В турбину попала вода что делать
Попадание воды в турбину.
7.10.1. Вода в турбину может попасть:
· по паропроводам свежего пора при падении там температуры свежего пара ниже температуры насыщения при данном давлении;
· по трубопроводу подачи пара на уплотнения при переполнении деаэратора;
· по паропроводам отборов в случае переполнения подогревателей.
7.10.2.Признаки попадания воды в турбину:
· резкое понижение температуры свежего пара, раскрытие фланцевых разъёмов;
· гидравлические удары в паропроводах, по которым произошел заброс воды;
· увеличение осевого сдвига;
· ненормальный шум и удары в турбине;
· изменении вибрации турбоагрегата.
При появлении хотя бы одного из вышеуказанных признаков турбину остановить аварийно.
7.10.3. При останове турбины, вызванном забросом воды, кроме операций по аварийному останову выполнить следующее:
· открыть дренажи по всей трассе трубопроводов, по которым произошел заброс воды;
· до полного останова турбины тщательно контролировать осевой сдвиг ротора, разности температур по верху и низу цилиндра;
· прослушать турбину на выбеге;
· зафиксировать время выбега ротора.
7.10.4. Если при аварийном останове турбины не будет обнаружено каких-либо ненормальностей (уменьшение времени выбега ротора, увеличение осевого сдвига, повышение температур масла на сливах из подшипников, увеличение разности температур между верхом и низом цилиндра) и при этом не будет отмечено посторонних звуков в проточной части и в уплотнениях, то турбина может быть пущена в работу. Перед пуском необходимо надежно сдренировать все паропроводы свежего пара, пара на уплотнения, отборов и цилиндра турбины, поднять температуру свежего пара до номинального значения.
Дата добавления: 2015-07-20 ; просмотров: 873 | Нарушение авторских прав
Тема: Приплыли
Опции темы
Поиск по топику
Отображение
Основываясь на своих знаниях и опыте, я не могу согласиться с заключением специалистов официального дилера ООО «Автомир-Нева». Т.к. повреждения двигателя автомобиля, получаемые при попадании воды через воздушный фильтр и впускной коллектор, не соответствуют повреждениям, выявленным в двигателе моего автомобиля. На рисунке 9 показана типичная ситуация попадания воды через воздушный фильтр и впускной коллектор.
Рис. 9 Типичная схема попадания воды через воздушный фильтр и впускной коллектор
Шаг 1 Двигатель работает. Вода попадает в корпус воздушного фильтра и заполняет его. Затем через резиновые патрубки вода попадает в турбину. Затем через резиновый патрубок вода попадает в интеркулер. Затем через резиновый патрубок вода попадает в корпус дроссельной заслонки и впускной коллектор. Из впускного коллектора вода попадает в камеру сгорания (цилиндр). Попадание воды в камеру сгорания приводит или к остановке двигателя, или к остановке двигателя с повреждениями шатунов и / или коленчатого вала.
Шаг 2 Двигатель не работает. Вода из камеры сгорания через зазоры в поршневых кольцах очень медленно стекает в картер двигателя. Т.к. коленчатый вал двигателя не крутится, то образования масляной эмульсии не происходит.
В таблице 1 приведено сравнение вероятных повреждений, вызванных попаданием воды в воздушный фильтр и впускной коллектор, и повреждений, выявленных при разборке двигателя моего автомобиля.
Таблица 1
Повреждения двигателя автомобиля, получаемые при попадании воды через воздушный фильтр и впускной коллектор, полностью не соответствуют повреждениям, полученным моим автомобилем.
Если произвести анализ повреждений двигателя, то наиболее вероятно предположить, что вода попала непосредственно в картер двигателя. (см. рис. 10).
Рис. 10
Шаг 1 Вода попала непосредственно в картер двигателя, смешалась с маслом, нагрелась и начала испаряться. Водяной пар попадает через систему вентиляции картера в тройник и резиновый патрубок. Затем пар попадет в турбину. Затем через резиновый патрубок пар попадает в интеркулер, где охлаждается и большая часть пара конденсируется и замерзает. Остатки пара попадают через резиновые патрубки, дроссельную заслонку и впускной коллектор в камеру сгорания. Из камеры сгорания пар вместе с отработанными газами попадает в выпускной коллектор.
