В треугольнике abc известно что bac 60 abc 45 продолжения высот
Задание 16. Математика ЕГЭ. В треугольнике АВС известно, что ∠ВАС = 60°, ∠АВС = 45°. Продолжения высот треугольника АВС пересекают описанную около него окружность в точках M, N, P. Найдите площадь треугольника MNP, если известно, что ВС = 6.
Задание. В треугольнике АВС известно, что ∠ВАС = 60°, ∠АВС = 45°. Продолжения высот треугольника АВС пересекают описанную около него окружность в точках M, N, P.
а) Докажите, что треугольник MNP прямоугольный.
б) Найдите площадь треугольника MNP, если известно, что ВС = 6.
Решение:
а) Докажите, что треугольник MNP прямоугольный.
Так как ∠АВС = 45°, а СР – высота треугольника ∆АВС, тогда ∠ВСР = 45°. Угол ∠ВСР – вписанный в окружность угол, он равен половине дуги, на которую он опирается, следовательно, дуга ВР = 90°.
Так как ∠АВС = 45°, а АМ – высота треугольника ∆АВС, тогда ∠ВАМ = 45°. Угол ∠ВАМ – вписанный в окружность угол, он равен половине дуги, на которую он опирается, следовательно, дуга ВМ = 90°.
Дуга МР равна сумме дуг ВР и ВМ, т. е. дуга МР = 180°. Угол ∠МNP – вписанный в окружность угол, следовательно, ∠МNP = 90°. Тогда треугольник ∆MNP – прямоугольный.
б) Найдите площадь треугольника MNP, если известно, что ВС = 6.
Рассмотрим прямоугольный треугольник ∆MNP. MP – гипотенуза вписанного в окружность прямоугольного треугольника ∆MNP, следовательно, МР – диаметр окружности, тогда МР = 2R.
Используя теорему синусов, имеем, что отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности, получим
Следовательно, МР = 2R = 4√3.
Рассмотрим треугольник ∆АВС. Угол ∠ВАС = 60°, СР – высота треугольника ∆АВС, тогда ∠АСР = 30°. Угол ∠АСР – вписанный в окружность угол, он равен половине дуги, на которую он опирается, следовательно, дуга АР = 60°.
Аналогично, угол ∠ВАС = 60°, BN – высота треугольника ∆АВС, тогда ∠АBN = 30°. Угол ∠АBN – вписанный в окружность угол, он равен половине дуги, на которую он опирается, следовательно, дуга АN = 60°.
Дуга PN равна сумме дуг АР и АN, т. е. дуга РN = 120°. Угол ∠NМP – вписанный в окружность угол, который опирается на дугу РN, тогда угол ∠NМP = 60°.
В прямоугольном треугольнике ∆MNP угол ∠NМP = 60°, значит, угол ∠МPN = 30°. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
Тогда площадь треугольника ∆MNP равна половине произведения двух его сторон на синус угла между ними, т. е.
Задание 16. Математика ЕГЭ. В треугольнике АВС известно, что ∠ВАС = 60°, ∠АВС = 45°. Продолжения высот треугольника АВС пересекают описанную около него окружность в точках M, N, P. Найдите площадь треугольника MNP, если известно, что ВС = 10.
Задание. В треугольнике АВС известно, что ∠ВАС = 60°, ∠АВС = 45°. Продолжения высот треугольника АВС пересекают описанную около него окружность в точках M, N, P.
а) Докажите, что треугольник MNP прямоугольный.
б) Найдите площадь треугольника MNP, если известно, что ВС = 10.
Решение:
а) Докажите, что треугольник MNP прямоугольный.
Так как ∠АВС = 45°, а СР – высота треугольника ∆АВС, тогда ∠ВСР = 45°. Угол ∠ВСР – вписанный в окружность угол, он равен половине дуги, на которую он опирается, следовательно, дуга ВР = 90°.
Так как ∠АВС = 45°, а АМ – высота треугольника ∆АВС, тогда ∠ВАМ = 45°. Угол ∠ВАМ – вписанный в окружность угол, он равен половине дуги, на которую он опирается, следовательно, дуга ВМ = 90°.
