которая выделяется при образовании гидратов (энергия гидратации).
Рассмотрим равновесие между твердым веществом и его насыщенным раствором:
кристалл + растворитель насыщенный раствор + Q
Согласно принципу Ле-Шателье, в тех случаях, когда вещества растворяются с поглощением энергии (эндотермические процессы), повышение температуры увеличивает их растворимость (нитраты калия, свинца, сульфата меди ( II ) и др.). Это характерно для большинства твердых веществ. Если же вещества растворяются с выделением энергии (экзотермические процессы), то повышение температуры уменьшает их растворимость . (некоторые соли лития, кальция, магния, алюминия, гашеная известь).
Растворение газов в воде – экзотермический процесс:
Поэтому, согласно принципу Ле-Шателье, растворимость газов в воде с повышением температуры уменьшается. Так, кипячением можно удалить из воды растворенный в ней воздух.
Некоторые жидкости неограниченно растворяются одна в другой (спирт и вода), другие – ограниченно (эфир и вода). В этом случае образуются двухслойные (гетерогенные) системы, как, например, система бензин – вода: верхний слой – насыщенный раствор воды в бензине, а нижний слой – насыщенный раствор бензина в воде. В большинстве случаев с повышением температуры растворимость жидкостей увеличивается.
Концентрация раствора определяется количеством вещества или массой растворенного вещества, содержащегося в определенном объеме или массе раствора (растворителя). Способы выражения состава раствора довольно разнообразны. Состав растворов выражают содержанием растворенного вещества в виде массовой доли.
5. Массовая доля растворенного вещества
w (раств. в-ва) – отношение массы растворенного вещества m (раств. в-ва) к общей массе раствора m (р-ра). Это безразмерная величина, ее выражают в долях единицы или в процентах:
Массу раствора можно выразить через его объем и плотность:
Что может растворить вода
§7.6. Растворы. Как происходит растворение. Насыщенные растворы
Растворы не отстаиваются и сохраняются все время однородными. Если раствор профильтровать через самый плотный фильтр, то ни соль, ни сахар, ни марганцовокислый калий не удается отделить от воды. Следовательно, эти вещества в воде раздроблены до наиболее мелких частиц – молекул или ионов.
Растворами называются гомогенные (т.е. однородные) смеси переменного состава из двух или более веществ. Наиболее распространенное агрегатное состояние растворов – жидкое.
Под переменным составом раствора понимают то простое обстоятельство, что соотношение смешанных друг с другом веществ может непрерывно изменяться в определенных пределах. Например, раствор соли можно разбавлять чистой водой или, наоборот, упаривать, но полученные при этом жидкости в любом случае будут называться растворами соли. Приведнное выше определение не охватывает всех свойств растворов, поэтому в конце параграфа мы его уточним.
Любой раствор состоит из растворителя и растворенного вещества:
Из двух или нескольких компонентов раствора растворителем является тот, который взят в большем количестве и имеет то же агрегатное состояние, что и раствор в целом.
Не всегда обязательно вода является растворителем – существуют и неводные растворы. Однако когда речь идет о водных растворах, воду считают растворителем и в тех случаях, когда ее меньше. Например, говорят о 96%-ном растворе этилового спирта в воде, а не о 4 %-ном растворе воды в спирте.
** Существуют растворы не только жидкие, но и твердые. В твердых растворах частицы одного вещества хаотично распределены среди частиц какого-нибудь другого, но обязательно твердого вещества. Например, водород охотно растворяется в некоторых металлах (платине, палладии), и это пример твердого раствора. Смеси газов (например, воздух) не называют растворами. Дело в том, что важным свойством растворов является заметное взаимодействие между частицами растворителя и растворенных веществ, а в газах такое взаимодействие практически отсутствует.
Давайте разберемся в том, как происходит растворение веществ. Для этого понаблюдаем, как растворяется добавленный в чай сахар. Если чай холодный, то сахар растворяется медленно. Наоборот, если чай горячий и размешивается ложечкой, то растворение происходит быстро.
Попадая в воду, молекулы сахара, находящиеся на поверхности кристаллов сахарного песка, образуют с молекулами воды межмолекулярные (водородные) связи. При этом с одной молекулой сахара связывается несколько молекул воды. Тепловое движение молекул воды заставляет связанные с ними молекулы сахара отрываться от кристалла и переходить в толщу молекул растворителя (рис. 7-2).
Рис. 7-2. Молекулы сахара (белые кружочки), находящиеся на поверхности кристалла сахара, окружены молекулами воды (темные кружочки). Между молекулами сахара и воды возникают межмолекулярные связи, благодаря которым молекулы сахара отрываются от поверхности кристалла. Молекулы воды, не связанные с молекулами сахара, на рисунке не показаны.