Шаг 2 Из-за вращения коленчатого вала двигателя в картере происходит активное смешивания воды с моторным маслом. Это приводит к образованию масляной эмульсии. В картере по-прежнему происходит образование пара, который попадает в двигатель тем же путем, как и в шаге 1. Часть трубок интеркулера замерзает. Масляная эмульсия прокачивается масляным насосом по всей системе смазки двигателя.
Шаг 3 Большая часть трубок интеркулера замерзает. Подача воздуха во впускной коллектор становится не достаточной. Двигатель глохнет. В картере двигателя масляная эмульсия. Двигатель заводится, но из-за нехватки воздуха сразу глохнет.
При этом повреждения двигателя, полученные при таком ходе событий, полностью соответствуют повреждениям, выявленным при разборке двигателя моего автомобиля.
Непосредственно в картер двигателя вода может попасть несколькими путями:
— через маслозаливную горловину;
— через масляный щуп;
— через вакуумный насос;
— через систему вентиляции картера;
— через поврежденные прокладки;
— через сальники валов.
10 декабря 2009 года официальный дилер ООО «Автомир-Нева» проводил техническое обслуживание моего автомобиля и повреждений прокладок, сальников и частей двигателя обнаружено не было. Т.е. в тот момент, когда вода попала в двигатель, он находился полностью в исправном состоянии.
Вода не могла попасть в картер двигателя через маслозаливную горловину, масляный щуп или систему вентиляции картера, т.к. они находились выше уровня воды.
При осмотре машины официальным дилером ООО «Автомир-Нева» повреждений вакуумных трубок не было обнаружено. Вода в вакуумном насосе и вакуумных трубках не обнаружена. Следовательно, через вакуумные трубки и вакуумный насос вода не могла попасть в картер двигателя.
При осмотре машины официальным дилером ООО «Автомир-Нева» повреждений прокладок двигателя и подтеков масла обнаружено не было. Следовательно, прокладки двигателя повреждений не имели, и вода не могла попасть в картер двигателя через прокладки.
Ниже уровня воды находился только передний сальник коленчатого вала (см. рис. 11). Однако, при осмотре машины официальным дилером ООО «Автомир-Нева» повреждений переднего сальника коленчатого вала не обнаружено. Тем не менее, в отличие от прокладок двигателя, при определенных условиях, даже не поврежденный сальник не может обеспечить 100 % герметичности.
Вода в двигателе: ничего страшного или лучше не заводиться до просушки?
Попадание в двигатель воды — ситуация довольно распространённая. Например, вы решили пересечь, казалось бы, небольшой брод или едете по трассе в сильный дождь. Этого уже достаточно, чтобы в мотор попала вода и произошёл гидроудар, способный надолго вывести силовой агрегат из строя. Но можно обойтись и лёгким испугом, если знать, что делать в таких случаях и чем это грозит.
Почему в двигатель попадает вода
Конструктивно любой силовой агрегат имеет ряд слабых мест, несмотря на то, что инженеры стараются максимально защитить все подвижные детали от негативного воздействия внешних факторов. Однако от воды защититься не так-то просто, ведь она может попасть даже через микроскопические трещины. Особенно актуально попадание воды для автомобилей с низким клиренсом. При преодолении глубоких преград вода практически гарантированно попадёт на горячие стенки мотора.
Определить наличие воды можно по крышке маслозаливной горловины
Есть категория автомобилистов, которые особо и не обращают внимание на то, что поддон картера имеет трещины или вовсе оказывается пробит. Через повреждения начинает попадать вода, неважно, летом или зимой. Всё это приводит к тому, что масло начинает смешиваться с маслом и, соответственно, переносится в головку блока цилиндров.
Последствия попадания влаги
Гидроудар: вот самое страшное, что может произойти — двигатель в буквальном смысле расколется на части. Если не удалось избежать затекания воды в камеры сгорания, следует обеспечить минимально возможные обороты двигателя и не дать ему прогреваться или сразу заглушить, если всё произошло на ходу. Тогда поршневая группа получит не самые серьёзные деформации, однако ремонт повреждённых деталей всё равно понадобится, проработают они недолго.