Дуга МР равна сумме дуг ВР и ВМ, т. е. дуга МР = 180°. Угол ∠МNP – вписанный в окружность угол, следовательно, ∠МNP = 90°. Тогда треугольник ∆MNP – прямоугольный.
б) Найдите площадь треугольника MNP, если известно, что ВС = 10.
Рассмотрим прямоугольный треугольник ∆MNP. MP – гипотенуза вписанного в окружность прямоугольного треугольника ∆MNP, следовательно, МР – диаметр окружности, тогда МР = 2R.
Используя теорему синусов, имеем, что отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности, получим
Рассмотрим треугольник ∆АВС. Угол ∠ВАС = 60°, СР – высота треугольника ∆АВС, тогда ∠АСР = 30°. Угол ∠АСР – вписанный в окружность угол, он равен половине дуги, на которую он опирается, следовательно, дуга АР = 60°.
Аналогично, угол ∠ВАС = 60°, BN – высота треугольника ∆АВС, тогда ∠АBN = 30°. Угол ∠АBN – вписанный в окружность угол, он равен половине дуги, на которую он опирается, следовательно, дуга АN = 60°.
Дуга PN равна сумме дуг АР и АN, т. е. дуга РN = 120°. Угол ∠NМP – вписанный в окружность угол, который опирается на дугу РN, тогда угол ∠NМP = 60°.
В прямоугольном треугольнике ∆MNP угол ∠NМP = 60°, значит, угол ∠МPN = 30°. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
Тогда площадь треугольника ∆MNP равна половине произведения двух его сторон на синус угла между ними, т. е.
В треугольнике abc известно что bac 60 abc 45 продолжения высот
Задание 18 (Типовые варианты для подготовки к ЕГЭ-2015)
В треугольнике ABC известно, что ∠BAC=60°, ∠ABC=45°. Продолжени высот треугольника ABC пересекают описанную около него окружность в точках M,N,P.
б) Найдите площадь треугольника MNP, если известно, что BC = 12.
Ответ:
Задание 18 (Типовые варианты для подготовки к ЕГЭ-2015)
Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30°. Точка E лежит вне прямоугольника, причем ∠BEC=120°.
а) Докажите, что ∠CBE = ∠COE.
б) Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если известно, что BE = 40 и CE = 24.
Задание 18 (Типовые варианты для подготовки к ЕГЭ-2015)
Окружность с центром O, вписанная в треугольник ABC, касается его сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Биссектриса угла A пересекает эту окружность в точке Q, лежащей внутри треугольника A1B1C1.
б) Найдите расстояние от точки O до центра окружности, вписанной в треугольник AC1B1, если известно, что BC = 15, AB = 13, AC = 14.
Задание 18 (Типовые варианты для подготовки к ЕГЭ-2015)
Основание и боковая сторона равнобедренного треугольника равны 34 и 49 соответственно.
а) Докажите, что средняя линия треугольника, параллельная основанию, пересекает окружность, вписанную в треугольник.
б) Найдите длину отрезка этой средней линии, заключенного внутри окружности.
Задание 18 (Типовые варианты для подготовки к ЕГЭ-2015)
б) Найдите площадь четырехугольника ABCD, если известно, что AB = 5 и AH = 4.
В треугольнике abc известно что bac 60 abc 45 продолжения высот
В треугольнике ABC угол ABC тупой, H — точка пересечения продолжений высот, угол AHC равен 60°.
а) Докажите, что угол ABC равен 120°.
б) Найдите BH, если
а) Рассмотрим треугольник AHC. В нем AA1 и CC1 — высоты. Тупой угол между высотами дополняет угол между сторонами, к которым они проведены, до 180°. Поэтому
б) Рассмотрим треугольник AHC, в нем Сторону AC найдём по теореме косинусов:
Тем самым,
Ответ: б)
Докажем утверждение, использованное при решении пункта а).