Растворение веществ можно сравнить с перетаскиванием мебели. Представьте, что на время ремонта школьные столы (или парты) составили в спортзале в строгом порядке аккуратным штабелем. Этот упорядоченный штабель является моделью кристаллического вещества, а каждый стол – как бы «молекулой» такого вещества. После окончания ремонта учеников попросили помочь перетащить столы. В спортзал вбежала ватага учеников (эта ватага не что иное, как растворитель, а каждый ученик – молекула растворителя), кто-то залез наверх, кто-то тянет столы снизу – короче, работа закипела. Очень скоро столы, каждый из которых несут где двое, а где четверо ребят, оказываются в разных концах школы, а от штабеля в спортзале не остается и следа.
Количество молекул, способных перейти в раствор, часто ограничено. Молекулы вещества не только покидают кристалл, но и вновь присоединяются к кристаллу из раствора. Пока кристаллов относительно немного, больше молекул переходит в раствор, чем возвращается из него – идет растворение. Но если растворитель находится в контакте с большим количеством кристаллов, то число уходящих и возвращающихся молекул становится одинаковым и для внешнего наблюдателя растворение прекращается.
Раствор, в котором данное вещество при данной температуре уже больше не растворяется, называется НАСЫЩЕННЫМ.
В насыщенном растворе при данной температуре содержится максимально возможное количество растворенного вещества.
** Если вернуться к примеру со школьными столами, то там тоже возможно образование «насыщенного раствора». Это может произойти в том случае, если столов окажется слишком много и для них в классах уже не будет хватать места. В этом случае часть учеников будет просто-напросто вынуждена вернуться и поставить столы в тот же штабель, откуда они были взяты. Таким образом, количество мебели в спортзале перестанет уменьшаться. Разумеется, ученики гораздо умнее молекул воды и не станут дальше делать бесполезную работу. В реальном растворе, где есть тепловое движение молекул, молекулы продолжают “трудиться”, транспортируя частицы растворенного вещества из кристалла в раствор и обратно.
Такая ситуация называется ДИНАМИЧЕСКИМ равновесием (равновесием в движении). В связи с этим можно дополнить определение насыщенного раствора:
Насыщенным называется такой раствор, который находится в динамическом равновесии с избытком растворенного вещества.
Следовательно, никакое самое сильное перемешивание не помогает растворить в насыщенном растворе дополнительные порции вещества. Однако, если повысить температуру, то раствор вновь может стать ненасыщенным и растворить еще определенную порцию кристаллов.
Мы говорим: «сахар растворяется в воде хорошо» или «мел плохо растворяется в воде». Но можно и количественно оценить способность того или иного вещества к растворению или, другими словами, растворимость вещества.
РАСТВОРИМОСТЬЮ называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.
В целом растворимость разных веществ определяется многими сложными причинами, некоторые из которых до сих пор не ясны. Поэтому трудно предсказать растворимость какого-либо вещества по его химической формуле или агрегатному состоянию.
В качестве примера приведем растворимость (в граммах вещества на 100 г воды при комнатной температуре) нескольких веществ: твердых, жидких и газообразных, среди которых многие имеют похожие химические формулы (таблица 7-2).
Таблица 7-2. Растворимость некоторых веществ в воде при комнатной температуре.
Общеклинические исследования
Растворителем, в котором работают почти все известные живые системы, служит окись водорода, или вода (H 2O). В молекуле воды атом кислорода соединен с двумя атомами водорода одинарными ковалентными связями. Чтобы понять, почему это важно и на что это влияет, нам придется ввести несколько дополнительных понятий из общей химии.
Электроотрицательность — сила, с которой атом в составе молекулы оттягивает на себя общие с другим атомом электроны, образующие ковалентную связь. Это понятие ввел Лайнус Полинг (Linus Carl Pauling). Самый электроотрицательный элемент — фтор, за ним на шкале электроотрицательности следует кислород. Иными словами, кислород превосходит по электроотрицательности все другие атомы, за исключением фтора (который в биологической химии практически не встречается). Запомним этот факт.
Электроотрицательность одинаковых атомов по определению равна. Если между двумя одинаковыми атомами есть ковалентная связь, то образующие ее электроны никуда не смещены (в рамках старинной планетарной модели атома можно сказать, что они находятся точно посредине между атомами, как на картинке). Такая ковалентная связь называется неполярной.
Если ковалентную связь образуют два разных атома, то общие электроны смещаются к тому из них, у которого выше электроотрицательность. Такая связь называется полярной. При очень большой разнице в электроотрицательности она может даже стать ионной — это случится, если один атом полностью “отберет” у другого общую пару электронов.