Последствия гидроудара всегда плачевные
Что касается дизельного двигателя, то тут всё сложнее, легко отделаться не удастся, т. к. солярка воспламеняется от сжатия смеси, а наличие в ней воды приведёт к разрушению подвижных частей. Поэтому если автомобиль имеет дизельный двигатель, его обязательно защищают брызговиками и устанавливают специальные «хоботы», внедорожники оснащаются шноркелем.
Что делать с водой в двигателе
Если после преодоления водной преграды мотор заглох, это ещё не значит, что нужно думать о дорогостоящем ремонте. После остановки следует выполнить следующие действия:
Это поможет только в том случае, если влага попала на разгорячённую поверхность двигателя, который заглох из-за внезапного понижения температуры. Куда опаснее случаи, когда мотор «хлебнул» воды и она попала внутрь. Не следует вообще заводить его в такой ситуации, лучше дождаться полного испарения, а ещё лучше слить всё масло с поддона и залить промывочное. Только после этого залить свежее и надеяться, что всё обошлось без повреждений.
Видео: что такое гидроудар?
Запуск после удаления влаги
После того как масло успешно поменяли, бросаться заводить мотор как можно быстрее неправильно. Если автомобиль старого образца и не имеет электронного блока управления, то достаточно выкрутить свечи зажигания, коммутатор или катушку и распределитель. При наличии ЭБУ лучше дождаться естественного испарения влаги. После снятия свечей можно смело прокрутить двигатель с помощью стартера, тем самым просушив цилиндры. Для полноценного запуска лучше оставить машину на пару дней для полного испарения остатков влаги и проветривания.
Через несколько дней можно ставить свечи на место и попытаться запустить мотор. Если сделать это не удаётся, не стоит для этого применять какие-то изощрения. Лучше сразу вызвать эвакуатор или буксир и отправиться в ближайший автосервис, где максимально точно определят причину и ликвидируют последствия более технологичными способами.
Теперь, попав в такую неприятную ситуацию, вы тоже знаете порядок действий, если в моторе оказалась влага. Не нужно паники, сразу глушите мотор и не ждите, пока он сам заглохнет от гидроудара.
Пять ошибок водителей, которые быстро убивают турбомотор
Наиболее часто турбину в современных моторах приговаривает масляное голодание, которое происходит по разным причинам.
В среднем же, если турбодвижок среднестатистической легковушки относительно новый, он будет потреблять около 80 грамм масла на 100 литров топлива. Что же касается изношенных турбоагрегатов, там моторный «жор» может доходить и до 2 л на 100 литров топлива. Что происходит при таком раскладе с турбиной? При масляном голодании начинается повышенный износ ее деталей и снижается теплоотвод. В результате «улитка» ломается и, как правило, это является негарантийным случаем, поскольку владелец не следил за уровнем масла.
Не секрет, что турбодвижки очень не любят, когда их глушат сразу после долгой и активной езды по трассе или бездорожью. В процессе такого «драйва» крыльчатка турбины может раскручиваться до 10000-15000 оборотов в минуту. Когда же раскаленный узел перестает смазываться маслом, это провоцирует поломки из-за неравномерного температурного расширения.
Есть такая категория водителей, которые сдувают пылинки со своих «железных коней» и в частности не дают мотору работать под серьезной нагрузкой и практикуют движение накатом, например, подкатываясь к светофорам на «нейтрали». Как это ни парадоксально, но такая манера пагубно влияет на турбоагрегаты.
К примеру, некоторые турбомоторы компании Subaru не терпят низкого давления масла в двигателе. Дело в том, что лубрикант начинает хуже циркулировать по системе смазки, а если водитель вдруг становится «тихоходом» после активной езды, возможно также и пригорание масла. Самое интересное, что владелец убежден, что, двигаясь на машине со скоростью черепахи, он дает турбодвигателю отдохнуть.
В противном случае, если холодный мотор раскрутить до красной зоны тахометра, турбина начнет быстро и сильно разогреваться, и из-за резкого перепада температур могут произойти деформации металлических элементов конструкции. При этом смазка все еще густая, и турбина работает в условиях серьезного масляного дефицита. Узел в результате работает почти «на сухую» и гарантированно выйдет из строя раньше времени.