В четырехугольнике сумма прямых углов и равна 180°, поэтому сумма двух других углов и также равна 180°. Тогда Углы и ABC равны как вертикальные, поэтому Таким образом, тупой угол между высотами дополняет угол между сторонами, к которым они проведены, до 180°.
Сформулируем теорему, которую мы применили для решения пункта б).
Расстояние от вершины треугольника до точки пересечения его высот равно произведению стороны, противолежащей этой вершине, на котангенс угла при этой вершине. Действительно, пусть высоты AA1, BB1, CC1 треугольника ABC пересекаются в точке H. Стороны прямоугольных треугольников АСС1 и ВНС1 взаимно перпендикулярны, а потому их острые углы АСС1 и ВНС1 равны. Следовательно, эти треугольники подобны. Тогда откуда Для остроугольного треугольника доказательство аналогично. Для прямоугольного треугольника доказательство напрямую следует из определения котангенса.
Рекомендуем сравнить эту задачу с заданием 505425 из экзаменационного варианта ЕГЭ 2014 года.
Приведем другое решение пункта б):
Рассмотрим треугольник C1CH, заметим, что угол C1CH равен 30°. Поэтому в прямоугольном треугольнике CBA1 катет BA1 вдвое меньше гипотенузы: BA1 = 4. Значит, АA1 = 11. Из треугольника AA1H находим Теперь по теореме Пифагора вычисляем:
Приведем ещё одно решение пункта б):
Заметим, что в треугольнике АНС точка В — ортоцентр. В силу свойства ортоцентра откуда получаем: (это же следует из подобия треугольников и ).
Из прямоугольного треугольника CBA1 находим катет BA1, противолежащий углу в 30°: BA1 = 4. Из треугольника АВС находим высоту:
Тогда
Критерии оценивания выполнения задания | Баллы |
---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, В треугольнике abc известно что bac 60 abc 45 продолжения высотВ треугольнике ABC угол ABC тупой, H — точка пересечения продолжений высот, угол AHC равен 60°. а) Докажите, что угол ABC равен 120°. б) Найдите BH, если а) Рассмотрим треугольник AHC. В нем AA1 и CC1 — высоты. Тупой угол между высотами дополняет угол между сторонами, к которым они проведены, до 180°. Поэтому б) Рассмотрим треугольник AHC, в нем Сторону AC найдём по теореме косинусов:
Тем самым, Ответ: б) Докажем утверждение, использованное при решении пункта а). В четырехугольнике сумма прямых углов и равна 180°, поэтому сумма двух других углов и также равна 180°. Тогда Углы и ABC равны как вертикальные, поэтому Таким образом, тупой угол между высотами дополняет угол между сторонами, к которым они проведены, до 180°. Сформулируем теорему, которую мы применили для решения пункта б). Расстояние от вершины треугольника до точки пересечения его высот равно произведению стороны, противолежащей этой вершине, на котангенс угла при этой вершине. Действительно, пусть высоты AA1, BB1, CC1 треугольника ABC пересекаются в точке H. Стороны прямоугольных треугольников АСС1 и ВНС1 взаимно перпендикулярны, а потому их острые углы АСС1 и ВНС1 равны. Следовательно, эти треугольники подобны. Тогда откуда Для остроугольного треугольника доказательство аналогично. Для прямоугольного треугольника доказательство напрямую следует из определения котангенса. Рекомендуем сравнить эту задачу с заданием 505425 из экзаменационного варианта ЕГЭ 2014 года. Приведем другое решение пункта б): Рассмотрим треугольник C1CH, заметим, что угол C1CH равен 30°. Поэтому в прямоугольном треугольнике CBA1 катет BA1 вдвое меньше гипотенузы: BA1 = 4. Значит, АA1 = 11. Из треугольника AA1H находим Теперь по теореме Пифагора вычисляем:
Приведем ещё одно решение пункта б): Заметим, что в треугольнике АНС точка В — ортоцентр. В силу свойства ортоцентра откуда получаем: (это же следует из подобия треугольников и ). Из прямоугольного треугольника CBA1 находим катет BA1, противолежащий углу в 30°: BA1 = 4. Из треугольника АВС находим высоту: Тогда
|