Связь между водородом и кислородом в молекуле воды — типичный пример ковалентной полярной связи. Электроотрицательность кислорода намного выше, поэтому общие электроны смещены к нему. В результате на кислороде возникает маленький отрицательный заряд, а на водороде маленький положительный; эти заряды принято обозначать буквой δ (“дельта”).
Связи кислорода с водородом или углеродом (H-O или C-O) — всегда полярные. Молекулы, в которых много таких связей, несут многочисленные частичные заряды, отрицательные на кислороде и положительные на водороде или углероде. В то же время связь между углеродом и водородом (C-H) считается неполярной: разница в электроотрицательности между этими элементами так мала, что смещение электронов незаметно. Например, молекулы углеводородов в силу этого полностью неполярны, они не несут никаких частичных зарядов ни на каких атомах.
При наличии полярных связей между водородом и кислородом частичные заряды на этих атомах (отрицательные на кислороде и положительные на водороде) притягиваются друг к другу, образуя водородные связи. Эти связи гораздо слабее ковалентных, но могут давать сильный эффект, если их много. Например, именно из-за колоссального количества водородных связей у воды очень высокая теплоемкость — ее трудно нагреть и трудно остудить. Строго говоря, водородная связь может образоваться не только с кислородом, но и с другими электроотрицательными атомами (например, с азотом или фтором).
Любые заряженные частицы в водном растворе гидратируются, то есть окружаются молекулами воды — конечно, по-разному ориентированными в зависимости от того, положительная это частица или отрицательная. Любые ионы, растворенные в воде, на самом деле присутствуют там в гидратированном состоянии, то есть с водной оболочкой. На картинке для примера показана растворенная поваренная соль (NaCl) — образец чисто ионного вещества.
Полярные молекулы (а тем более ионы) хорошо взаимодействуют с водой, образуя с ней водородные связи и (или) подвергаясь гидратации. Такие вещества хорошо растворяются в воде и называются гидрофильными. Неполярные молекулы взаимодействуют с водой гораздо слабее, чем друг с другом. Такие вещества плохо растворяются в воде и называются гидрофобными. Типичные гидрофобные вещества — углеводороды. Типичные гидрофильные вещества — спирты, такие как этанол или показанный на картинке глицерин. Вообще кислородсодержащие соединения углерода, как правило, гидрофильны, если только в них нет совсем уж огромных углеводородных радикалов.
Могут ли подойти для жизни другие растворители, кроме воды? Ответ — да. Например, двуокись углерода (CO 2) при более высоких давлениях, чем наше атмосферное, становится жидкостью и представляет собой хороший гидрофильный растворитель, в котором успешно идут многие биохимические реакции. В этом растворителе могут жить даже земные микроорганизмы: например, на дне Окинавского желоба в Восточно-Китайском море обнаружено целое озеро жидкой углекислоты, в котором постоянно живут довольно разнообразные бактерии (Inagaki et al., 2006).
Некоторые исследователи предполагают, что океаны жидкой двуокиси углерода могут существовать на планетах-“суперземлях” с массой, в несколько раз превосходящей массу Земли (Budisa, Schulze-Makuch, 2014). На картинке — художественное изображение планеты GJ1214b в созвездии Змееносца.
На крупнейшем спутнике Сатурна — Титане — есть углеводородные озера и даже моря, состоящие из метана (CH 4), этана (C 2H 6) и пропана (C 3H 8). Это гидрофобный растворитель, в котором тоже иногда предполагают существование жизни, хотя прямых подтверждений тому пока нет. На картине — пейзаж Титана. Жидкой воды на поверхности Титана нет, там слишком холодно.
Аммиак (NH 3) — гидрофильный растворитель, образующий много водородных связей, в данном случае между водородом и азотом, и напоминающий воду по физико-химическим свойствам. На более холодных планетах, чем Земля, аммиак находится в жидком состоянии и вполне может быть средой для жизни.
Теоретически возможно существование холодных землеподобных планет с аммиачными океанами (на картинке художественное изображение такой планеты). Есть ли там жизнь, никто не знает. Но почему бы и нет? Если насчет альтернатив углеродной жизни есть сомнения, то углеродную жизнь в неводном растворителе представить гораздо легче.
Можно придумать и другие экзотические варианты — например, океан из плавиковой кислоты (HF) на планете, описанной в фантастической повести Ивана Ефремова “Сердце Змеи”. “Люди Земли увидели лиловые волны океана из фтористого водорода, омывавшие берега черных песков, красных утесов и склонов иззубренных гор, светящихся голубым лунным сиянием…” Возвращаясь к земной биохимии, будем помнить, что она — не единственная теоретически возможная.