Что будет, если поить машины с высокотехнологичными турбинами низкооктановым бензином?
Ничего хорошего. Если в мануале и на крышке топливного бака указано «не ниже 95 го бензина», то, заправляясь топливом АИ-92, вы повышаете вероятность детонации, иными словами, взрывоподобного горения смеси в цилиндрах.
Последнее явление чревато, как известно, механическим разрушением поршневой группы и износом вкладышей. Турбина же увеличивает массу сгораемой топливной смеси внутри цилиндров.
Без надувательства: почему ломаются турбины, и как их ремонтируют
Он был запатентован в далеком 1911 году, прошел долгий путь от авиации до Формулы-1 и, наконец, получил свое место на автомобильном конвейере лишь в 1977 году на Saab, после чего медленно, но уверенно продвигался на все ведущие предприятия по производству автомобилей, сломив, в конце концов, даже таких апологетов атмосферных двигателей, как BMW. Да, сегодня речь пойдет о турбокомпрессоре. В этот раз рассмотрим основные проблемы этого узла, возможные неисправности и процесс ремонта оных.
Кратко об устройстве и работе
В се гениальное просто. Правда, это относится к самой идее – концепции, так сказать, турбокомпрессора. Многим инженерам не давала покоя расходуемая впустую энергия вылетающих из выпускного коллектора отработанных газов. Наконец один из них (Альфред Бюхи) все-таки создал конструкцию, в которой на одном валу были установлены два колеса с крыльчатками – компрессорное и турбинное. Поместив вал с колесами в корпус, он получил турбокомпрессор.
Так, на турбинное колесо попадали вылетающие через выпускной коллектор отработанные газы и раскручивали его, а вместе с ним и компрессорное колесо, благодаря которому атмосферный воздух под давлением подавался во впускной коллектор. Компрессорное и турбинное колеса имеют свои корпусы, называемые еще «улитками», вал на втулках помещен тоже в свой корпус, который называют «картриджем». В последний подводится моторное масло для смазки, а иногда и охлаждающая жидкость для дополнительного охлаждения. Сам вал, на котором установлены турбина и компрессор, чаще вращается на подшипниках скольжения – втулках из бронзы. Есть варианты и на подшипниках качения, но такие турбокомпрессоры имеют очень высокую стоимость.
Для контроля за частотой вращения турбины, а, следовательно, и давлением наддува установили перепускной клапан (wastegate), который при необходимости сбрасывает часть отработанных газов в обход турбины. Управляется этот клапан с помощью актуатора, который может быть вакуумным или с электрическим сервоприводом. На впуске же установлен байпасный клапан, призванный перенаправлять воздух обратно на вход компрессора в моменты закрытия дроссельной заслонки. Кстати, знаменитый «пщщщ» при переключении передач в фильме «Форсаж» – это работа заменителя байпаса – блоу-офф клапана (blow-off). Именно при его работе избыток воздуха столь эффектно отправляется в атмосферу.
Но никто и ничто не стоит на месте, а потому те, кому не нравилась грубая работа перепускного клапана, решили, что неплохо было бы управлять направлением потока отработанных газов. Так появились турбокомпрессоры с изменяемой геометрией. Внутри корпуса турбинного колеса установлены по кругу направляющие лопатки, которые при помощи специального механизма изменяют свое расположение, по-разному направляя поток отработанных газов на лопатки турбинного колеса. Тем самым регулируется частота вращения турбины в зависимости от нагрузки на двигатель.
В рамках этого материала мы не будем рассматривать ни сдвоенные, ни комбинированные системы наддува, так как на сегодня главное – понять, какие проблемы могут возникнуть, и как они решаются.
Что может поломаться
Так, например, при попадании посторонних предметов или пыли во впускной трубопровод могут разрушиться лопатки компрессорного колеса.
Что-либо подобное случается и с лопатками турбинного колеса, а вместе с ним и лопатками изменяемой геометрии, если таковые имеются.
Масляное голодание, неправильный подбор масла, перегрев, нарушение регламента замены моторного масла – все это приводит к износу рабочих поверхностей вала турбокомпрессора.
Износ может стать причиной заклинивания системы изменения геометрии турбины.
Возможны заклинивания актуаторов привода перепускного и байпасного клапанов, которые управляются ЭБУ двигателя.
Из-за чрезмерных перегрузок есть вероятность деформации вала турбины. Все перечисленное – только основные причины. Выявленное же в процессе ремонта может неприятно удивить, ведь турбина – это высоконагруженный агрегат, и причин выхода из строя может быть множество.
Как понять, что с турбокомпрессором проблемы
Базовых признаков только два – потеря тяги или такая тяга, которой не было раньше. При потере тяги сервисмен первым делом «грешит» на турбину, потому что она – одна из самых уязвимых единиц под капотом. Крутится порой до 150 000 об/мин, с одной стороны греется, с другой – охлаждается, а потому если тяга на авто куда-то начала пропадать, то подозрение в первую очередь падет на нее. Все остальное можно узнать только после снятия турбокомпрессора с автомобиля.
Предварительно мастер просто обязан выполнить диагностику всех систем, чтобы убедиться в том, что ни один из датчиков не вышел из строя, и нет ни одного места, через которое воздух попадал бы во впускной коллектор в обход системы впуска.
Есть еще один момент – это шум турбины высокой частоты, почти писк, который зачастую говорит о слишком большом осевом или радиальном люфте вала турбокомпрессора. Двигатель при этом может тянуть, как и прежде, но время жизни турбины резко начинает стремиться к нулю.
А теперь о том, что касается тяги, нехарактерной для двигателя – то есть, если вы вдруг обнаружили, что больше нет турбоямы и чего-то подобного, и автомобиль «на подрыве» всегда. Такие признаки могут говорить о том, что перепускной клапан (wastegate) заклинило, отработанные газы не сбрасываются, и оттого турбина качает воздух по полной, повышая давление наддува. «Подрыв» – это хорошо, но он может закончиться прогоранием поршня или клапанов из-за перегрузки. Так что следите за «характером» своего автомобиля.
После снятия турбокомпрессора
Все, что описано выше, касается исключительно диагностики до снятия турбины с двигателя. Теперь же представим, что мастер провел диагностику и выдал неутешительный вердикт, что скорее всего проблемы связаны именно с турбокомпрессором. В этом случае механик демонтирует его и отправляет на участок дефектовки и ремонта.
Теперь начинается самое интересное. Первое, на что смотрит мастер, – это компрессорное и турбинное колеса и состояние корпуса турбинного колеса. По нагару и саже на впуске корпуса турбины мастер может приблизительно сориентировать, что является их причиной – может, «заливает» форсунка, или износились поршневые кольца, отчего в наддув гонит масло из картера двигателя. Осмотром же турбинного и компрессорного колес можно выявить чрезмерный износ оных, как в нашем случае.
В идеале каждая из лопаток должна проходить рядом с корпусом с минимальным зазором – слишком большой зазор означает потери. Далее мастер на ощупь проверяет люфт вала турбины.
Почему на ощупь? Да потому, что люфта практически не должно быть, причем ни радиального, ни осевого. Далее следует разборка. Ничего сложного в ней нет: болты и гайки долой – и вот уже «улитки» отдельно, картридж отдельно. Далее мы отвернули гайку крепления компрессорного колеса и сняли его, после чего вал извлекли из картриджа. Втулки – выпрессовали. Вот по сути и вся разборка. Турбинное колесо, к слову, образует с валом одну неразъемную деталь.
Все элементы корпуса турбокомпрессора отправляются на пескоструйную очистку.
Рабочие элементы отправляются на обмер – там, в частности, измеряется диаметр вала в местах установки втулок. При необходимости заменяется компрессорное колесо. Если с валом или с турбинным колесом все плохо, то поможет только замена. Помимо этого, при проверке подают разрежение и проверяют работу актуаторов. Если же актуатор электрический, его проверяют с помощью соответствующих диагностических приборов.
Ремонт турбины
Если поверхности вала изношены в пределах допустимого, то их шлифуют, если вне пределов – заменяют. После шлифовки снова измеряют наружный диаметр и вытачивают под него втулки.
Затем вал отправляют на проверку его биения – и никакого диссонанса или нарушения технологии здесь нет. Дело в том, что вал можно условно разделить на две части – рабочую, на которую установлены втулки, и часть, на которую установлено компрессорное колесо. Последняя не может быть отшлифована из-за того, что компрессорные колеса, как запчасти, поставляются только в номинальных размерах. Шлифовка вала пусть и на малую долю, но изменит его диаметр. А изменение зазора между валом и колесом недопустимо. Потому мастер ставит вал на специальный стенд с индикатором часового типа и, вращая его, определяет точки деформации.
Затем с помощью специальных инструментов и молотка правит его. Правит до тех пор, пока не добьется почти идеальных результатов по биению.
После правки вал отправляется на балансировку. Процесс этот сам по себе интересный. На специальный стенд ставят вал, на него накидывают приводной ремень, который и прижимает вал к опорам. На турбинное колесо наносится метка, а напротив него ставится лазерный датчик частоты вращения. После включения приводного электромотора вал раскручивается до определенных оборотов, чтобы откалибровать стенд. Затем мастер прилепляет небольшой кусок пластилина напротив метки турбинного колеса и снова включает стенд. Потом лепит приблизительно такой же кусок пластилина с обратной стороны турбинного колеса, но напротив первого куска.
После этого мастер включает стенд, доводит обороты до требуемых и выключает. По итогам процедуры на экране дисплея стенда выводятся приблизительные точки дисбаланса вала с весом материала, который необходимо удалить для балансировки.
Глядя на эти точки, мастер немного стачивает поверхность гайки турбинного колеса.
Затем вал снова отправляется на стенд – и весь процесс повторяется по кругу, пока не будут достигнуты требуемые показатели.
После удачной балансировки мы ставим на вал уже подготовленные втулки и собираем то, что называют картриджем – корпус вала.
Турбину почти полностью собирают – лишь без установки «улитки» компрессора.
В таком виде ее устанавливают на стенд для окончательной проверки перед сборкой.
Гайку крепления компрессорного колеса предварительно намагничивают специальным магнитом. Делают это с целью снятия показаний работы вала – его частоты вращения и биения. Установка на стенд подразумевает подключение подачи масла и холодного сжатого воздуха. На стенде мастер раскручивает турбину до частоты немного выше рабочей, проверяя основные показатели работы.
Убедившись, что все в порядке, устанавливают корпус компрессора и актуатор. Далее подсоединяют к актуатору вакуумный шланг, а на его шток устанавливают электронный индикатор, который является частью специального оборудования для регулировки начала открытия и хода штока.
В память стенда внесена база данных по турбокомпрессорам – мастеру достаточно внести номер турбины в эту базу (номер нанесен на корпусе каждой турбины) и запустить процесс диагностики.
Стенд подведет определенное разрежение к актуатору, а индикатор считает ход штока. Если что-то окажется не в порядке, мастер отрегулирует длину штока. На этом ремонт турбины можно считать оконченным.
Перед установкой турбокомпрессора на двигатель, особенно если сам ДВС «капиталился», многие рекомендуют промыть систему смазки промывочным или просто недорогим маслом. Рекомендуется сделать это как минимум четыре раза и только после этого ставить турбокомпрессор. Если не учесть этого, то следующий ремонт турбины потребуется раньше, чем предполагалось.
В заключение
Вал турбины очень чувствителен к качеству моторного масла, и продукты износа двигателя могут сделать свою коварную работу. Потому, когда дело касается ремонта турбокомпрессора, не стоит дешевить. В целом даже самый сложный ремонт всегда будет приблизительно в два раза дешевле самой дешевой, но новой турбины. Если усреднить цены, то ремонт может стоить около 250 долларов, а новая турбина в сборе – приблизительно 500 долларов. Ну а чтобы подольше не заезжать в сервис за столь дорогостоящим ремонтом, следите за своим автомобилем и качеством используемого моторного масла, а также не ленитесь читать рекомендации по правильной эксплуатации автомобилей в зимний период.
Особая благодарность в подготовке материала организации «РемТурбоСервис» (+38 057-762-98-26, Харьков; +7 917-540-61-20, Белгород; +7 495-255-46-96, Москва)